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Abstract. In this paper, we discuss a unified theory for and perfor-
mance evaluation of the ridge direction estimation through the mini-
mization of the integral of the second directional derivative of the
gray-level intensity function. The primary emphasis of this paper is
on the ridge orientation estimation. The subsequent ridge detection
can be performed using the traditional methods of using the zero
crossing of the first directional derivative. The performance evalua-
tion of the ridge orientation estimation is performed in terms of the
mean orientation bias and orientation standard deviation given the
true orientation and the same two measures given the noise stan-
dard deviation. We discuss two forms of our new ridge detector—
first (ISDDRO-CN) using the noise covariance matrix estimation pro-
cedure under colored noise assumption, and the second (ISDDRO-
WN) using the white noise assumption. ISDDRO-CN performs
better than the ISDDRO-WN in the presence of strong correlated
noise. When the noise levels are moderate it performs as well as
ISDDRO-WN. ISDDRO-CN has superior noise sensitivity character-
istics. We also compare both forms of our algorithm with the algo-
rithm, Maximum Level Set Extrinsic Curvature (MLSEC) designed
by A. López [IEEE Trans. Patter Anal. Mach. Intell. 21, 327–335
(1999)]. © 2005 SPIE and IS&T. [DOI: 10.1117/1.1901683]

1 Introduction

Ridges in digital images occur when gray-level intensit
of a simply connected sequence of pixels are significa
higher than those of the neighboring sequences. The ex
of disparity of brightness levels between the sequences
depend on the distribution of brightness values surround
the sequence, and the length of the sequence. Intuitiv
the ridge line can be understood as the path traced, wh
we walk along the top of a mountain range with valleys
both our left and right sides. The ridge line can have sev
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forms—the ridge line can slope downward, upward or
flat when you walk along it, still maintaining the valleys o
both sides. The case in which a ridge is flat is calledflat
ridge. Therefore, if you walk across the ridge~i.e., orthogo-
nal to the ridge line!, we first go uphill, reach the peak an
then go downhill on the other side. The profile of anideal
step ridgeis shown in Fig. 1~a! and that of anideal ramp
ridge is shown in Fig. 1~b!. A more realistic ridge is the one
shown in Fig. 2 and also shown are corresponding first
second derivatives.

Some of the prominent papers on ridge detection
general imaging are in Refs. 1–10. Also, proposed w
several ridge operators for more general applicatio
such asmultiscale image analysis,11–14 image topographic
classification;15–22 recently, more attention has bee
paid to the application of ridge feature extractors toterrain
feature identification,23–25 shape-from-shading,26 digital
portal imaging27 ~a type of clinical x-ray imaging!, in
unimodality,28 and multimodality medical image
registration,29,30 fingerprint identification31–34 and
enhancement,13,35 medial line transformation,36

skeletonization,37 andmedical image segmentation.38,39

In this paper, we discuss a unified theory for and perf
mance evaluation of the ridge direction estimation throu
the minimization of the integral of the second direction
derivative of the gray-level intensity function. The perfo
mance evaluation of the ridge direction operator is p
formed as a function of the perturbation on the gray-le
intensity function of the input digital image. We are main
interested in the optimal estimation of the ridge orientatio

We use the fact that along the ridge profile the first d
rivative has a zero-crossing where the ridge attains its p
value and has a negative second derivative at the s

;
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location ~Fig. 2!. Therefore, once we find theoptimal di-
rection along which the second directional derivative h
the smallest value~i.e., largest negative value!, we can then
find the zero-crossing of the first directional derivati
along that estimated direction. If the zero-crossing is su
ciently close to the center of the pixel and the second
rectional derivative has sufficient magnitude, we can th
label the pixel as the ridge pixel.40

For simplicity, we call this theIntegrated Second Direc
tional Derivative Ridge Operator~ISDDRO! in the rest of
this paper. The bias and the variance of the ridge direc
estimate are the objective measures of performance. We
a bivariate fourth order polynomial function as our fac
model of the image intensity function in the neighborho
of a given size. We assume azero mean Gaussianpertur-
bation model for the observed image intensity function.
develop the ridge operator under two different noise m
els: ~1! white noise and~2! colored noise. In the latter cas
we use the procedure described in Refs. 41 and 42 to
mate the noise covariance matrix, and use the corresp
ing expression for the estimation of the facet model coe
cients. We compare the performance of our ridge oper
in terms of the optimal ridge direction estimation und
both the covariance models and also against the ope
Maximum Level Set Extrinsic Curvature~MLSEC!, devel-
oped by López et al.22 They do not perform the perfor
mance evaluation of their algorithm the way we intend
do here. We perform the performance evaluation of
ridge direction estimate with respect to the direction e
mate bias and direction estimate standard deviation. We
these two parameters while comparing with the MLSE
operator. MLSEC operator works on the same principles
looking for the negative second directional derivative at
zero-crossing of the first directional derivatives. Howev

Fig. 1 Illustration of an ideal ridge profiles.

