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The digital image processing community has the experience that the transformed (in the discrete domain) digital
object is a subset of sample transformed (in the continuous domain) object. In this paper we have described
suitable bridging transformation to fill the gap between these objects. This work enables us to implement some
widely used spatial transformation, which are thus far being implemented through reverse transformations, using
forward transformations.
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1. INTRODUCTION

The digital image processing community has the experience that the transformed sampled set of
points in the discrete domain is a subset of sampled corresponding object that has undergone similar
transformation in the continuous domain. For example, rotation and dilation may create holes in the
transformed digital objects, and magnification may make the transformed digital object disconnected,
contrary to the topological characteristics of these transformations in the continuous domain. Two
examples involving rotation and dilation are shown in Fig. 1. To overcome this groblem sometimes
reverse transformations are used (e.g., in case of rotations, and magnification”, or some adhoc
processing is done to reduce the difference (e.g., in case of dilation'). For example, rotation of an
input image in the dicrete domain by an angle, say,  is a{italic chijeved by rotating the output
image by the angle -6 and information at every pixel of the output image is acquired from the
corresponding pixel (with rounded rotated coordinate) of the input image.

Our objective is to derive a suitable bridging transformation to fill the gap (at least partially)
between the transformed sampled object and the sampled transformed object. Having such a bridging
transformation would help us implementing above mentioned spatial transformations through known
forward transformations only.
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Fi1G. 1. Examples of transformations that illustrates that a transformed sampled set is a subset of
sampled transformed set. (a) Rotation and (b) Dilatioh
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FIG. 2. Representation of corresponding objects and transformations applied on them in both the continuous and the dis-
crete domain

Now to derive a bridging transformation we need to apply the prescribed transformation on
the objects in both the continuous domain and the discrete domain, and then analyze the difference
between the results of the transformation. Since we deal with or process digital objects, the only
way to obtain objects in the continuous domain is by a reconstruction based on our knowledge of
the sampling procedure. A comprehensive treatment of reconstruction based on our knowledge of
down-sampled set of points by morphological methods is available in [2]. We make use of some
of their results for reconstructing an object in the continuous domain from the corresponding object
in the discrete domain.

This paper is organized as follows. Problem is defined in a more formal framework in section
2. Section 3 discusses morphological methods for reconstructing objects in the continuous domain
from objects in the digital domain and presents the accuracy of such reconstructions. Bridging
transformations for several known and widely used transformations are derived in section 4.
Concluding remarks are cited in section 6.

2. PROBLEM DEFINITION

Let us denote objects (i.e., compact set of points) in the two-dimensional continuous domain R? by
A, B, C etc. Corresponding digital objects are obtained by sampling them at unit intervals in two

orthogonal directions. Thus the two-dimensional discrete domain Z% s represented by a set of points
having integer coordinates. Suppose the digital objects are denoted by A, B, C, etc. Then

A=A N Z° (1)

and so on.

We have already said that the transformed sampled set of points in the discrete domain is
a subset of sampled corresponding object that has undergone similar transformation in the continuous
domain [see Fig. 2]. Our objective is to determine a bridging transformation ¥ (-) such that
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Tr(ANZH < Y (Tr(ANZY) c Tr (A A 22 . (2)

or

PIHTHANZH), Tr (D N ZH <p THANZH, TrAD N 2, e

where p(:,-) is a set metric. The first relation (2) shows the set-bounding relationship among the
objects obtained through sampling and transforming versus transforming and sampling; while the
relation (3) shows their distance-bounding relationship. Since, the identity transformation can also
satisfy these relations because of the presence of equality sign, more specially our objective, in terms
of set-bounding relationship, should be stated as:

Determine a bridging transformation ¥(-) such that
if

THANZ%) c T A N Z2
then
THANZY) c ¥ (AN ZH) < Tr(A) N Z°

Distance-bounding relationship (3) may be re-stated in a similar way.

Now to derive the bridging transformation ¥(-) we need to apply the transformation Tr()
on the reconstructed object in the continuous domain as well as on the digital object in the discrete
domain, and then analyze the difference between the results of the transformation.

3. CONTINUOUS OBJECT RECONSTRUCTION

Let us denote by A the reconstructed object in the continuous domain from the discrete object A.

