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Dependence
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This paper discusses different kinds of dependency. For numeri-
cally valued variables our discussion centers on the maximal cor-
relation coefficient and its cousin the monotone correlation coef-
ficient. We show how to calculate the maximal correlation coef-
ficient in the case the random variables take on a finite set of val-
ues. For non-numerically valued variables our discussion centers
on information theoretic measures related to mutual information
and we describe some that are also metrics. We visually illustrate
the difference between these two kinds of measures with a texture
example that computes the joint probability image: an image in
which the gray level of each pixel is the joint probability of the
gray levels of the pixels in its neighborhood. Neighborhoods can
be regular such as 5 × 5 or they can be irregular. Finally, we dis-
cuss manifold methods for classification: the N-tuple method, the
subspace classifiers, the subspace ensemble classifiers, including
the graphical model for representing the class conditional proba-
bility distribution. We describe a procedure to convert an N-tuple
classifier to a graphical model classifier. We also conjecture that
there is new form of a universal approximation theorem by which
not too complex classification functions from measurement space
to the set of classes can be approximately represented in the form
of a subspace classifier using multiple subspaces such as the N-
tuple method.
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ABSTRACT

This paper discusses different kinds of dependency. For numerically valued variables our discussion
centers on the maximal correlation coefficient and its cousin the monotone correlation coefficient. We
show how to calculate the maximal correlation coefficient in the case the random variables take on
a finite set of values. For non-numerically valued variables our discussion centers on information
theoretic measures related to mutual information and we describe some that are also metrics. We
visually illustrate the difference between these two kinds of measures with a texture example that
computes the joint probability image: an image in which the gray level of each pixel is the joint
probability of the gray levels of the pixels in its neighborhood. Neighborhoods can be regular such
as 5 × 5 or they can be irregular. Finally, we discuss manifold methods for classification: the N-tuple
method, the subspace classifiers, the subspace ensemble classifiers, including the graphical model
for representing the class conditional probability distribution. We describe a procedure to convert
an N-tuple classifier to a graphical model classifier. We also conjecture that there is new form of a
universal approximation theorem by which not too complex classification functions from measurement
space to the set of classes can be approximately represented in the form of a subspace classifier using
multiple subspaces such as the N-tuple method.

c© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

There is much research using measures of dependency to dis-
cover associations between variables. When there are large
numbers of variables, the natural methodology is to evaluate
a measure of dependence between each pair of variables, sort
the pairs of variables from highest dependence to lowest depen-
dence and then try to understand why certain pairs of variables
have high dependence and others low dependence. The deepest
level of such understanding would be to use the joint relation-
ship among the variables to construct a model that predicts what
had been observed.1

There are many measures of statistical dependency between
variables. It would take a long paper to survey them all. Our
purpose is to discuss a few kinds of dependence. Before we
start we make mention without elaboration of the classic paper

∗∗Corresponding author: Robert Haralick Tel.: +1-212-817-8192; Fax: +1-
212-817-1510;

e-mail: rharalick@gc.cuny.edu (Robert M. Haralick)
1However, with observational data, there are certainly multiple models that

can equally well explain the data.

on dependency in contingency tables: the article by (Goodman
and Kruskal, 1954).

There are many forms of dependency in Pattern Recognition.
There is the basic dependency between pairs of variables. There
is the dependency between subsets of variables that enable di-
mensionality reduction and manifold learning. There is the de-
pendency between the independent variables and the response
variable in prediction tasks. There is the dependency between
the measurement tuples and true class in the the classifier task.

We will begin with the basic dependency between variables,
discussing what we regard as the best association measures for
numerically valued variables and then methods that can take
care of numerically valued or categorically valued variables.
We will illustrate how in image data, cooccurrence probabili-
ties can be used to measure the strength of dependence in image
neighborhoods and thereby distinguish the difference between
low joint probability neighborhoods and high joint probability
neighborhoods. Remarkably, low joint probability neighbor-
hoods will correspond with edge regions. Finally, we explore
some aspects of dependency through subspaces. We explore the
N-tuple method, subspace classifiers, and subspace ensemble
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Fig. 1: Graphics from Wikipedia article on correlation and dependence.

classifiers. We conjecture that there is new form of a universal
approximation theorem by which not too complex classifica-
tion functions, defined from measurement space to the set of
classes, can be approximately represented in the form of a sub-
space classifier using multiple subspaces such as the N-tuple
classifier and the subspace ensemble classifiers. If this is so, it
would imply that the way to think about classifiers is through
subspaces and sub-manifolds.

