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Abstract. In this paper, we discuss a unified theory for and perfor-
mance evaluation of the ridge direction estimation through the mini-
mization of the integral of the second directional derivative of the
gray-level intensity function. The primary emphasis of this paper is
on the ridge orientation estimation. The subsequent ridge detection
can be performed using the traditional methods of using the zero
crossing of the first directional derivative. The performance evalua-
tion of the ridge orientation estimation is performed in terms of the
mean orientation bias and orientation standard deviation given the
true orientation and the same two measures given the noise stan-
dard deviation. We discuss two forms of our new ridge detector—
first ISDDRO-CN) using the noise covariance matrix estimation pro-
cedure under colored noise assumption, and the second (ISDDRO-
WN) using the white noise assumption. ISDDRO-CN performs
better than the ISDDRO-WN in the presence of strong correlated
noise. When the noise levels are moderate it performs as well as
ISDDRO-WN. ISDDRO-CN has superior noise sensitivity character-
istics. We also compare both forms of our algorithm with the algo-
rithm, Maximum Level Set Extrinsic Curvature (MLSEC) designed
by A. Lopez [IEEE Trans. Patter Anal. Mach. Intell. 21, 327-335
(1999)]. © 2005 SPIE and I1S&T. [DOI: 10.1117/1.1901683]

1 Introduction

forms—the ridge line can slope downward, upward or be
flat when you walk along it, still maintaining the valleys on
both sides. The case in which a ridge is flat is caliied
ridge. Therefore, if you walk across the ridgies., orthogo-

nal to the ridge ling we first go uphill, reach the peak and
then go downhill on the other side. The profile of ideal
step ridgeis shown in Fig. 1a) and that of arideal ramp
ridgeis shown in Fig. 1b). A more realistic ridge is the one
shown in Fig. 2 and also shown are corresponding first and
second derivatives.

Some of the prominent papers on ridge detection in
general imaging are in Refs. 1-10. Also, proposed were
several ridge operators for more general applications
such asmultiscale image analysié—*image topographic
classification>~2? recently, more attention has been
paid to the application of ridge feature extractorseirain
feature identificatioff>~?® shape-from-shadin®f digital
portal imaging’ (a type of clinical x-ray imaging in

unimodality’® and multimodality medical image
registration®®°  fingerprint  identificatiof’* and
enhancemeri®®  medial  line  transformatiofi®

Ridges in digital images occur when gray-level intensities skeletonizatioi’ and medical image segmentatidh®®
of a simply connected sequence of pixels are significantly |n this paper, we discuss a unified theory for and perfor-
higher than those of the neighboring sequences. The extenthance evaluation of the ridge direction estimation through
of disparity of brightness levels between the sequences willthe minimization of the integral of the second directional
depend on the distribution of brightness values surroundinggerivative of the gray-level intensity function. The perfor-
the sequence, and the length of the sequence. Intuitivelymance evaluation of the ridge direction operator is per-
the ridge line can be understood as the path traced, whenformed as a function of the perturbation on the gray-level
we walk along the top of a mountain range with valleys on jntensity function of the input digital image. We are mainly
both our left and right sides. The ridge line can have severalipterested in the optimal estimation of the ridge orientation.
We use the fact that along the ridge profile the first de-
rivative has a zero-crossing where the ridge attains its peak
value and has a negative second derivative at the same
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f f the derivatives and then the divergence are obtained by
using the centered differences in the smallest neighborhood
(3%3), and then searching for the zero-crossings to label
the ridge pixels. The images are first regularized using a
Gaussian kernel. The orientation of the second derivatives
are computed by using their componentxiandy direc-
tions in the same smallest neighborhood, as,

(a) Step Ridge (b) Ramp Ridge
Fig. 1 lllustration of an ideal ridge profiles.

: @

Omise™ arctarE %
location (Fig. 2). Therefore, once we find theptimal di-

rection along which the second directional derivative has Here we use the simple version of the operator as opposed
the smallest valuéi.e., largest negative valeve canthen o the one using the structure ten§MLSEC-ST) by the

find the zero-crossing of the first directional derivative sgme authors.

along that estimated direction. If the zero-crossing is suffi-  Our procedure for Ridge detection from gray-level im-
ciently close to the center of the pixel and the second di- ages involves the following steps:

rectional derivative has sufficient magnitude, we can then

label the pixel as the ridge pix&!. 1. Noise covariance matrix estimation as described in
For simplicity, we call this théntegrated Second Direc- Refs. 41 and 42.