Fig. 2 Illustration of a more realistic ridge profile.
02301Journal of Electronic Imaging
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the derivatives and then the divergence are obtained
using the centered differences in the smallest neighborh
~333!, and then searching for the zero-crossings to la
the ridge pixels. The images are first regularized usin
Gaussian kernel. The orientation of the second derivati
are computed by using their components inx andy direc-
tions in the same smallest neighborhood, as,

umlsec5arctanS y

xD . ~1!

Here we use the simple version of the operator as oppo
to the one using the structure tensor~MLSEC-ST! by the
same authors.

Our procedure for Ridge detection from gray-level im
ages involves the following steps:

1. Noise covariance matrix estimation as described
Refs. 41 and 42.

2. Estimating the underlying gray-level surface in t
neighborhood of the pixel under consideration usi
a Bayesian approach.

3. Estimating the optimal directionu that minimizes the
integral of the second directional derivative of th
fitted facet model of the gray-level intensity surfac

4. Given this optimal direction, if the negatively slope
zero crossing of the first directional derivative occu
in the neighborhood of the center pixel, and the s
ond directional derivative is negative and has su
cient magnitude, then we label it as a ridge pix
However, in this paper we do not focus on the rid
labeling.

1.1 Organization of the Paper

In Sec. 2, we describe the facet model and the noise m
that we use. Section 3 discusses the estimation of the f
model parameters under colored and white noise assu
tions. In Sec. 4, we derive the optimal ridge orientati
estimate. Section 5 discusses the procedure for labelin
pixel as a ridge pixel. We discuss the performance eva
tion of the ridge direction estimate in Sec. 6. Finally,
Sec. 7, we summarize the results of this paper.

2 The Facet Model and the Noise Model

2.1 The Facet Model

For the nth image neighborhood, we can write the fac
model40 representing the ideal noise free signal energy

sn5Ban , ~2!

where sn represent the n51,...,N; K5(2R11)
3(2R11)-dimensional noiseless vectors from the sign
space, whereR is the half-width of the discrete support o
the neighborhood;B is anorthonormalmatrix whose col-
umns represent theDiscrete Orthonormal Polynomia
~DOP! basis of the space modeled to contain the sig
energy, andan are n51,...,N; M-dimensional vectors of
coefficients~also known asDOP coefficients! of the facet
model.B is obtained as discussed in Refs. 40, 41, and
2-2 Apr–Jun 2005/Vol. 14(2)
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In the rest of the paper, we will use the terms,DOP coef-
ficientsand facet model coefficientsinterchangeably.

2.2 The Noise Model

Let xn ; n51,...,N be the N K-dimensional independen
samples of the noisy observed signal. Then, the facet m
represents this noisy signal as41,42

xn5Ban1hn, ~3!

where hn;N(0,Sh) are the independent identically dis
tributed Gaussian random variates. In general,Sh repre-
sents the covariance matrix of a colored noise signal. Un
the white noise assumption,Sh5s2I , wheres2 is the vari-
ance of the white noise.

3 Estimation of the Facet Model Coefficients

We reproduce the results here from Refs. 41 and 42
convenience of explanation. Under the colored noise
sumption the DOP coefficients, used for fitting to the ima
gray level data, for thenth neighborhood are given by,

ân5~B82SBCSCC
21C8!xn , ~4!

whereC is anorthonormalmatrix whose columns span th
space~noise space! that is orthogonal complementto the
space~signal space! spanned by the columns ofB, SCC is
Sh expressed in the orthogonal complement space andSBC
depicts the extent of correlation between the two spa
The noise covariance matrix is estimated as discusse
the said references.

Under white noise assumption, these coefficients
written,

ân5B8xn . ~5!

Therefore, in the following sections, when we mention th
the ridge operator uses colored noise assumption, we m
that it uses the DOP coefficients given by Eq.~4!, and when
we say the ridge operator uses the white noise assump
then we mean that it uses the DOP coefficients given
Eq. ~5!.