There are two kinds of tasks in characterizing dependency:
measuring the strength of the dependency between/among vari-
ables and estimating the constraint that defines the dependency.

The most common measure of dependency is the correlation
coefficient. For numerically valued random variables X and Y ,
the correlation coefficient is defined by

ρ(X,Y) = EXY

[
(X − µx)
σx

(Y − µy)
σy

]
Note that if EX[X] = EY [Y] = 0 and VX[X] = VY [Y] = 1 then
ρ(X,Y) = EXY [XY].2

Figure (1) shows scattergrams of various kinds of dependen-
cies and the value of their correlation coefficient. Notice that
the correlation coefficient only measures the linear portion of
the dependency.

Dependency can, of course, be more complex than linear de-
pendency. Dependency can have multiple parts. Examine the
dependency in Figure (2). This kind of multi-part dependency
is not captured by any of the dependency measures and must be
first processed by a non-linear manifold clustering algorithm.

2. Rènyi’s Conditions

One of the earliest people to specify a list of properties that a
measure of dependency should have was (Rényi, 1959). Rènyi
wanted to characterize by a numerical value, the strength of
the dependence between two random variables. He wanted the
measure to be normalized in the interval [0, 1], with 0 being the
value associated with no dependence, i.e. independence, and 1
being the value associated with complete or strict dependence.

He made a list of properties that he thought was essential for
any measure of dependency δ.

(A) δ(X,Y) is defined for any pair of random variables X,Y
neither of them being constant with probability 1

2We always use E to mean expectation and V to mean variance, and σ to
mean

√
V .

Fig. 2: For some values of X, Y has multiple values. For some values of Y , X
has multiple values. There are two non-linear disconnected manifolds.

(B) δ(X,Y) = δ(Y, X)

(C) 0 ≤ δ(X,Y) ≤ 1

(D) δ(X,Y) = 0 if and only if X and Y are independent

(E) δ(X,Y) = 1 if Y is completely dependent on X or X is
completely dependent on Y , This means that X = g(Y) or
Y = f (X)

(F) If f and g are one-to-one mappings, then δ( f (X), g(X)) =

δ(X,Y)

(G) If X and Y are jointly normal, then δ(X,Y) = |ρ(X,Y)|,
where ρ is the correlation coefficient

Rènyi thought about changing (E) to δ(X,Y) = 1 only if Y is
completely dependent on X or X is completely dependent on Y ,
but he thought this to be too restrictive.

The correlation coefficient only satisfies (B), (C) in absolute
value, and (G). Rènyi explored a few measures of dependency:
the maximal correlation coefficient introduced by (Hirschfeld,
1935) and then by (Gebelein, 1941), the correlation ratio, and a
mutual information measure.

The correlation ratio η2
Y |X of Y on X is defined by

η2
Y |X =

VX[EY [Y |X]]
VY [Y]

It does not satisfy (A), (B), (D), and (F). And even if it is made
symmetric

η(X,Y)2 = max{η2
Y |X , η

2
X|Y }

η(X,Y)2 still does not satisfy (A), (D), and (F).
There are relationships between the correlation coefficient

and the correlation ratio. Here we mention the most important
two relations.

ρ(X,Y)2 ≤ η2
Y |X

Let G = {g :→R | E[g(X)] = 0 and V[g(X)] = 1} then, for any
g ∈ G,

ρ2(g(X),Y) ≤ η2
Y |X

with equality when g(x) = EY [Y |X = x].
Another fundamental property of the correlation ratio is
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inf
g

EXY [(Y − g(X))2] = 1 − η2
Y |X (1)

Here again, the function g that achieves the inf is

g(x) = EY [Y |X = x]

(Sampson, 1984) extended the idea of correlation ratio of Y
on X to the multivariate case.