tional Derivative Ridge OperatoiSDDRO) in the restof 5 Estimating the underlying gray-level surface in the

this paper. The bias and the variance of the ridge direction neighborhood of the pixel under consideration using

estimate are the objective measures of performance. We use 3 Bayesian approach.
a bivariate fourth order polynomial function as our facet
model of the image intensity function in the neighborhood . N o
of a given size. We assumezaro mean Gaussiapertur- integral of the second directional derivative of the
bation model for the observed image intensity function. We f|tt_ed facgt mo_deI of_the _gray_—level |nten§|ty surface.
develop the ridge operator under two different noise mod- 4. Given this optimal direction, if the negatively sloped

3. Estimating the optimal directiofthat minimizes the

els: (1) white noise and2) colored noise. In the latter case, zero crossing of the first directional derivative occurs
we use the procedure described in Refs. 41 and 42 to esti- in the neighborhood of the center pixel, and the sec-
mate the noise covariance matrix, and use the correspond- ~ ond directional derivative is negative and has suffi-
ing expression for the estimation of the facet model coeffi- cient magnitude, then we label it as a ridge pixel.
cients. We compare the performance of our ridge operator However, in this paper we do not focus on the ridge
in terms of the optimal ridge direction estimation under labeling.

both the covariance models and also against the operator
Maximum Level Set Extrinsic CurvatutdLSEC), devel- 1.1 Organization of the Paper

oped by Lpez et al??> They do not perform the perfor- . _
mance evaluation of their algorithm the way we intend to N Sec. 2, we describe the facet model and the noise model

do here. We perform the performance evaluation of the that we use. Section 3 discusses the estir_nation_ of the facet
ridge direction estimate with respect to the direction esti- Model parameters under colored and white noise assump-
mate bias and direction estimate standard deviation. We us&ons. In Sec. 4, we derive the optimal ridge orientation
these two parameters while comparing with the MLSEC €stimate. Section 5 dlscuss_es the procedure for labeling a
operator. MLSEC operator works on the same principles of Pixel as a ridge pixel. We discuss the performance evalua-
looking for the negative second directional derivative at the tion of the ridge direction estimate in Sec. 6. Finally, in
zero-crossing of the first directional derivatives. However, Sec. 7, we summarize the results of this paper.

2 The Facet Model and the Noise Model

Y 2.1 The Facet Model
For the nth image neighborhood, we can write the facet
7 modef? representing the ideal noise free signal energy as,

5= Bay, @

where s, represent the n=1,..N; K=(2R+1)

X (2R+ 1)-dimensional noiseless vectors from the signal
space, wher® is the half-width of the discrete support of
the neighborhoodB is anorthonormalmatrix whose col-

\/ 11 umns represent theDiscrete Orthonormal Polynomial

(DOP) basis of the space modeled to contain the signal
energy, anda,, are n=1,...N; M-dimensional vectors of
coefficients(also known aDOP coefficientsof the facet
Fig. 2 lllustration of a more realistic ridge profile. model.B is obtained as discussed in Refs. 40, 41, and 43.

T
3
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In the rest of the paper, we will use the tern®)P coef-
ficientsandfacet model coefficienisterchangeably.

2.2 The Noise Model

Let x,; n=1,.N be the N K-dimensional independent
samples of the noisy observed signal. Then, the facet model
represents this noisy signal*a8?

Xn=Bay+ 1, 3)

where 7,~MN(0,%,) are the independent identically dis-
tributed Gaussian random variates. In genekg), repre-
sents the covariance matrix of a colored noise signal. Under p I
the white noise assumptioR,,= oI, whereo? is the vari- Yr
ance of the white noise.

Fig. 3 lllustration of the integrated second directional derivative
ridge operator.

3 Estimation of the Facet Model Coefficients

We reproduce the results here from Refs. 41 and 42 for _ 2 2 3 2
convenience of explanation. Under the colored noise as- (1:0) =Ky Kol +kaCHKar“+Ksre+kec™+kor“+ker“c
sumption the DOP coefficients, used for fitting to the image +Kkorc2+kyoc3+ kyqr *+ kyor 3¢+ kqar 2c2+ kyrc®
gray level data, for theth neighborhood are given by,

+kqsc?, (6)
&= (B’ —XpcZccC )X, (4)

" pemee " where, canonical coefficientsk=(k;,ks,...,ki5)’" is the
whereC is anorthonormalmatrix whose columns span the vector of DOP coefficientg expressed in canonical form.
space(noise spacethat is orthogonal complemertb the This is thebivariate fourth order polynomiatodel for the
space(signal spacespanned by the columns & 3¢ is noise-free underlying gray-level intensity function.