4 The Ridge Operator

For ridge detection, we use abivariate fourth order poly-
nomial as our facet model describing the gray-level inte
sity surface in a local neighborhood. This is because of
higher order ridge behavior compared to an edge. Furt
if any order less than 4~say, a cubic! is used, then it will
produce an undesirable result of the ridge direction estim
becoming independent of the integration domain size.

Let J(r ,c) denote the gray-level of the imageJ at (r ,c)
in the row-columncoordinate system. We know that th
DOP basis is defined over a discrete support or region
given size. For this reason, we will have different ba
matrix B for different sized supports. Therefore, to ma
our functional form of the gray-level surface independe
of the support size, we will express it, for a given (r ,c), in
canonical formas,
02301Journal of Electronic Imaging
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f ~r ,c!5k11k2r 1k3c1k4r 21k5rc1k6c21k7r 31k8r 2c

1k9rc21k10c
31k11r

41k12r
3c1k13r

2c21k14rc
3

1k15c
4, ~6!

where, canonical coefficientsk5(k1 ,k2 ,...,k15)8 is the
vector of DOP coefficientsa expressed in canonical form
This is thebivariate fourth order polynomialmodel for the
noise-free underlying gray-level intensity function.

The DOP coefficientsan of the facet model are relate
to the corresponding canonical coefficientskn through the
relation,

kn5Ta°kan , ~7!

where the transformation matrixTa°k is described in Ref.
10. Using DOP bases instead of the canonical basis all
us to estimate the DOP coefficientsan , independently of
one another which can easily be converted to canon
form.

Therefore, we can express the uncertainty in the can
cal coefficientskn as,

Sk̂5Ta°kSâTa°k8 . ~8!

Estimating the optimal ridge direction: We estimate
the optimal ridge direction by finding the minimum of th
integral of the second directional derivative off (r ,c),
taken over all possible directions. Such an approach pro
to provide least bias and variance44 of the estimated direc-
tion in the case of edge detection.

Let

r 5r cosu1v sinu; c52r sinu1v cosu. ~9!

This is the polar representation of the lines andr andv are
the axes along the length and the width of the domain
integration used in determining the ridge direction,
shown in Fig. 3.uP@0,2p! is the angle of orientation, mea
sured clockwise with respect to the column axis and rep
sents the direction forming the rectangular domain of in
gration of length 2L and width 2W centered at the origin o

Fig. 3 Illustration of the integrated second directional derivative
ridge operator.
2-3 Apr–Jun 2005/Vol. 14(2)
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the coordinate system, and is orthogonal to the lines al
which the integrated second directional derivative is m
sured. The second directional derivative off (r ,c) along a
line in the directionu ~using polar form of lines! is given by

f uu~r ,c!5
]2f

]r 2
sin2 u12

]2f

]r ]c
sinu cosu1

]2f

]c2
cos2 u,

~10!

where (•)uu denotes the second directional derivative.
Using Eq.~6!, we obtain the following results:

]2f ~r ,c!

]r 2
52k416k7r 12k8c112k11r

216k12rc12k13c
2,

~11!

]2f ~r ,c!

]c2
52k612k9r 16k10c12k13r

216k14rc112k15c
2,

~12!

]2f ~r ,c!

]r ]c
5k512k8r 12k9c13k12r

214k13rc13k14c
2.

~13!

Substituting forr andc from Eq. ~9! into the above equa
tion, and simplifying,

]2f

]r 2
5~12k11cos2 u26k12sinu cosu12k13sin2 u!r2

1~24k11sinu cosu16k12~cos2 u2sin2 u!

24k13sinu cosu!rv1~12k11sin2 u

16k12sinu cosu12k13cos2 u!v21~6k7 cosu

22k8 sinu!r1~6k7 sinu12k8 cosu!v12k4 , ~14!

]2f

]c2
5~2k13cos2 u26k14sinu cosu112k15sin2 u!r2

1~4k13sinu cosu16k14~cos2 u2sin2 u!

224k15sinu cosu!rv1~2k13sin2 u

16k14sinu cosu112k15cos2 u!v21~2k9 cosu

26k10sinu!r1~2k9 sinu16k10cosu!v12k6 ,

~15!

]2f

]r ]c
5~3k12cos2 u24k13sinu cosu13k14sin2 u!r2

1~6k12sinu cosu14k13~cos2 u2sin2 u!