One of the important requirements of reconstruction is that the sampled reconstructed set is the same
as the original sampled set, that is,

ANZ =A. e (4

It is exactly the presence of details relatively smaller than the sampling interval such as
small objects, object protrusions, object intrusions, and holes that causes the sampled object and, in
turn, the reconstructed object to be unrepresentative of the original object in the continuous domain,
just as in signal processing, frequencies higher than the Nyquist frequency cause the sampled signal
to be unrepresentative of the original signal. The morphological sampling theorem? tells us that if
the structuring element is chosen in accordance with the sampling interval, and if the original object
in the continuous domain is simplified (i.e., open and closed) with respect to this structuring element
then a faithful reconstruction of the original object in the continuous domain may be done
morphologically in two different ways: Either by a closing or by a dilation. The first one gives the
minimal reconstruction and the second one gives the maximal. So we see the reconstruction is an
approximate one. However, the error, p(#, 4), in either case is no more than the radius of the
disk-like structuring element used for the reconstruction.

Let K < R? represent the structuring element for the reconstruction. Then K must satisfy the
following relations :
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1. Z2® K=R?
2. x€ Zz:melz={x}

The first relation assures that there cannot be any location in the continuous domain that
cannot be covered by the reconstruction process. The second one ensures that for any sampled point
area covered in the continuous domain due to reconstruction should include no other sampling point
and, hence, satisfies eq. 4. The largest structuring element that satisfies these criteria is the open
square in R2 defined by (-1, 1)x (-1, 1), the “artesian product of the open interval (- 1, 1) with
itself.

3.1 RECONSTRUCTION WITH THE LARGEST STRUCTURING ELEMENT

We take K=(-1,1)x (-1, 1) as the reconstruction structuring element. Since, K is symmetric, i.e.,
K ==Ié, the reconstructed shape will be unbiased to the direction of the coordinate axes. Secondly,
if y,z€ Rz,ye K, = K),(\Kzﬂlzvto. This characterisic along with the second criterion listed

above assert that K can cover at least one and at most two sampled points in any direction:
horizontal, vertical and diagonal. As we have said before, a set in the continuous domain may be
reconstructed morphologically from the sampled set A either by dilating it by K or by closing it by
K, such that

AeKYNZ2=(AKNZ=ANZ*=A | . (5)

or
ﬁfﬂlz=ﬂ§ﬁlz=ﬂhlz=/& .. (6)

- where ﬁ[f represents the reconstructed object arising from closing the digital object by K, and

:’215 represents the reconstructed object arising from dilating the digital object by K. So in both

reconstructions the sampled reconstructed sets are equal to the sampled original set. Furthermore, if
the original set is both opened and closed under the structuring element K, then one can see that
the original set contains its closing reconstruction and is contained in its dilation reconstruction as
stated in the following proposition. Furthermore, minimal and maximal reconstructed sets differ only
by a dilation of K as stated below.

Proposition 1 — Let A be an object in the continuous domain and let A be the corresponding
object in the discrete domain obtained by sampling. Let K=(-1,1)x(-1,1) be a structuring

element. If A°K=Ae K=4 then following is always true.
K
. Zcack
2. Aok=25,
where,

A'=AeKand Aj=AOK

PROOF : For 1 :
Since A=A N2% so ACcA
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This implies Ae K Ae K.

Since AeK=4, Ae Kc A4

Thus ﬁf cA

Since A° K =4, then there exists a set A’ in the continuous domain such that A=2"@ K.
This implies X c (AN Z%) K

or A cAeKk.

Dilating both sides by K: A @ Kc[(APK)OK]®K
or ADKCcA®K

or AcA®K
Therefore, A¢c ﬁlg
For 2 :
Now ok=@e0®K
S [(A®K)OK®K
= (A®K) oK
=ADK
~K
= a,

Hence, proved.

Since A is open under K, to be a faithful reconstruction ﬁdK should also be open under K.

In the following proposition we show that the largest set in the continuous domain that is open
under K and that gives the same sampled object is ﬁlf itself.

Proposition 2 — Let A R? satisfy A°K=2 where K=(-1,1)X(~1,1), and let A cZ?
is the sampled set of A ie. A=A \Z% Suppose there exists a set ) in the continuous domain

such that yoK=yx and y \2Z? = A, then

PROOF : Suppose x;ﬁg .
Then by definition of 2K X2ADK.
We are given that y M Z2=A.