2’7 expressed in the orthogona| Comp]ement Space%&d The DOP COEfﬁCientgln of the facet model are related
depicts the extent of correlation between the two spacesto the corresponding canonical coefficiekfsthrough the
The noise covariance matrix is estimated as discussed irfelation,
the said references.

Under white noise assumption, these coefficients arekn=T sk, (7

written, . . ) )
where the transformation matrik,,_,, is described in Ref.

a,=B'x,. (5) 10. Using DOP bases instead of the canonical basis allows
us to estimate the DOP coefficients, independently of

Therefore, in the following sections, when we mention that one another which can easily be converted to canonical

the ridge operator uses colored noise assumption, we meaform.

that it uses the DOP coefficients given by E4j, and when Therefore, we can express the uncertainty in the canoni-

we say the ridge operator uses the white noise assumptiongal coefficients,, as,

then we mean that it uses the DOP coefficients given by

Eq. (5). Si=ToiZaT k- (8)

. Estimating the optimal ridge direction: We estimate

4 The Ridge Qperator o the optimal ridge direction by finding the minimum of the
For ridge detection, we usetavariate fourth order poly- integral of the second directional derivative 6fr,c),
nomial as our facet model describing the gray-level inten- taken over all possible directions. Such an approach proved

sity surface in a local neighborhood. This is because of thetg provide least bias and variaféef the estimated direc-
higher order ridge behavior compared to an edge. Furthergjon in the case of edge detection.

if any order less than 4say, a cubigis used, then it will Let
produce an undesirable result of the ridge direction estimate
becoming independent of the integration domain size. r=pcosf+wsing, c=—psinf+w cosé. 9)

Let J(r,c) denote the gray-level of the imadeat (r,c)

in the row-column coordinate system. We know that the This is the polar representation of the lines anghd w are
DOP basis is defined over a discrete support or region of athe axes along the length and the width of the domain of
given size. For this reason, we will have different basis integration used in determining the ridge direction, as
matrix B for different sized supports. Therefore, to make shown in Fig. 3.6€[0,2w) is the angle of orientation, mea-
our functional form of the gray-level surface independent sured clockwise with respect to the column axis and repre-
of the support size, we will express it, for a givend), in sents the direction forming the rectangular domain of inte-
canonical formas, gration of length 2 and width 2V centered at the origin of
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the coordinate system, and is orthogonal to the lines alongSubstituting the above expressions into Efp) and sim-
which the integrated second directional derivative is mea- plifying, we get,

sured. The second directional derivativef¢f,c) along a
line in the directiond (using polar form of linekis given by

2 2f 2

00( ) ) ZS 9. 9: 2 ’

(10

where ()4, denotes the second directional derivative.
Using Eq.(6), we obtain the following results:

&% (r,c) 5 5
9 =2k4+6k7r+2kgc+ 12(11I' +6k12rC+2k13C y
r
(11
3%t (r,c) 5 )
J > :2k6+2k9r+6kloc+2k13r +6k14rc+12(15C y
Cc
(12)
3%t (r,c) ) X
arac =k5+2k8r+2k90+3k12r +4k13rc+3k14c .

(13

Substituting forr andc from Eq. (9) into the above equa-
tion, and simplifying,

9*f _ _ 5
Pl (12kq; coS 6— 6k, Sin 0 cosf+ 2ky3sir? 6)p
;
+(24Kq;Sin 6 cosf+ 6k, cOS 6— Sir? 6)
—4k3sin 6 cosh) pw+ 12k, Sirf 6
+6k;,5in 0 cosf+ 2k,3¢c0¢ 0) w?+ (6K, cosé

—2kg sin#) p+ (6ky sin 8+ 2kg cosh) w+2k,, (14)

9°f , _ 5
Pl (2k13€08 0—6ky4Sin 6 cosf+ 12k 5sir? 0)p
c
+ (4kq3Sin 6 cos+ 6k, coS 6— sir? 6)
—24k1ssin 6 cosh) pw + (2kyzSir? 0
+6ky45in 0 cosf+ 12k,5C0S ) w?+ (2kg COSH
—6k;psin @) p+ (2kg sin 6+ 6k;9c0s0) w + 2K,
(15
92t _ _
e (3kq,C08 0—4Kkq3Sin 6 cos+ 3Ky, sir? 0)p?