26k14sinu cosu!rv1~3k12sin2 u

14k13sinu cosu13k14cos2 u!v21~2k8 cosu

22k9 sinu!r1~2k8 sinu12k9 cosu!v1k5 . ~16!
02301Journal of Electronic Imaging
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Substituting the above expressions into Eq.~10! and sim-
plifying, we get,

f uu~r cosu1v sinu,2r sinu1v cosu!5Ar21Brv

1Cv21Dr1Ev1F, ~17!

where

A52k13sin4 u16~k142k12!sin3 u cosu1~12k1128k13

112k15!sin2 u cos2 u16~k122k14!sinu cos3 u

12k13cos4 u, ~18!

B526k12sin4 u112~2k112k13!sin3 u cosu

118~k122k14!sin2 u cos2 u

112~k1322k15!sinu cos3 u16k14cos4 u, ~19!

C512k11sin4 u112k12sin3 u cosu112k13sin2 u cos2 u

112k14sinu cos3 u112k15cos4 u, ~20!

D522k8 sin3 u12~3k722k9!sin2 u cosu

12~2k823k10!sinu cos2 u12k9 cos3 u, ~21!

E56k7 sin3 u16k8 sin2 u cosu16k9 sinu cos2 u

16k10cos3 u, ~22!

F52k4 sin2 u12k5 sinu cosu12k6 cos2 u. ~23!

Now, define,

Fuu5
1

4LW E
2W

W E
2L

L

f uu~r cosu1v sinu,2r sinu

1v cosu!drdv, ~24!

whereL andW are the half-length and half-width, respe
tively, of the domain of integration.

Evaluating the above integral using Eq.~17!, we get,

Fuu5 1
3~AL21BW213F !, ~25!

whereA, B, andF are as defined earlier.
Most of the applications use square neighborhoods,

ease of computation. Therefore, we letL5W for the rest of
the discussion.

Theorem 1~Optimal ridge direction !: Using ISDDRO,
the optimal direction estimateû of u is given by,

û5
1

2
arctanS D1

D2
D , ~26!

where

D15L2~k121k14!1k5 , ~27!

D252L2~k152k11!1k62k4 . ~28!
2-4 Apr–Jun 2005/Vol. 14(2)
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Proof: The result is obtained by findingû that minimizes
Fuu . By substituting the values ofA, B, and F into Eq.
~25!, we get

Fuu5 1
3@2~L2k1316W2k11!sin4 u16~~k142k12!L

2

12k12W
2!sin3 u cosu14~~3k1122k1313k15!L

2

13k13W
2!sin2 u cos2 u16~~k122k14!L

2

12k14W
2!sinu cos3 u12~k13L

216k15W
2!cos4 u

16k4 sin2 u16k5 sinu cosu16k6 cos2 u#. ~29!

For square neighborhoods, lettingL5W, we have

Fuu5 1
3@2L2~k1316k11!sin4 u16L2~k141k12!sin3 u cosu

14L2~3k111k1313k15!sin2 u cos2 u16L2~k12

1k14!sinu cos3 u12L2~k1316k15!cos4 u

16k4 sin2 u16k5 sinu cosu16k6 cos2 u#. ~30!

To compute an estimateû of u that minimizesFuu , we
differentiateFuu with respect tou, equate it to zero and
solve the resulting equation foru,

]Fuu

]u
5

1

3
@8L2~k1316k11!sin3 u cosu16L2~k141k12!

3~2sin4 u13 sin2 u cos2 u!14L2~3k111k13

13k15!~22 sin3 u12 sinu cos3 u!

16L2~k121k14!~23 sin2 u cos2 u1cos4 u!

28L2~k1316k15!cos3 u sinu112k14sinu cosu

16k5~2sin2 u1cos2 u!212k6 cosu sinu#. ~31!

Simplifying the above equation, we get,

]Fuu

]u
5

1

3
@~6L2~k121k14!16k5!cos 2u1~12L2~k112k15!

16~k42k6!!sin 2u#. ~32!

Equating the above to zero, and solving foru, we get the
estimateû as,

û5
1

2
arctanS L2~k121k14!1k5

2L2~k152k11!1k62k4
D . ~33!

h

Once we find the optimal estimateû of u as given in Eq.
~26!, we then apply Haralick’s conditions, discussed in S
5.1, to label the center pixel as a ridge pixel. The direct
orthogonal toû is the ridge direction. In the next section w
describe an algorithm to label a given pixel as a ridge pix
02301Journal of Electronic Imaging
.
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5 Labeling of Ridges

In this section, we describe an algorithm one can use
label the center pixel of fitting neighborhood as a rid
pixel, after theoptimal ridge orientation has been est
mated.