Definition 1. The Multivariate Correlation Ratio ηΛ measur-
ing the predictability of the random vector Y from the random
vector X relative to the positive definite square matrix Λ is de-
fined by

η2
Λ(Y |X) =

tr
(
Λ−1CovXX[EY [Y |X]]

)
tr

(
Λ−1ΣY

)
Sampson uses the matrix Λ as a weight matrix. when Λ = I,
the identity matrix, then it corresponds to an unweighted least
squares. When Λ is diagonal, the diagonal elements are the
weights for the corresponding components of Y . When Λ = ΣY

the weighting is like that used in the Mahalanobis distance.
Sampson notes that his multivariate definition satisfies the mul-
tivariate equivalent of (1). Let ‖ s ‖2

Λ
= s′Λ−1s. Then

inf
g
‖ E[Y − g(X) ‖2Λ=

(
1 − η2

Λ(Y; X)
)

tr
(
Λ−1ΣY

)
and this minimum occurs when g(x) = E[Y |X = x].

When Λ = I, the expression for the multivariate correlation
ratio simplifies.

η2
I (Y |X) =

tr (CovXX[EY [Y |X]])
tr (ΣY )

(2)

(Kabe and Gupta, 1990) discuss a formulation that they claim
is better than that of Sampson’s. They replace the trace with
the determinant. Corresponding to (2), their expression for the
multivariate correlation ratio is given by (3)

η2(Y |X) =

∣∣∣CovXX[EY [Y |X]]
∣∣∣

|ΣY |
(3)

3. Maximal Correlation Coefficient

Definition 2. Let X and Y be numerically valued random vari-
ables. Define sets of Borel measurable functions F and G by

F = { f : R→ R | E[ f (X)] = 0; V[ f (X)] = 1}
G = {g : R→ R | E[g(Y)] = 0; V[g(Y)] = 1}

The Maximal Correlation Coefficient ρmax between X and
Y is defined by

ρmax(X,Y) = sup
f∈F,g∈G

EXY [ f (X)g(Y)]

(Yu, 2008) notes that

ρmax(X,Y) = sup
g∈G

(VY [EX[g(X)|Y]])
1
2

And if non-degenerate random variables X and Z are condition-
ally independent given Y , then

ρmaxX,Z ≤ ρmax(X,Y)ρmax(Y,Z)

If X and Y are bivariate normal, then ρmax(X,Y) = |ρ(X,Y)|.
If ρmax(X,Y) = |ρ(X,Y)|, then for some constants

a0, a1, b0, b1,

E[X|Y] = a1Y + a0

E[Y |X] = b1X + b0

(Lancaster, 1957) proved the following property: that if X
and Y are distributed as a bivariate Gaussian, then any func-
tional transformation of them will yield an absolute correlation
no larger than the absolute correlation of X and Y . Let X and Y
be distributed as a bivariate normal distribution with correlation
ρ(X,Y). and let

F = { f : R→ R | E[ f (X)] = 0; V[ f (X)] = 1}
G = {g : R→ R | E[g(Y)] = 0; V[g(Y)] = 1}

then for any f ∈ F and g ∈ G

|ρ( f (X), g(Y))| ≤ |ρ(X,Y)|

There is a relationship between the maximal correlation co-
efficient and the Cramér’s V statistic which is based on the χ2

test for independence in contingency tables. The Cramér’s V
statistic is a measure of dependency in a J × K contingency
table.

χ2 =

J∑
j=1

K∑
k=1

(
n jk −

n j.n.k
n..

)2

n j.n.k
n..

(4)

Cramer’s V =

√
χ2/n..

min{J − 1,K − 1}
(5)

(Gautam and Kimeldorf, 1999) develop this relationship for the
2 × K contingency table as shown in Figure (3). For J = 2,
V =

√
χ2/n... Gautam and Kimeldorf showed that in this case

ρmax(Y, X) = sup
f
ρ(Y, f (X)) = V

The function f that achieves the sup is f (k) = n.k.
The maximal correlation coefficient is difficult to determine

in the continuous case. But for the finite case there is a method
mentioned by (Haralick et al., 1973) and also by (Witsenhausen,
1975) using an eigenvector eigenvalue method. Here we show
a singular value decomposition method.