+ (6kq,Sin 6 cosf+ 4k, 4 cOS 6— Sir? 6)
—6ky4Sin 6 cosh) pw+ (3ky,sir? 0

+4Kky35in 6 cosf+ 3k, oS ) w?+ (2kg cOSH
—2kg Sin#) p+ (2kg sin 8+ 2kg cosf) w+ks. (16)
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fyo(p COSO+ w SINB,— p SiN O+ w cosh) =Ap?+Bpw
+Cw?+Dp+Ew+F, (17
where
A=2ky3sin* 0+ 6(ky4—Kyp)Sin® 6 cos+ (12kq,— 8Ky3
+12k;5)sir? 6 coS 6+ 6(ky,—Kyg)siné cos 6

+ 2k,3c0¢ 0, (18
B=-— 6k125in4 0+ 12(2'(11_ k13)Sin3 6 cosé

+18(k1,— kq4)sir? 6 cog 0

+12(k13— 2k45)Sin 6 cos’ 6+ 6kq4co¢' 6, (19

C=12ky,sin* 8+ 12k;,Sim® 6 cosf+ 12k, 5Sir? 6 cos 4

+12kq4sin 6 cos 6+ 12k,5co 6, (20)
D= —2kg Sin® 0+ 2(3k;— 2kg)Sir? 6 cosé

+2(2kg—3k;0)sin § cog 6+ 2kg COS 6, (21)
E =6k sin® 6+ 6kg Sir? 6 cosf-+ 6kg sind cos 6

+6ky0C0S 6, (22
F =2k, sir? 6+ 2k sin 6 cosf+ 2kg cos 6. (23
Now, define,

1 W L . )
fgg—m fﬁWﬁLfgg(p cosf+ w sinf,—psind
+ w cosb)dpdw, (24

whereL andW are the half-length and half-width, respec-
tively, of the domain of integration.

Evaluating the above integral using E47), we get,
Foo=3AL2+BW?+3F), (25)
whereA, B, andF are as defined earlier.

Most of the applications use square neighborhoods, for
ease of computation. Therefore, we llet W for the rest of
the discussion.

Theorem 1 (Optimal ridge direction): Using ISDDRO,
the optimal direction estimate of @ is given by,

b= EarctarE E , (26)
2 D,

where

Dy =L%(kypt ki) +ks, (27

D,=2L2(kys—Kqp) +kg—Kg. (28)

Apr—Jun 2005/Vol. 14(2)
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Proof. The result is obtained by findirf@that minimizes
Fae- By substituting the values oA, B, andF into Eg.
(25), we get
Foo=3[2(L%Kkyg+ 6W?Kyp)sint 0+ 6((Kys—kqp)L?

+ 2k12W2)S|n3 0 COSt9+ 4((3kll_ 2k13+ 3k15) L2
+3k13W2)sir? 0 cog 6+ 6((kqo— Ky L2
+2k1,W?)sin  cos’ 0+ 2(kysL 2+ 6ksW?)cos 6

+ 6k, Sir? -+ 6Ks sin @ cosf+ 6kg cos ). (29

For square neighborhoods, lettihg=W, we have

fggz %[2'.2( k13+ 6k11)S|n4 0+ 6L2(k14+ k:|_2)5|n3 6 coso
+4L2(3kqq+ kqgt+ 3Ky5)Sir? 6 cos 6+ 6L%(Ky,
+kyg)sin 6 cos 6+ 2L2(ky5+ 6kq5)cos 0

+ 6k, Sir? 0+ 6ks sin @ cosf+ 6kg cos ). (30)

To compute an estimaté of ¢ that minimizesF,,, we
differentiate 7,, with respect tod, equate it to zero and
solve the resulting equation fa;

a0

1 .
= §[8L2(k13+ 6kq1)SIr® 0 cosf+6L2(Kys+ Kqp)

X (—sin® 8+ 3 sir? 6 cog 6) +4L%(3ky;+Kqg
+3ky5) (— 2 Sir? #+ 2 sind cos )

+6L2(kyp+ kyg) (— 3 sirf 6 cog 6+ cod 6)
—8L?(kq3+ 6ky5)cOS 0sin+ 12Ky, Sin 6 cosh

+ 6kg( —Sir? 6+ cog 0) — 12kg cosdsing].  (31)

Simplifying the above equation, we get,

a6

1
= § [(6'.2( k12+ k14) + 6k5)COS 20+ (12'.2( kll_ le)
+6(k,—kg))sin 26]. (32

Equating the above to zero, and solving fjrwe get the
estimated as,

-1 L2(Kqp+Kq1a) +Ks
6= - arcta .
2 2L%(kys—kqp) + kg =Ky

(33
O

Once we find the optimal estimageof 6 as given in Eq.

5 Labeling of Ridges

In this section, we describe an algorithm one can use to
label the center pixel of fitting neighborhood as a ridge
pixel, after theoptimal ridge orientation has been esti-
mated.