5.1 Haralick’s Condition for Ridge Pixel
Classification

We use Haralick’s condition40 in determining if a given
pixel is a ridge pixel. This condition is stated as follows:
ridge occurs where there is a local maximum in one dir
tion. Therefore, it must have a negative second directio
derivative in the direction across the ridge and also a z
first directional derivative in the same direction. The dire
tion in which the local maximum occurs may correspond
either of the directions in which the curvature isextremized,
since the ridge itself may be curved. Therefore, we have
following cases and a pixel is classified as a ridge pixel
it satisfies any of these cases:

1. Nonflat ridge.

i“ f iÞ0, l1,0, “ f •v150. ~34!

2. Flat ridge. In this case, the ridge line is horizont
and the gradient along it is zero. The defining characteri
is that the second directional derivative in the direction
the ridge line is zero and that the second directional der
tive across the ridge line is negative.

i“ f i50, l1,0, l250, ~35!

where

“ f 5 gradient vector of a functionf,

i“ f i 5 gradient magnitude,

v1 5 unit vector in the direction in which the
second directional derivative has the
greatest magnitude,

v2 5 unit vector orthogonal tov1 ,

l1 5 value of the second directional derivative in
the directionv1 ,

l2 5 value of the second directional derivative in
the directionv2 ,

“ f •v1 5 value of the first directional derivative in the
direction ofv1 ,

“ f •v2 5 value of the first directional derivative in the
direction ofv2 .

Without loss of generality we assume thatul1u>ul2u.
Geometrically, the condition“ f •v150 means that the

gradient direction, which is defined for nonzero gradien
is orthogonal to the directionv1 of extremized curvature.

5.2 Ridge Pixel Classification

As we know an extremum occurs at a point where the fi
derivative has a zero crossing. Once we have the estimaû
of u that extremizes the second directional derivative of
polynomial function describing the gray level surface, w
2-5 Apr–Jun 2005/Vol. 14(2)
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Fig. 4 Noise-free step ridge images.
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find the zero crossing of its first directional derivative alo
û', that is closest to the center of the pixel at the cente
the neighborhood. Then, we apply the Haralick’s conditio
to determine whether to label the pixel asridge or not.
Remember thatû is, in fact, orthogonal to the direction i
which the integrated second directional derivative is
tremized.

Therefore, we search in the directionû' and restrict
(r ,c) as,

r 5v sinû', c5v cosû'. ~36!

Now, the bivariate fourth order discrete orthogonal polyn
mial function can be written as

f ~v; û'!5Sv41Tv31Uv21Vv1W, ~37!

where

S5k11sin4 û'1k12sin3 û' cosû'1k13sin2 û' cos2 û'

1k14sinû' cos3 û'1k15cos4 û', ~38!

T5k7 sin3 û'1k8 sin2 û' cosû'1k9 sinû' cos2 û'

1k10cos3 û', ~39!

U5k4 sin2 û'1k5 sinû' cosû'1k6 cos2 û',

V5k2 sinû'1k3 cosû', ~40!

W5k1 .

The first directional derivative is given by

f v~v; û'!54Sv313Tv212Uv1V. ~41!

This is a cubic polynomial in the free variablev and we
solve for it by equating this expression to zero. The cu
has either three real roots or has one real root and
02301ic Imaging
f

o

complex conjugate roots. In the case where we get comp
conjugate roots, we discard them and consider only the
root, because we are working in real space. By normaliz
the equation, by dividing it by 4S which is the coefficient
of v3, the cubic can be written as

v31T1v21U1v1V150, ~42!

whereT153T/4S, U15U/2S, andV15V/4S. This equa-
tion is easily solved by using procedures described in R
45. Letv̂1 be the real root with the least magnitude. We s
that v̂1 is the closest to the center of the pixel, ifuv̂1u
<distance thresholdwhere an extremum of interest i
found. If Haralick’s conditions given in Sec. 5.1 an
u f vv(v; û')u.curvature thresholdare satisfied we la-
bel center pixel to be aridge pixel.

6 Performance Evaluation of Ridge Direction
Estimation

As mentioned earlier, we use thebias andvarianceof the
estimated ridge direction to measure the performance of
ridge direction estimation.