Let X take values from the ordered set {α1, . . . , αI}. Let Y
take values from the ordered set {β1, . . . , βJ}. Define pi j =
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Categories
X = 1 X = 2 . . . X = k . . . X = K Total

Score f (1) f (2) . . . f (k) . . . f (K)
Y = 1 n11 n12 . . . n1k . . . n1K n1.

Y = 2 n21 n22 . . . n2k . . . n2K n2.

Total n.1 n.2 . . . n.k . . . n.K n..

Fig. 3: The General 2 × K Contingency Table

P(X = αi,Y = β j) and define

pi. =

J∑
j=1

pi j

p. j =

I∑
i=1

pi j

Find new values ai = f (αi) and b j = g(β j) satisfying

• µ f x = E[ f (X)] =
∑I

i=1 ai pi. = 0

• σ2
f x = E[( f (X) − µ f x)2] =

∑I
i=1 a2

i pi. = 1

• µgy = E[g(Y)] =
∑J

j=1 b j p. j = 0

• σ2
gy = E[(g(Y) − µgy)2] =

∑J
j=1 b2

j p. j = 1

that maximize

E[ f (X)g(Y)] =

I∑
i=1

J∑
j=1

ai pi jb j

=

I∑
i=1

J∑
j=1

(
ai
√

pi.
) pi j
√

pi.
√p. j

(
b j
√

p. j
)

=

I∑
i=1

J∑
j=1

ciqi jd j

where

qi j =
pi j

√
pi.
√p. j

ci = ai
√

pi.; d j = b j
√

p. j
I∑

i=1

ci
√

pi. = 0;
I∑

i=1

c2
i = 1

J∑
j=1

d j
√

p. j = 0;
J∑

j=1

d2
j = 1

If

c =


c1
...

cI

 =


√

p1.
...
√

pI.


d =


d1
...

dJ

 =


√

p.1
...
√

p.J



Then,

E[ f (X)g(Y)] = c′Qd =

I∑
i=1

J∑
j=1

ciqi jd j

=

I∑
i=1

J∑
j=1

√
pi.

pi j
√

pi.
√p. j

√
p. j = 1

We require that
∑I

i=1 ci
√

pi. = 0, but

I∑
i=1

ci
√

pi. =

I∑
i=1

√
pi.
√

pi. =

I∑
i=1

pi. = 1

Therefore, the first singular vector of Q does not work: the
constraint is not satisfied. But the second singular vectors will
work. If c is the second left singular vector, then

I∑
i=1

ci
√

pi. = 0

since the first and second left singular vectors are orthogonal.
Similarly with d being the second right singular vector.

The maximal correlation coefficient is then the second singu-
lar value, λ2, and the transformed values for X and Y are given
by the components of the vectors a and b, respectively.

If the second singular value is also 1, then the first and sec-
ond singular vectors are not unique. Since we desire the first
left singular vector to have

√
pi for its ith component, we can

determine a second singular vector to be orthogonal to the first
singular vector and be in the span of the first two singular vec-
tors as calculated by the SVD. Similary for the second right
singular vector.

(Rényi, 1959) also proved some other properties of the max-
imum correlation coefficient.

E[ f (X)|Y = y] = ρmax(X,Y)g(y)
E[g(Y)|X = x] = ρmax(X,Y) f (x)

These relations are the basis for an iterative scheme for deter-
mining a nonlinear regression curve developed by (Breiman and
Friedman, 1985), who called the method ACE for Alternating
Conditional Expectation. Let X and Y be numerically valued
random variables. Find a function R(x), called the regression
curve, that minimizes E[(Y − R(X))2]

R(x) = E[Y |x]

Define ‖ Z ‖=
√

E[Z2]. Find functions f and g that minimize
E[(g(Y) − f (X))2].

• Set g0(Y) = Y
‖Y‖

• Iterate until there is no decrease in E[( f (X) − g(Y))2]

– fn+1(X) = E[gn(Y) | X]

– gn+1(Y) =
E[ fn+1(X) | Y]
‖E[ fn+1(X) | Y]‖
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X

Y
E[X|Y] = 0
E[Y |X] = 0
ρ(X,Y) = 0

Fig. 4: Example of a uniform distribution within a unit circle.