Hence, (Y NZ2)® K=A®K.
Again, since y=y°K and K=(-1,1)x (-1, 1),
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we have [from Proposition 1] y < (x M Z?) ® K.

But (y NZH)BK=ABK.

This implies yc A @ K.

Now yc ADK,

together with the supposition y DA ® K

implies y=A® K

Hence y= 2%
Similarly, since A4 is closed under K, to be a faithful reconstruction ﬁf should also be closed under
K. In the following proposition we show that the smallest set in the continuous domain that is closed
under K and that gives the same sampled object is :‘?[f itself.

Proposition 3 — Let AcC R? satisfy Ao K=A, where K=(-1,1)x(=1,1), and AcCZ? be
the sampled set of A, i.e., A=A\ Z2 Suppose there exists a set x in the continuous domain such

that ye K=y and y M Z2=A, then

PROOF : Suppose y < ﬁf .

Then by definition of ?lf , XCAeK.
We are given that y M Z2=A.
Hence, (Y M Z2) e K=AeK

Since y M 2%2cy,

then (y Z2)eKcye K

But, since ye K=, (x(\22)eKcy

Again since Ae K=(y M\ Z%)eK and (y N Z%) e Ky,

we obtain Ae KcCy

Now yD2AeK, .

together with opposition y cA e K

implies y=Ae K

or x=7¥

Hence, proved.

Thus, these reconstructed sets 3’{5 and ﬂf are truely lower and upper bounding sets,

respectively, of the original set 4, and they differ only by a dilation of K.

Therefore, Proposition 1 together with Proposition 2 and Proposition 3 gives set-bounding
relationship between the original set and the reconstructed sets. Whereas, Proposition 1 also gives a
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hint about a distance-bounding relationship among them. Let us now establish a distance-bounding
relationship among them more explicitly. To do so, we need the following definitions?.

Let us define the radius of a set B, denoted by r(B), as the radius of its circumscribing
disk whose centre is in B. Then

r(B) = inf sup Nx-yll. )
xe Bye B

Since the reconstruction structuring element K is symmetric, i.e., K=K, where K =
{-xlxe K} is the reflection of K, and O € K, then the centre of K and, consequently, the centre
of its circumbscribing disk lie at the origin 0. Therefore,

r(K)y= sup Ilxll. .. (8)
xe kK

Thus 1K) is the same as the sampling interval.

For a set A that contains B, a natural pseudodistance from 4 to B is defined by

(A B = sup inf llx—yll. )]
xeq ye B

It is easy to verify that -

. p(AB20

2. (4, B)=0 > Ac B

3. p(A, O <p(A B +p(B O +r(B).

Hence, p(A4, B) is radius of the smallest disk that, when used as a structuring element to
dilate B, produces a result that contains A The asymmetric relation (2) is weaker than the

corresponding metric requirement that p(A4, B)=0 if and only if A= B and relation (3) is weaker
than the metric triangular inequality. However, the pseudodistance p can be used as the basis for a
true set metric by making it symmetric. we define a set metric (also called Hausdorf metric [4]) as

P, (A B = sup {p(A B, p(B, M) | | . (10)

Suppose a disk of radius r with centre is at origin is denoted by disk(r), then p (A, ‘B) may
be interpreted as .

p, (A B) = inf {rlAc B® disk(r) and B AD disk(r)} .. (1D

Being a metric, p_ (4, B) has the following properties:

Proposition 4 — Suppose p (A, B) represents distance between two sets A and B in the
continuous domain, then

1. p, (A B)20

2. p, (A4, B)=0 if and only if A=B
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3. p(A B)y=p(B A

4. p, (A 0O<p (A B+p(B O

PROOF : Proof can be found in [2].

Proposition 5 — Suppose A, B and C are three sets in the continuous domain such that

Ac Bc C, then
P(A B <p (A O and p(B O<p (A O
PROOF : Suppose D g is the smallest disk such that A® DgpoB. Dgr and D g are

defined similarly. Since A< Bc C, we can write

DagcDgc and DgccDgc

Let (D gp),(Dpe) and r(Dge) denote the radii of the disks Dgpg Dg, and Dg,

respectively. Therefore,
"D gqp <r(Dgp) and r(Dge) <r(D g0).
Now from the definition of Hausdorf metric, we have
p(A B =rDgp),
(B O=r(Dgo

and pP(A O =rD g0

Hence, proved.