Let cu be thebias in the estimated ridge direction and
given by

cu5~ ū2 ũ !, ~43!

where ũ is the true direction and the sample mean,ū is
given by,

ū5
1

N (
i 51

N

û i ~44!

andN is the number of estimatesû which are obtained as
discussed in the next section.

Let su
2 be thevarianceof the ridge direction estimate

and is given by,
Fig. 5 Noise-free ramp ridge images.
2-6 Apr–Jun 2005/Vol. 14(2)
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Journal of Electron
Fig. 6 Noisy step ridge images oriented at 30°, for different values of noise standard deviation sh .
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N21 (
i 51

N

~ û i2 ū !2. ~45!

In the following analysis, we denote theintegrated sec-
ond directional derivative ridge operator~ISDDRO! opera-
tor usingwhite noiseby ISDDRO-WN and that using the
colored noiseby ISDDRO-CN.

6.1 Synthetic Image Generation

Performance evaluation is performed on the image d
generated by placing a ridge in a known direction and a
ing randomly generatedcolored noise, with a given stan
dard deviation and a correlation matrix, to the pixels in t
image. We assume a ridge contrast of 100 for the noise-
images, i.e. we use a value of 200 for the ridge pixels a
100 for nonridge pixels. We varied the orientationu'

across the ridge, from 0° to 90°. Images of size 51 rows
51 columns were generated@Image generation method:~1!
an ideal surface is defined,~2! a sampling grid is placed on
the ideal surface,~3! the sampled value is then quantize
There is a relationship between the coordinate system
the ideal surface and the sampling grid. In reality the sa
pling grid is not applied to the surface with the two coo
dinate systems aligned. This can be achieved by addin
random displacementDP@2 1

2,
1
2# to the center pixel of the

image through which the ridge is assumed to pass.# to con-
tain two types of ridges:~1! step ridges;~2! ramp ridges.
Step ridges are generated by creating a digital line in
given orientation and then performing a binary dilation
produce a 3-pixel wide line. Note that when a continuo
line is digitized an orientation error occurs46 and this error
is dependent on the length of the line and its orientati
Since the lines that we use are smaller in length, this e
becomes more pronounced. An angle of 30° in continu
domain may not be 30° in digital domain with the sam
Euclidean length. This is one of the reasons why we
large differences in the mean orientation bias and orie
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tion standard deviation computed for two adjacent ang
However, this effect can be safely ignored while compar
different ridge operators as it is presented to all of them

Ramp ridges are created by averaging the step ridge
a 333 averaging filter. We, then, addedcolored noise to
these images by choosing acorrelation matrix, Yh and by
varying the standard deviation,sh , from 0 to 50. Covari-
ance matrixSh is given bysh

2Yh. Mean value was set to
zero. For each combination ofu' and sh ~given theYh)
we generated 1200 images with different noise instan
tions. The ridge operator is applied to all the images us
a 535 neighborhood centered at the center pixel of
images.

Note that, in the simulation experiments performed b
low, at orientations closer to 90° the sense of direction
the estimated orientation may get reversed due to the p
ence of large amounts of noise. For example, 87° may
estimated to be closer to290°. In that case, performing a
average of the directions may result in a value that is cl
to zero, producing a bias that is close to 90°. This type
behavior is acceptable for orientations from 0° up to a
including 45°, but not for other orientations. Therefore, w
follow the convention that whenever the estimated dir
tion is less than or equal to245°, we consider its absolut
value in the sample mean computation, otherwise we us
without modification. This is done only for these simulat
experiments. However, in real imagery when ridge det
tion is being considered this is not necessary.

Figures 4 and 5 show noise-free step and ramp ri
images, respectively, at some representative orientati
Examples of noisy versions of step and ramp images fo
orientation of 30° for different values of the noise standa
deviation are given in Figs. 6 and 7. Because we are us
colored noise to contaminate the noise-free images, the
turbation is very strong. By the time we reachsh550, the
images become very noisy and the structures of inte
almost become indistinguishable from the perturbation.
Fig. 7 Noisy ramp ridge images oriented at 30°, for different values of noise standard deviation sh .
2-7 Apr–Jun 2005/Vol. 14(2)
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6.2 Optimal Integration Domain Size