5.1 Haralick’s Condition for Ridge Pixel
Classification

We use Haralick’s conditidfl in determining if a given
pixel is a ridge pixel. This condition is stated as follows: A
ridge occurs where there is a local maximum in one direc-
tion. Therefore, it must have a negative second directional
derivative in the direction across the ridge and also a zero
first directional derivative in the same direction. The direc-
tion in which the local maximum occurs may correspond to
either of the directions in which the curvaturesigtremized
since the ridge itself may be curved. Therefore, we have the
following cases and a pixel is classified as a ridge pixel, if
it satisfies any of these cases:

1. Nonflat ridge.
[Vf|#0, X\;<0, Vf-w;=0. (39

2. Flat ridge. In this case, the ridge line is horizontal,
and the gradient along it is zero. The defining characteristic
is that the second directional derivative in the direction of
the ridge line is zero and that the second directional deriva-
tive across the ridge line is negative.

[Vf[|=0, X\;<0, \,=0, (35
where

Vi = gradient vector of a functiofy

|[Vf|| = gradient magnitude,

[N = unit vector in the direction in which the
second directional derivative has the
greatest magnitude,

w, = unit vector orthogonal tew,,

N = value of the second directional derivative in

the directionew, ,

Ao = value of the second directional derivative in
the directionw,,

Vf-w; = value of the first directional derivative in the
direction of w,,

V- w, = value of the first directional derivative in the
direction of w,.

Without loss of generality we assume thag|=|\,|.
Geometrically, the conditiolV f- w,;=0 means that the
gradient direction, which is defined for nonzero gradients,

is orthogonal to the directiom, of extremized curvature.

5.2 Ridge Pixel Classification

(26), we then apply Haralick's conditions, discussed in Sec. As we know an extremum occurs at a point where the first
5.1, to label the center pixel as a ridge pixel. The direction derivative has a zero crossing. Once we have the estithate
orthogonal tod is the ridge direction. In the next section we of @ that extremizes the second directional derivative of the
describe an algorithm to label a given pixel as a ridge pixel. polynomial function describing the gray level surface, we
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(a) 0° (b) 15°

(c) 300

(d) 45° (e) 60° (f) 75° (g) 90°

Fig. 4 Noise-free step ridge images.
find the zero crossing of its first directional derivative along complex conjugate roots. In the case where we get complex

6", that is closest to the center of the pixel at the center of conjugate roots, we discard them and consider only the real
the neighborhood. Then, we apply the Haralick’s conditions root, because we are working in real space. By normalizing

to determine whether to label the pixel &gge or not.
Remember that is, in fact, orthogonal to the direction in
which the integrated second directional derivative is ex-
tremized. .

Therefore, we search in the directiat and restrict
(r,c) as,
r:wsinAHl, c=w cosh". (36)
Now, the bivariate fourth order discrete orthogonal polyno-
mial function can be written as

f(w;0')=Sw*+ T+ Uw?+Vo+W, (37)

where

S=Ky;Sin® 8- + Ky, i 6 cosé* +kyssir? 8- co 6
+Ky,sin 8- coS ¢ +kyscod 6, (38)

T=Ky, sir® 6" + kg sir? 6* cosé" + kg sin 6+ cog ¢*
+kyoc0S ¢, (39)

U=k, sir? - +Kks sin - cosé* + kg co ¢*,

V=Kk,sin o+ ks cosé*, (40

W=k,

The first directional derivative is given by

f (0;0")=4Sw?+3Tw?+2Uw+V. (41)

This is a cubic polynomial in the free variable and we
solve for it by equating this expression to zero. The cubic

the equation, by dividing it by 8 which is the coefficient
of w3, the cubic can be written as
0+ Ti0?+Ujw+V;=0, (42)
whereT,=3T/4S, U;=U/2S, andV;=V/4S. This equa-
tion is easily solved by using procedures described in Ref.
45. Letw, be the real root with the least magnitude. We say
that @, is the closest to the center of the pixel, ||
=<distance thresholdvhere an extremum of interest is
found. If Haralick's conditions given in Sec. 5.1 and

|fww(w;f9L)|>curvaturethresholdare satisfied we la-
bel center pixel to be adge pixel.

6 Performance Evaluation of Ridge Direction
Estimation

As mentioned earlier, we use tiéas and varianceof the
estimated ridge direction to measure the performance of the
ridge direction estimation.

Let 4, be thebiasin the estimated ridge direction and is
given by
ho=(0-10), (43
where @ is the true direction and the sample meaa,is
given by,

0

N
=

! 44
N, (44)
andN is the number of estimate% which are obtained as

discussed in the next section.
Let o be thevariance of the ridge direction estimate

has either three real roots or has one real root and twoand is given by,

/

(a) 0° (b) 15° (c) 30°

(d) 459

(e) 600 (f) 75° (g) 90°

Fig. 5 Noise-free ramp ridge images.
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/1717

(a) 10 (b) 20 (c) 30 (d) 40 (e) 50

Fig. 6 Noisy step ridge images oriented at 30°, for different values of noise standard deviation o,.