Now we present a strong relationship between the set distance and the dilation of sets that
is used to translate the set bounding relationship to the distance bounding relationship as suggested
in Proposition 1.

Proposition 6 — p (A® B, CO® D)<p (A O+p, (B D).

PROOF : Proof can be found in [2].
It immediately follows that the distance between the minimal and maximal reconstructed sets,
that is between ﬁf and ﬁf respectively, which themselves differ only by a dilation by K, is no

greater than the radius of K, ie,
p, (ZL Ay < ri. e (12)

Finally, it is not surprising that the distance between the original set and either the minimal
reconstructed set or the maximal reconstructed set is no greater than n(K), ie.,
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PLA A <r(K) - (13)

and

P(A Ay < r(K). . (14)

This implies if we can use a smaller reconstruction structuring element, then we can have
reconstructed set more closer to the original set. The smallest structuring element that satisfies desired
criteria is an semi-open square in R? defined as (-0.5,0.5]x (- 0.5,0.5].

3.2. RECONSTRUCTION WITH THE SMALLEST STRUCTURING ELEMENT

Now we take L = (-0.5,0.5]x(-0.5,0.5] as the reconstruction structuring element. Though L is
not symmetric, i.e., L#i, the reconstructed shape will remain practically unbiased, because distance

between L and its reflection is negligible. In fact, p (L,li )=0. Secondly,

r(L)= sup Ilxl. .. (15)

xe L
Thus (L) is the half of n(K), or the sampling interval, i.e.,
r(L) = r(K)/2. .. (16)

Third, if x e Rz, then Lx('\22= {Lx+05)) where La ] is the greatest integer not exceeding a. If

a is a vector, then the rule applies to its elements. This characteristic asserts that L can cover one
and only one sampled point. Hence, a set in the continuous domain may be reconstructed morpho-
logically from the sampled set A either by dilating it by L or by closing it by L, such that (rewriting
Equations 5 and 6 in terms of L)

AelyN\Z’=(A®LY 2= 2Z*=A . ()
and
A=A N2=anz = .. (18)

It can be shown that KoL=KeL=K and p_ (L, K)=r(L). Now we show that the error between

the set reconstructed through dilation by L and the original set is no more than the half of the

sampling interval. That means we can reconstruct the set with subpixel accuracy as stated in the
Proposition 7.

Proposition 7 — Let ACR? satisfy AoK=AeK=2 where K=(—1,1)x(-1,1), and
AcZ? is the sampled set of A ie, A=A 22 If L=(-05,05]%(-0.5,05], Z=AeL and
ﬁlf=A e K, then

L Ak=ak
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K L K
2. A A A

3. p, (A, A <r(K)/2.

PROOF : For 1 :

Since LcK,AsLcAeK

or AL Ak

Now Proposition 3 states that ﬁf is the smallest set that is closed under K and that produces

A when sampled.
Hence, 341;=;lf .
For 2 :
From Proposition 1 we can write ?lf,=ﬁl£‘@L

-ZelL
SO
~K -~
A c 4
Again, since
LcK,so AQGLCA®K

or
A
Hence,
A cAchy
For 3 : p, (A, 2 =p, (A, 2
= p, A A oL
<r(l)
Again

o Ay =p A+ LA @ K)
= p, (A ) +p, (LK)
<L)

Now from Proposition 1 and eq. 16, we can write

P(A A <L) = r(K)/2
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Hence, proved.

So we see that A @ L is the closest approximation of A, and the error is less than or equal
to the half of the sampling interval. Secondly, the reconstruction by dilation by L is translation
invariant unlike other reconstructions. That is

@aeL, Nz = Al ros)

Therefore, for the rest of our discussion we will use this reconstruction only, i.e., dilation
by L.