Optimal integration domain size, 2L, is obtained by apply-
ing the ridge operator to the center pixel of all the step a
ramp images generated above and over all the orientati
using a 535 neighborhood. We combined the two perfo
mance measures,orientation bias meanand orientation
standard deviationin a root-mean-squared~RMS! sense,
i.e., the square root of the sum of squared orientation b
mean and orientation variance. Optimal integration dom
size was determined for both the cases of colored noise
white noise assumption. In the former, the noise covaria
matrix is estimated for each standard deviation-correla
matrix combination using a subset of images~to create ap-
proximately, 10 000 vectors!. The value ofL that produces
the least RMS value is the optimal integration domain si
In our experiments, we found that a half-width of the int
gration domain size,L, of 1.5 was optimal for both step an
ramp ridges in colored as well as white noise cases fo
535 neighborhood size. At the optimalL, the RMS value
was 21.25 in the colored noise case and 20.635 in the w
noise case. Plots given in Fig. 8 are the numerical res
for the optimal integration domain size determination.

Fig. 8 Determination of the half-width L of the domain of integration
for both step and ramp ridges under colored as well as white noise
assumptions.
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6.3 Performance Evaluation

In this section, we discuss the performance evaluation
comparison of ISDDRO-WN, ISDDRO-CN, and MLSE
operators. Recall, that the test images were created by
ing colored noise with a given noise standard deviation,sh

and correlation matrix,Yh. When applying ISDDRO-CN
operator, we estimate the noise covariance matrix as
cussed in the previous sections and perform the evalua
using it. For ISDDRO-WN operator we estimate the va
ance of the noise under white noise assumption. We
formed the experiments using a 535 neighborhood size
MLSEC operator requires that a Gaussian smoothing of
image with a specified scale be performed. We use a s
of 0.5 which results in a neighborhood size of 535. Here
we show the plots for the case whensh520.

6.3.1 True orientation versus mean orientation bias

For each combination ofsh andYh, each of the operators
are applied to the center of the test images for given t
orientation and several estimates for that orientation
obtained. We then compute the mean bias and plot th
We perform this for both the step ridge and ramp rid
images. Figures 9~a! and 9~b! show the plots for step and
ramp ridge images. For step ridges, ISDDRO-CN ha
worst case absolute bias of 15.891°, ISDDRO-WN ha
worst case absolute bias of 14.965°, and MLSEC ha
worst case absolute bias of 39.718°. For ramp ridg
ISDDRO-CN has a worst case absolute bias of 8.35
ISDDRO-WN has a worst case absolute bias of 8.415°
MLSEC has a worst case absolute bias 23.742°. For
ridges, from the graph it is clear that ISDDRO-CN perfo
mance better than ISDDRO-WN in some cases and p
forms worse in other cases when step ridges are used. O
all angles, with respect to this measure, we can say
ISDDRO-CN performs slightly better then ISDDRO-W
for step ridges. As is evident both operators outperfo
MLSEC significantly. For ramp ridges, ISDDRO-CN pe
forms better than ISDDRO-WN in most cases, and b
operators outperform the MLSEC operator.
Fig. 9 Mean orientation bias plotted against the true orientation. The noise standard deviation is set
to 20.
2-8 Apr–Jun 2005/Vol. 14(2)
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Fig. 10 Orientation standard deviation plotted against the true orientation. The noise standard devia-
tion is set to 20.
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6.3.2 True orientation versus orientation standard
deviation

For each combination ofsh andYh, each of the operator
are applied to the center of the test images for given t
orientation and several estimates for that orientation
obtained. We then compute the standard deviations of
orientation estimate by taking the square-root of the co
puted sample variance and plot them. We perform this
both the step ridge and ramp ridge images. Figures 1~a!
and 10~b! show the plots for step and ramp ridge imag
For step ridges, ISDDRO-CN operator produces the wo
case orientation standard deviation of 8.42° when the
orientation is 54° and for ramp ridges it produces 9.012
a true orientation of 75°. ISDDRO-WN produces the wo
case orientation standard deviation of 7.375° at a true
entation angle of 54°, for step ridges. For ramp ridges
produces 8.115° at a true orientation of 75°. MLSEC o
erator produces a worst case standard deviation of 57.1
at a true orientation of 54° for the step ridges and produ
45.494° at a true orientation of 54° for ramp ridges. Ov
all angles, with respect to this measure, we can say
ISDDRO-CN performs better then ISDDRO-WN for ste
ridges. However, for ramp ridges ISDDRO-WN perform
02301ic Imaging
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slightly better than the ISDDRO-CN operator. As it is ev
dent both operators out-perform MLSEC significantly.