1 N tion standard deviation computed for two adjacent angles.
o§=m2 (6,— 6)2. (45) However, this effect can be safely ignored while comparing
=1 different ridge operators as it is presented to all of them.
Ramp ridges are created by averaging the step ridges by
a 3x3 averaging filter. We, then, addexblored noise to
these images by choosingcarrelation matrix Y, and by

In the following analysis, we denote tlmtegrated sec-
ond directional derivative ridge operatgtfSDDRO) opera-
tor usingwhite noiseby ISDDRO-WN and that using the

colored noiseby ISDDRO-CN. varying the standard deviatiom,,,, from 0 to 50. Covari-
ance matrix,, is given bycrf?Y,,. Mean value was set to
6.1 Synthetic Image Generation zero. For each combination of- and o, (given theY,)

Performance evaluation is performed on the image dataVe generated 1200 images with different noise instantia-

generated by placing a ridge in a known direction and add_tions. The_ ridge operator is applied to all the images using
ing randomly generatedolored noise, with a given stan- a 5X5 neighborhood centered at the center pixel of the
dard deviation and a correlation matrix, to the pixels in the 'Mages. , , , _

image. We assume a ridge contrast of 100 for the noise-free NOte that, in the simulation experiments performed be-
images, i.e. we use a value of 200 for the ridge pixels andlow, at orientations closer to 90° the sense of direction of
100 for nonridge pixels. We varied the orientatiah the estimated orientation may get reversed due to the pres-
across the ridge, from 0° to 90°. Images of size 51 rows and€"Ce Of large amounts of noise. For example, 87° may get
51 columns were generatéiinage generation metholt) estimated to be _cIosgr te90°. In that case, performlr]g an
an ideal surface is definet®) a sampling grid is placed on ~ verage of the dlrectlo_ns may result in a value that is close
the ideal surface(3) the sampled value is then quantized. 0 Zero, producing a bias that is close to 90°. Ih's type of
There is a relationship between the coordinate systems oP€havior is ?cceptable for orientations from 0° up to and
the ideal surface and the sampling grid. In reality the sam-including 45°, but not for other orientations. Therefore,_ we
pling grid is not applied to the surface with the two coor- follow the convention that whenever the estimated direc-

dinate systems aligned. This can be achieved by adding 4ion is less than or equal te45°, we consider its absolute
random displaceme e[ — £, 1] to the center pixel of the ~ value in the sample mean computation, otherwise we use it
image through which the ridge is assumed to gasscon- ~ Without modification. This is done only for these simulated
tain two types of ridges(1) step ridgesf2) ramp ridges. ~ €Xperiments. However, in real imagery when ridge detec-
Step ridges are generated by creating a digital line in thelion is being considered this is not necessary. _
given orientation and then performing a binary dilation to ~ Figures 4 and 5 show noise-free step and ramp ridge
produce a 3-pixel wide line. Note that when a continuous images, respectively, at some representative orientations.
line is digitized an orientation error occtitsand this error ~ Examples of noisy versions of step and ramp images for an
is dependent on the length of the line and its orientation. orientation of 30° for different values of the noise standard
Since the lines that we use are smaller in length, this errordeviation are given in Figs. 6 and 7. Because we are using
becomes more pronounced. An angle of 30° in continuouscolored noise to contaminate the noise-free images, the per-
domain may not be 30° in digital domain with the same turbation is very strong. By the time we reaat)= 50, the
Euclidean length. This is one of the reasons why we getimages become very noisy and the structures of interest
large differences in the mean orientation bias and orienta-almost become indistinguishable from the perturbation.

(a) 10 (b) 20 (c) 30 (d) 40 (e) 50
Fig. 7 Noisy ramp ridge images oriented at 30°, for different values of noise standard deviation o, .

Journal of Electronic Imaging 023012-7 Apr—Jun 2005/Vol. 14(2)



Nadadur, Haralick, and Gustafson: Optimal ridge orientation estimator . . .

Halt-Width of the Optimal Integration Domain Size 6.3 Performance Evaluation

b In this section, we discuss the performance evaluation and
comparison of ISDDRO-WN, ISDDRO-CN, and MLSEC
operators. Recall, that the test images were created by add-
ing colored noise with a given noise standard deviatiop,

and correlation matrixY,. When applying ISDDRO-CN
operator, we estimate the noise covariance matrix as dis-
cussed in the previous sections and perform the evaluation
using it. For ISDDRO-WN operator we estimate the vari-
ance of the noise under white noise assumption. We per-
] formed the experiments using ax5 neighborhood size.