4. DETERMINING THE BRIDGING TRANSFORMATION

Given a sampled set we proceed as follows. First, we apply the prescribed transformation 7r(-) on
both the sampled set and the reconstructed set. Then we apply a corrective operation T on the
transformed reconstructed set to obtain compatible results at the end of two paths as shown in Fig.
3. Finally, comparing the changes that take place in the objects (both sampled and reconstructed
ones) along two paths, we decide on the desired bridging transformation ¥(-). However, analytical
derivation of () is not possible because the reconstructed set is only an approximation of the
original set. Here we determine bridging transformation ‘¥(-) for several widely used and known

transformations. If we can show [consider Figs. 2 and 3] that A” is a subset of 4 and that

A is a superset of Tr(A), then our criteria presented in eqs. 2 and 3 are satisfied. We argue that
the corrective operation denoted by T in the first path and in turn the desired bridging transformation
Y(-) in the second path depend on the prescribed transformation 7r(-) [see Fig. 3]. In the following
discussion we consider only reconstruction by dilation by L. Therefore, unless otherwise stated A

represents 27[3 .
4.1. DILATION

Suppose x=(ry,¢,) and y=(r,, ¢c;) are two points in Z%. Now if we dilate x by v, we get another

. . 2 .
point 2= (r; +ry, ¢, +¢,) in Z7. Formally, we can write

Trx)=x@y=z .. (19)

Now if we like to perform the same operation on the reconstructed sets, we proceed as
follows. First dilate x and y by L to get L _and L, respectively which are equivalent to the

reconstructed sets, 1.e., L, =x® L and L_\.(—BL. Then we dilate L_ by Ly, ie.,
Tr(lL)=L & L'\, .. (20)
Sampling of LX(-BL), produces a set of four points:
i+t i+t loy+ey), (rp+ry,ci e+ 1), (rp+ry+ 1, ¢+, + D}

So we have to apply some corrective operation before sampling to get a result closes to
what we get when transformation 7r(') is applied on the sampled set [see eq. 19]. One such corrective
operation may be erosion by 2L, where nL may be defined as [3]
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- Tr ~ T ~
A > » A
A
Recons. Sampling Sampling
V\A
A > Tr(A —» A"c A'CA
- (A) ¥0) cA'c

FiG. 3. Showing two paths: The first one consists of reconstruction followed by applying transformation on the recon-
structed set folowed by corrective operation followed by sampling, and the second one consists of applying transforma-
tion on the sampled set followed by applying the bridging transformation for comparing results.

nL=L®LD.. DL n>0 . (2D

Thus the corrective operation 7[=©2L] is applied to produce a point same as
1= (ry+ry ¢y +cy) as follows

(L, ®L)O2UINZ = ((r)+ry+c) +c))) - (22)

Now consider two sampled sets A and B, and perform a dilation between them. The complete
transformation along the first path of Fig. 3 is given by [{(A@LY®BOL)} ©2L1 N Z’=

[(A®B)@®LO®L) ©2L]NZ%2= [{(AS®B)®2L}) ©2L] N Z2=[(A®B)e2L] NZ2=(A®B)eS
where §=2L M Z2, that means S is a 2 x 2 structuring element in the discrete domain. Now

(A® B)eS may be considered as the transformation along the second path of Fig. 3. Hence, the
bridging transformation ¥{(-) we are looking for appears to be closing by S, ie,

HTr(A)=Tr(A)e S - (23)

where, Tr(A) is equivalent to dilation of A by B, and § represents a 2 X 2 structuring element in
discrete domain.

Comparing Figs. 2 and 3 alongwith equations (19-23) we may say that 4 is approximation
of A and A@B)eSC[(A®B)e L] NZ2, ie,

Au - ﬁ//

Tr(A) e S=A" This implies Tr(A) c A” (since closing is extensive). Now proposition 7 says
that A2 A OL, so A2(AOL)OLOAO2U=7".
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Therefore, Tr(A)cA” c A" c &
This implies equations 2 and 3 are satisfied by the suggested bridging transformations Y¥)

4.2 EROSION

Suppose, again, x=(r,c|) and y=(r,, c;) are two points in Z2. Now if we erode x by y,

we get another point z=(r; —ry, ¢; ~¢,) also in Z2. Formally, we can write

Tr{ix)=xOy=z .. (24)

Now if we like to perform the same operation on the reconstructed sets, we proceed as
before. That is, we first dilate x and y by L to get L and L respectively, which are equivalent to

the reconstructed sets, and then erode L, by L. This eventually produces the same point z € Z2.