Note that functions from F and G, minimizing E[( f (x) −
g(y))2] will maximize E[ f (X)g(Y)] since E[( f (X) − g(Y))2] =

2(1 − E[ f (X)g(Y)]).
(Fowlkes and Kettenring, 1985) show the efficacy of the iter-

ative method for data that has been sampled from the uniform
distribution in a circle.

(Chernyshov, 2015) designs a method for transforming de-
pendency measures that meet all the conditions but (C) and (G)
into a measure that meets all the conditions. Feizi et al. (2015)
generalize the pairwise maximal correlation coefficient into the
multivariate setting by determining functions for which the sum
over all pairs of transformed variables of the expected value of
the product of the transformed pair is maximized. They call it
Network Maximal Correlation.

Definition 3. For random variables X1, . . . , XN let

Fn = { f : R→ R | E[ f (Xn)] = 0 and V[ f (Xn)] = 1}, n = 1, . . . ,N

For any graphG = ({1, . . . ,N},E), the Network Maximal Cor-
relation ρG is defined by

ρG(X1, . . . , XN) = max
f1,..., fN : fn∈Fn

∑
(i, j)∈E

E[ fi(Xi) f j(X j)]

The maximum correlation has some properties that are per-
haps unexpected. For example, there exist instances where

E[X|Y] = 0
E[Y |X] = 0
ρ(X,Y) = 0

yet

ρmax(X,Y) > 0

Perhaps the simplest such example is the uniform distribution
within a unit circle as shown in Figure (4). Clearly, here there
is no intuitive correlation. However, (Csàki and Fischer, 1963)

showed that

ρ(X2,Y2) = −
1
3

ρmax(X,Y) =
1
3

In fact (Csàki and Fischer, 1963) proved a general case. Let
p > 0 and (X,Y) have the uniform distribution in the set

{(x, y) | |x|p + |y|p ≤ 1}

Then

ρmax(X,Y) =
1

p + 1

(Dembo et al., 2001) constructed a more sophisticated exam-
ple. Let U1,U2,W be independent random variables with

P(Ui = −1) = 1/2, i = 1, 2
P(Ui = 1) = 1/2, i = 1, 2

0 < V[W] < ∞

Define

X1 = U1W

X2 = U2W

Then, it is clear that |X1| = |X2| = |W |. And,

E[X1|X2] = 0
E[X2|X1] = 0
ρ(X1, X2) = 0

P(X2
1 = X2

2) = 1
ρmax(X1, X2) = 1

The principal problem with the maximal correlation coeffi-
cient as we have seen from examples where the maximal cor-
relation coefficient is non-zero where we might expect that it
should be zero is the set of functions over which the sup is
taken. These examples show instances in which the optimiz-
ing function had the property that f (x) = f (−x). The class of
allowed functions included functions that are not one-one func-
tions. This led (Kimeldorg and Sampson, 1978), to define the
Monotone Correlation Coefficient.

Definition 4. Let X and Y be random variables and

F = { f : R→ R | f is one-one; E[ f (X)] = 0; V[ f (X)] = 1}

G = {g : R→ R | g is one-one; E[g(Y)] = 0; V[g(Y)] = 1}

The Monotone Correlation Coefficient ρmono(X,Y) is de-
fined by

ρmono(X,Y) = sup
f∈F,g∈G

E[ f (X), g(Y)]

It immediately follows from this definition that

ρ(X,Y) ≤ ρmono(X,Y) ≤ ρmax(X,Y)



9

Perhaps the first question that should be asked, does inde-
pendence follow if the monotone correlation coefficient is zero.
The answer is affirmative and this was proved by (Kimeldorg
and Sampson, 1978).

Etesami and Gohari (2016) proved the following. Let X
and Y be random variables and f , g be any functions satisfying
V[ f (X)] < ∞ and V[g(Y)] < ∞. Then

ρmono(X,Y) ≥ ρmono( f (X), g(Y))

And Etesami and Gohari (2016) also proved: Let f , g be strictly
monotonically increasing functions, then for random variables
X and Y ,

ρmono(X,Y) = ρmono( f (X), g(Y))

Monotone correlation leads one to think about its relation to
rank correlation. And indeed there is a relation: monotone cor-
relation is never smaller than the Spearman Rank Correlation.
But first for some definitions.