P otw MLSEC operator requires that a Gaussian smoothing of the
L ' image with a specified scale be performed. We use a scale
of 0.5 which results in a neighborhood size of%. Here

we show the plots for the case whemn,=20.

RMS Value

Fig. 8 Determination of the half-width L of the domain of integration
for both step and ramp ridges under colored as well as white noise
assumptions.

6.3.1 True orientation versus mean orientation bias

6.2 Optimal Integration Domain Size For each combination af, andY,, each of the operators
Optimal integration domain size|2 is obtained by apply- &€ applied to the center of the test images for given true
¢ Orientation and several estimates for that orientation are

ing the ridge operator to the center pixel of all the step an . :
ramp images generated above and over all the orientations\%’tamed' We then compute the mean bias and plot them.

using a 5<5 neighborhood. We combined the two perfor- ''€ perfor_m this for both the step ridge and ramp ridge
mance measuresyrientation bias mearand orientation ~ images. Figures (@ and 9b) show the plots for step and

standard deviatiorin a root-mean-squaretRMS) sense, ~ 'amp ridge images. For step ridges, ISDDRO-CN has a
i.e., the square root of the sum of squared orientation biasWorst case absolute bias of 15.891°, ISDDRO-WN has a
mean and orientation variance. Optimal integration domainWorst case absolute bias of 14.965°, and MLSEC has a
size was determined for both the cases of colored noise andVorst case absolute bias of 39.718°. For ramp ridges,

white noise assumption. In the former, the noise covariancelSDDRO-CN has a worst case absolute bias of 8.355°,
matrix is estimated for each standard deviation-correlation/SDDRO-WN has a worst case absolute bias of 8.415° and

matrix combination using a subset of imagescreate ap- MLSEC has a worst case absolute bias 23.742°. For step
proximately, 10 000 vectoysThe value ofL that produces  ridges, from the graph it is clear that ISDDRO-CN perfor-
the least RMS value is the optimal integration domain size. mance better than ISDDRO-WN in some cases and per-
In our experiments, we found that a half-width of the inte- forms worse in other cases when step ridges are used. Over
gration domain sizd.,, of 1.5 was optimal for both step and all angles, with respect to this measure, we can say that
ramp ridges in colored as well as white noise cases for alSDDRO-CN performs slightly better then ISDDRO-WN
5X5 neighborhood size. At the optimh| the RMS value  for step ridges. As is evident both operators outperform
was 21.25 in the colored noise case and 20.635 in the whiteMLSEC significantly. For ramp ridges, ISDDRO-CN per-
noise case. Plots given in Fig. 8 are the numerical resultsforms better than ISDDRO-WN in most cases, and both

for the optimal integration domain size determination. operators outperform the MLSEC operator.

T 7 T [ [~ TSDDRO-WN
[ i £ ISDDRO-CN &~ ISDDRO-CN
f i MLSEC 20- 5 . Lo MLSEC

Mean Orientation Bias
Mean Orientation Bias

(] 10 20 30 40 50 40 50
True Orientation True Orientation

(a) Step ridges (b) Ramp ridges

Fig. 9 Mean orientation bias plotted against the true orientation. The noise standard deviation is set
to 20.
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Fig. 10 Orientation standard deviation plotted against the true orientation. The noise standard devia-
tion is set to 20.

6.3.2 True orientation versus orientation standard slightly better than the ISDDRO-CN operator. As it is evi-
deviation dent both operators out-perform MLSEC significantly.

For each combination of,, andY,, each of the operators

are applied to the center of the test images for given true6.3.3 Noise standard deviation versus mean

orientation and several estimates for that orientation are orientation bias

gﬁt;i?aet?()'n\/\(/aesttirr]rle;[ecgg]?:Iz?n;h?h gtggszﬁg-?o%\f%t;otﬂz ggm_eFor this and the next test we fix a true orientation and the

puted sample variance and plot them. We perform this for N0's€ .correlat|on matrixY’, and vary the noise standard

both the step ridge and ramp ridge images. Figurgs)10 deV|at|0r_1,<r,,. _For gach stand_ard d_eV|at|on we compute the

and 1ab) show the plots for step and ramp ridge images mean orientation bias and orientation standard deviation for