Hence, the desired bridging transformation lI’(-)'in this case is a unity transformation. Equations 2
and 3 are also satisfied by this ¥(-)

4.3 TRANSLATION

We have said earlier that the reconstruction by dilation by L is a translation invariant operation.

That means, if a set is reconstructed from A _C_Z2 by dilation by L and if the reconstructed set is
translated by an amount ¢ in the continuous domain, then sampling of the translated reconstructed
set gives the original sampled set A translated by an amount which is nearest integer of 1, ie.,

A®L),NZ =A,, 3] . (25)

Hence, here also the desired bridging transformation ¥{(-) is a unity transformation. Equations
2 and 3 are also satisfied by this ¥-)

4.4 ROTATION

Let us consider rotation of a set of points by an angle 6 in anti-clock direction. Then a point

x=(rc)e Z% moves to a new location ze Z> whose coordinate is obtained by first transforming
coordinate of «x and then rounding it to nearest integer, i.e.,
;z([_rcosf)—csin6+0.5 J,L rsin®ccos8+0.5 J). Thus, for one point x we get one and only one
point z. On the other hand, if we rotate the reconstructed set L, due to the point x through the

same angle, and then sample the rotated set, depending on the values of r, ¢ and 6 we may get :
1) no point; or
2) exactly one point; or
3) two points that are adjacent horizontally or vertically.

First situation suggests dilation of transformed sampled set by a 1 x2 or a 2x 1 structuring
element, while the third situation suggests erosion of transformed sampled set by a 1 x 2 and by
a 2x 1 structuring element independently. And the second situation suggests a unity transformation
as the bridging transformation. Following these arguments and considering Fig. 3, the desired bridging
transformation ¥(-) is given by
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HTr(A)) = [Tr(A) o §,1 U [Tr(A) S ], .. (26)

where, TR (A) is equivalent to rotation of A by 6, and S, and S represent 1 x 2 and 2 x 1

structuring elements, respectively in the discrete domain.

4.5 MAGNIFICATION

Suppose x=(r,c) is a member of a set of points A in Z%. Now if we magnify that by a scaling

factor of m, then corresponding to x we get one and only one point z = (mr, mc) in 7%, Whereas if
we perform the same operation on the reconstructed set L, we get a magnified set mL, produces a

set of m x m points:
{(rno),(r+1,¢), .., (r+m—-1,¢), (r,c+ 1),
e (re+m=1), ., (r+m-1,c+m-1)}

This suggests that corrective operation may be an erosion by mL. Hence, the corrective
operation 7[= @mL] is applied to produce a point the same as z = (mr, mc) as follows

(L, @mL) " Z*= {(mr, mc)). . (28)

Now consider a set A, and magnify it by a scale factor m. Thus the complete transformation
along the first path of Fig. 3 is given by

{mA®L)) OmLl(\Z°= [(mA®mL) OmLl(\Z*=[mAemLl \Z>=mAsS,

where S=mL(\Z2 is a m X m structuring element in Z,z. Now .mA e § may be considered as the

transformation along the second path of Fig. 3. Hence, the bridging transformation ‘¥(-) we are
looking for appears to be clesing by §, ie.,

HTr(A)) =Tr(A) e S, .. (29)

where Tr(A) is equivalent to magnification of A by m, and S represents a m X m structuring element
in discrete domain. Note that if m is non-integer then § represents a [m Ix[m] structuring element,
where [a represents smallest integer integer not less than a. Finally, it can be shown that equations
2 and 3 satisfied by the suggested bridging transformation ¥{-)

5. EXAMPLES

Here we present two examples that show how the proposed bridging transform fills the gap between
the transformed sampled image and the sampled transformed image. Two different transformations
are considered here: Rotation and magnification. The image contains a key against an almost uniform
background.