Definition 5. Let x1, . . . , xN be N independent observations of
a random Variable X. The Rank rk of an observation xk is
defined by

rk = |{n ∈ {1, . . . ,N} | xn < xk}| +

1
2

[1 + |{n ∈ {1, . . . ,N} | xn = xk}|]

Suppose the ordered observations are 3.6, 5.2, 6.1, 6.1, 6.1, 7.3.
Then the ranks are 1, 2, 4, 4, 4, 6.

Definition 6. Let < (X1,Y1), . . . , (XN ,YN) > be a sequence of
independent observations of a pairs of random variables gov-
erned by the same joint distribution function. Let
< (R1, S 1), . . . , (RN , XN) > be the sequence of the correspond-
ing ranks. The Spearman Rank Correlation is the correlation
of the ranks and is defined by

ρS =

1
N

∑N
n=1(Rn − R̄)(S n − S̄ )

σRσS

where

R̄ =
1
N

N∑
n=1

Rn; S̄ =
1
N

N∑
n=1

S n

σ2
R =

1
N

N∑
n=1

(Rn − R̄)2; σ2
S =

1
N

N∑
n=1

(S n − S̄ )2

Both (Kimeldorg and Sampson, 1978) and Etesami and Go-
hari (2016) proved

ρmono(X,Y) ≥ ρS (X,Y)

4. Coefficient of Intrinsic Determination

(Hsing et al., 2005) took a completely different approach to
define what they called the coefficient of intrinsic determina-
tion in applications of selecting features. They had a different
criteria set than Rènyi and wanted a measure that was equally
applicable to continuous and categorical distributions.

(A) The measure should be model-free in the sense that no
distributional or functional assumptions are placed on the
variables

(B) It should be invariant under monotone transformations of
the variables

(C) It can differentiate different levels of dependence. The
measure of dependence of a response variable on a pre-
dictor variable should become stronger if additional infor-
mation is included in the predictor variable

(D) The measure is equally applicable to continuous and cate-
gorical distributions

(E) The measure should not necessarily be symmetric

(F) The measure should be easily estimated from data

(G) The measure should be extendable to the multivariate set-
ting

Their motivating idea is that Y should be said to be strongly
dependent on X if and only if the conditional cumulative distri-
bution of Y given X is significantly different from the marginal
cumulative distribution function of Y.

Definition 7. Let X1, . . . , XN and Y be random variables.
The Coefficient of Intrinsic Dependence of Y given X =

(X1, . . . , XN), CID(Y |X) is defined by

CID(Y |X) =

∫ 1
0 EX[P(Ỹ ≤ u|X) − P(Ỹ ≤ u)]2du∫ 1

0 V[P(Ỹ ≤ u)]du

where Ỹ = FY (Y), the cumulative distribution function for Y.

5. Information Theoretic Measures of Dependency

Unlike the maximal correlation coefficient whose very defi-
nition requires variables to be numerically valued, information
theoretic measures are equally applicable to numeric and cat-
egorically valued variables. This is because the definitions do
not involve arithmetic operations on the values of the variables.

All the information theoretic measures involve measuring
uncertainty. The uncertainty that a probability distribution has
is the amount of uncertainty concerning the outcome of an
experiment, the possible results of which have the probabilities
p1, p2, . . . , pN .

Uncertainty is measured by the Shannon entropy of the dis-
tribution which is defined by:

Definition 8. The Shannon Entropy of a random variable
X taking on N possible distinct values with probabilities
p1, . . . , pN is defined by

H(X) = H(p1, . . . , pN) = −

N∑
n=1

pn log pn
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By convention all log functions appearing in this paper are
taken to the base 2.

Shannon’s noiseless source coding theorem states that if
there are N characters with probabilities p1, . . . , pN and a
source is transmitting a sequence of characters chosen indepen-
dently in accordance with probabilities p1, . . . , pN , then there
exists a code such that the average number of bits needed to
encode the characters has length L where H(p1, . . . , pN) ≤ L <
H(p1, . . . , pN) + 1.