6.3.3 Noise standard deviation versus mean
orientation bias

For this and the next test we fix a true orientation and
noise correlation matrix,Yh and vary the noise standar
deviation,sh . For each standard deviation we compute t
mean orientation bias and orientation standard deviation
the given true orientation. We perform this for both st
and ramp ridge images. Figures 11~a! and 11~b! show the
mean orientation bias plotted against the noise standard
viation for step and ramp ridges, respectively. For the
plots, we held the true orientation at 30°. For step ridg
ISDDRO-CN produces mean bias close to zero and p
forms better than the ISDDRO-WN. MLSEC has the po
est noise sensitivity as the mean bias monotonically
creases with sh , for step ridges. ISDDRO-CN and
ISDDRO-WN follow each other very closely up untilsh

530 after which ISDDRO-CN performs better tha
ISDDRO-WN assh approaches 50. MLSEC, again di
plays a poor noise sensitivity. It proves that under this p
Fig. 11 Mean orientation bias plotted against the noise standard deviation. The orientation set to 30°.
2-9 Apr–Jun 2005/Vol. 14(2)
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Fig. 12 Orientation standard deviation plotted against the noise standard deviation. The orientation
set to 30°.
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formance criterion ISDDRO-CN performs better und
very noisy conditions compared to the other two operat
for both step and ramp ridges.

6.3.4 Noise standard deviation versus orientation
standard deviation

Figures 12~a! and 12~b! show the orientation standard d
viation plotted against the noise standard deviation for s
and ramp ridges, respectively. For these plots, we held
true orientation at 30°. For step ridges, ISDDRO-CN p
duces an orientation standard deviation curve that tracks
result produced by ISDDRO-WN untilsh reaches 25 and
after that it performs slightly better than ISDDRO-WN. F
ramp ridges, ISDDRO-WN performs slightly better tha
ISDDRO-CN untilsh545 and after that roles get reverse
MLSEC performs poorly with both step and ramp ridge
Again, under this criterion ISDDRO-CN performs bett
than the other two operators under high noise condition

7 Summary and Future Work

In this paper, we discussed a unified theory for and per
mance evaluation of the ridge orientation estimat
through the minimization of the integral of the second
rectional derivative of the gray-level intensity functio
Performance evaluation of the ridge orientation estimat
is carried out as a function of the noise perturbation on
input image, in terms of themean orientation biasand
orientation standard deviationgiven the true orientation
and the same two measures given thenoise standard devia
tion. We discussed two forms of our new ridge detector o
using the noise covariance matrix estimation proced
~ISDDRO-CN! and the second using the white noise a
sumption ~ISDDRO-WN!. We showed that ISDDRO-CN
performs better than the ISDDRO-WN in the presence
strong correlated noise, where as when the noise le
are moderate it performs as well as ISDDRO-W
ISDDRO-CN has superior noise sensitivity characterist
We also compared both forms of our algorithm with t
algorithm, MLSEC designed by Lo´pez22 and found that our
algorithm supersedes MLSEC in terms of noise sensitiv
and the ridge orientation estimate bias and standard de
tion. We performed this comparative evaluation using s
023012ic Imaging
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thetically generated images containingstepand ramp im-
ages contaminated by colored noise with a given varia
and correlation matrix. ISDDRO-CN algorithm uses t
noise covariance matrix estimated by using the algorit
described in Refs. 41 and 42. We have used DOP bas
though any other functional form could have been used
mainly for its simplicity and mathematical tractability i
the Bayesian statistical framework for noise covariance
timation described in Refs. 41 and 42.

In future work, we would like to compare our algorithm
against the MLSEC-ST~MLSEC with Structure Tensor!
algorithm by López22 in which the authors state tha
MLSEC-ST is an improvement over the MLSEC algorithm
The algorithms presented in this paper can also be exten
to 3D, since the DOP bases can be extended to 3D
similar fashion to extending 2D from 1D. However, exten
ing the noise covariance estimationalgorithm used in
ISDDRO-CN may involve extensive rework of the theo
and when implemented in software may involve significa
computational complexity. The algorithms described in t
paper were mainly designed for optimal ridge orientati
estimation. We have not focused on the ridge pixel labeli
For this reason, all the experiments were performed on s
thetically generated images with differing levels of noi
with known ridge feature orientation. However, as part
the future work we are planning to extend the algorithms
use the estimated orientations in the ridge pixel labeli
We will, then, perform experiments on the real world im
ages and report the results.
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