Result of rotation is shown in Fig. 4. The object, the key, is imaged and digitized by a

CCD camera. During imaging optical axis of the camera is held perpendicular to the object plane
(a table in this case). Corresponding digital image is shown in Fig. 4(a). Thus it represents a sampled
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(c) (d)

(e) (f)

FiG. 4. Illustrates usefuiness of bridging transform. (a) Image of original object, (b) Image of sampled transformed
object. Here transformation is rotation by 30° (c) Transformed sampled object where transformation is same as before.
(d) Image after applying bridging transtormation on (c). (e) Image obtained by rotating (a) using conventional
(i.e., inverse transformation) method. (f) Hlustrates difference between (d) and (e)

or digitized object. Now the camera is rotated by 30° about its optical axis and another image is
taken as shown in Fig. 4(b). So this image represents the object that is first transformed in continuous
domain and then sampled. The said transformation is, therefore, a rotation by 30° in two-dimensional
object plane. We apply similar transformation on Fig. 4(a) which is a sampled object, and obtain
Fig. 4(c) that represents the transformed sampled object. Finally, we apply bridging transformation
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() (d)

(e) (f)

FiG. 5. llustrates usefulness of bridging transform. (a) Image of original object. This is same as Fig. 4(b).

(b) Image of sampled transformed object. Here transformation is magnification by a factor of 2 in both the
directions. (c) Transformed sampled object where transformation is same as before. (d) Image after applying bridging
transformation on (c). (e) Image obtained by magnifying (a) using conventional (i.e., inverse transformation)
method. (f) llustrates difference between (d) and (e)

on Fig. 4(c). The resultant image is Fig. 4(d). A simple comparison shows that figure (b) is much
closer to (d) than (c). That means bridging transformation fills the gap between (b) and (c).

In case of magnification, we use the same sampled object as shown in Fig. 5(a) which is
same as Fig. 4(b). Now the camera lens is zoomed to a{italic chi}eve magnification by a factor of
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2 in both the directions. The digital image of magnified object is shown in Fig. 5(b). We magnify
the relevant portion of the image of sampled object (i.e., Fig. 5(a)) by the same factor to obtain an
image as shown in Fig. 5(c). Now, we apply appropriate bridging transformation on Fig. 5(c). The
resultant image is Fig. 5(d). A simple comparison shows that figure (b) is much closer to (d) than
(c). That means bridging transformation fills the gap between (b) and (c).

Fig. 4(a) is also transformed (i.e., rotated) by conventional method, that is, by applying
suitable inverse transformation in the discrete domain. The result is shown in Fig. 4(e). An image
depicting difference between Fig. 4(d) and Fig. 4(e) is shown in Fig. 4(f). We also obtain Figs. 5(e)
and (f) in a similar way starting from Fig. 5(a). Visual comparison between (d) and (e) [of both
Fig. 4 and Fig. 5], as well as quantitative analysis of (f) reveals that results obtained through forward
transformation followed by bridging transform are as good as that of conventional method. However,
our intention is not to establish superiority of our method over conventional ones. What we claim
is information lost due to applying (forward) transformation in the discrete domain can be recovered,
at least partially, by bridging transform. Thus it is extremely useful for the transformations (e.g.,
dilation or other nonlinear transformations) for which inverse transformations do not exist.

6. CONCLUSION

In this work we have derived suitable bridging transformations for some widely used transformations,
like dilation, erosion, translation, rotation and magnification, to fill the gap (at least partially) between
the transformed sampled set and the sampled transformed set. This bridging transformations enables
us to implement some of these said transformations (e.g., rotation and magnification) using forward
transformations only. Note that these transformations are thus far being implemented using reverse
transformations.

Determination of the bridging transformations requires reconstruction of the original object
in the continuous domain. The reconstruction methodology suggested in this work can approximate
the original set to subpixel accuracy. However, the entire analysis is based on the assumption that
the original object in the continuous domain is both open and close under the structuring element
K=(-1,1)x(=1,1). That means the suggested bridging transformations are suitable only to those
discrete objects that are both open and close under a 2 X 2 structuring element.

Finally, it should be pointed out that, in this paper, our intention is not to propose any
algorithm for geometric transformation in discrete domain that is superior to conventional ones. In
stead what we intend to show is that bridging transformation can recover, at least partially,
information lost due to applying forward transformation in the discrete domain. Thus it is extremely
useful for the nonlinear transformations (e.g., dilation) for which inverse transformations do not exist.
However, wherever such inverse transformations are available, it can be shown that results obtained
through forward transformation followed by bridging transform are as good as that of conventional
method. Experimental results also support above observations and propositions.
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