For step ridges, ISDDRO-CN operator produces the Worstthe given true orientation. We perform this for both step

case orientation standard deviation of 8.42° when the true"’mOI ramp rldge Images. F|gures(§1)1and 1Ib_) show the

orientation is 54° and for ramp ridges it produces 9.012° at M€@n orientation bias plotted against the noise standard de-

a true orientation of 75°. ISDDRO-WN produces the worst Viation for step and ramp ridges, respectively. For these

case orientation standard deviation of 7.375° at a true ori-PI0tS, We held the true orientation at 30°. For step ridges,
ISDDRO-CN produces mean bias close to zero and per-

entation angle of 54°, for step ridges. For ramp ridges it
produces 8.115° at a true orientation of 75°. MLSEC op- forms better than the ISDDRO-WN. MLSEC has the poor-

erator produces a worst case standard deviation of 57.126€St Noise sensitivity as the mean bias monotonically in-
at a true orientation of 54° for the step ridges and producest’éases witha,,, for step ridges. ISDDRO-CN and
45.494° at a true orientation of 54° for ramp ridges. Over ISDDRO-WN follow each other very closely up unti,

all angles, with respect to this measure, we can say that=30 after which ISDDRO-CN performs better than
ISDDRO-CN performs better then ISDDRO-WN for step ISDDRO-WN aso,, approaches 50. MLSEC, again dis-
ridges. However, for ramp ridges ISDDRO-WN performs plays a poor noise sensitivity. It proves that under this per-

Step image Ramp image

L T T T T M T
----- TSDDRO-VN 4 ::%WWN
~&- SDDRO-CH - RO-CH
& 50! ¢ Cl s B |- MLSEC

s 3 3 B
2
AN

o
T

Mean Orientation Bias
~
Mean Orientation Bias
.,

|

N T D N I R
Noise Standard Deviation Noise Standard Deviation

(a) Step Ridges (b) Ramp Ridges

Fig. 11 Mean orientation bias plotted against the noise standard deviation. The orientation set to 30°.
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Fig. 12 Orientation standard deviation plotted against the noise standard deviation. The orientation
set to 30°.

formance criterion ISDDRO-CN performs better under thetically generated images containistgp and ramp im-
very noisy conditions compared to the other two operatorsages contaminated by colored noise with a given variance

for both step and ramp ridges. and correlation matrix. ISDDRO-CN algorithm uses the
noise covariance matrix estimated by using the algorithm

6.3.4 Noise standard deviation versus orientation described in Refs. 41 and 42. We have used DOP bases—
standard deviation though any other functional form could have been used—

Figures 12a) and 12b) show the orientation standard de- mainly for. its simplicity and mathematic.al tractapility in
the Bayesian statistical framework for noise covariance es-

viation plotted against the noise standard deviation for steptirnation described in Refs. 41 and 42

and ramp ridges, respectively. For these plots, we held the In future work, we would like to compare our algorithms

true orientation at 30°. For step ridges, ISDDRO-CN pro- : :
duces an orientation standard deviation curve that tracks th@dainst the MLSEC-STMLSEC with Structure Tenspr
algorithm by LgeZ? in which the authors state that

e et i 21 201 WLSECST i an mprovement over e WLSEC agortn
ramp ridges, ISDDRO-WN performs slightly better 'than The algo_rlthms presented in this paper can also be exter_wded
T to 3D, since the DOP bases can be extended to 3D in a
ISDDRO-CN untilor,,=45 arjd after that roles get reve_=rsed. similar fashion to extending 2D from 1D. However, extend-
MLSEC performs poorly with both step and ramp ridges. jnq " the noise covariance estimatioalgorithm used in
Again, under this criterion ISDDRO-CN performs better |sppro-CN may involve extensive rework of the theory
than the other two operators under high noise conditions. 5.4 when implemented in software may involve significant
computational complexity. The algorithms described in this
7 Summary and Future Work paper were mainly designed for optimal ridge orientation
In this paper, we discussed a unified theory for and perfor-estimation. We have not focused on the ridge pixel labeling.
mance evaluation of the ridge orientation estimation For this reason, all the experiments were performed on syn-
through the minimization of the integral of the second di- thetically generated images with differing levels of noise
rectional derivative of the gray-level intensity function. with known ridge feature orientation. However, as part of
Performance evaluation of the ridge orientation estimationthe future work we are planning to extend the algorithms to
is carried out as a function of the noise perturbation on theuse the estimated orientations in the ridge pixel labeling.
input image, in terms of thenean orientation biasand We will, then, perform experiments on the real world im-
orientation standard deviatiomgiven thetrue orientation ages and report the results.
and the same two measures givenioése standard devia-
tion. We discussed two forms of our new ridge detector one Acknowledgment
using the noise covariance matrix estimation proceduréwe thank Dr. Lpez (Ref. 22 for providing the MLSEC
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