There are various sets of conditions that lead to the Shannon
Entropy. One set is

1. H(p1, . . . , pN) is a symmetric function

2. H(p, 1 − p) is a continuous function of p

3. H(1/2, 1/2) = 1

4. If pN = q1 + q2 > 0 then

H(p1, . . . , pN−1, q1, q2) = H(p1, . . . , pN) + pN H
(

q1

pN
,

q2

pN

)
Properties of H include

• H(X) ≥ 0

• H(X) ≤ log N, where X can take N distinct values

• H( f (X)) ≤ H(X) for any function f

Although the Shannon Entropy is the most commonly used
one, (Rényi, 1961) developed a generalization, called α-
entropy.

Definition 9. Let α > 0 and α , 1, then the α-Entropy, Hα, is
defined by

Hα(p1, . . . , pN) =
1

1 − α
log

 N∑
n=1

pαn


The α-entropy satisfies the entropy postulates (1), (2) and (3).

Furthermore,

lim
α→1

Hα(p1, . . . , pN) = −

N∑
n=1

pn log pn

(Meza et al., 2017) used α-entropy in kernel-based dimension-
ality reduction. (Kumar and Hooda, 2008) discuss a variety of
generalized measures of entropy and dependence.

Let X take values from the set {α1, . . . , αI} and Y take values
from the set {β1, . . . , βJ}. Define pi j = P(X = αi,Y = β j). Then
H(X,Y) is given by

H(X,Y) = −

I∑
i=1

J∑
j=1

pi j log pi j

Some of the properties of H(X,Y) include

• H(X,Y) ≥ 0

• H(X,Y) = H(Y, X)

• max{H(X),H(Y)} ≤ H(X,Y) ≤ H(X) + H(Y)

• H(X,Y) = H(X) + H(Y) if X and Y are independent

• H(X,Y) = H(X) = H(Y) if Y = f (X) and f is a one-one
function

Darbellay and Vajda (2000) give analytic entropy expres-
sions for some common multivariate continuous distributions.
(Nadarajah and Zografos, 2005) give expressions for Rènyi and
Shannon entropies for a variety of bivariate distributions.

The mutual information, I(X; Y), between two discretely val-
ued random variables X and Y is the excess entropy of the
marginal distributions over the joint distribution. It is as mea-
sure of the degree to which the joint probability distribution dif-
fers from the distribution defined by the product of the marginal
probabilities. Let pi. =

∑J
j=1 pi j and p. j =

∑I
i=1 pi j

Definition 10. The Mutual Information between X and Y is
defined by

I(X; Y) =
∑

i

∑
j

pi j log
pi j

pi.p. j

= H(X) + H(Y) − H(X,Y)

In coding theory, if X is the variable for the symbol being
sent and Y is the variable for the symbol received, then I(X; Y)
is a measure of the information transmitted through the chan-
nel. For a noise-free channel, I(X; Y) = H(X) = H(Y). For a
channel where the symbol received is independent of the sym-
bol sent, I(X; Y) = 0.

The properties of mutual information include

• I(X; Y) ≥ 0

• I(X; Y) = 0 if and only if X and Y are independent

• I(X; Y) = I(Y; X)

• I( f (X); g(Y)) ≤ I(X,Y)

• I(X; X) = H(X)

• I(X; Y) = H(X) if and only if X is a function of Y

• I(X; Y) = H(Y) if and only if Y is a function of X

• I(X; f (X)) = H(X) for any one-one function f

• I(X; Y) ≤ min{H(X),H(Y)}

• I(X; Y) = − 1
2 log(1 − ρ2) if X and Y are bivariate normal

(Linfoot, 1957) defined an informational coefficient of corre-
lation.

Definition 11. Let X and Y be random variables with mutual
information I(X; Y). The Informational Coefficient of Corre-
lation is defined by

ρmutual(X,Y) =
√

1 − exp (−2I(X; Y))
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The informational coefficient of correlation satisfies all of
Rènyi’s conditions with the exception of (E). It follows from
this definition that if X and Y are random variables having a
joint normal distribution with correlation ρ. Then,

ρ(X,Y) = ρmutual(X,Y)

(Reza, 1961) (p.146) defined a mutual information measure
for a point observation (X = u,Y = v).

Definition 12. The Pointwise Mutual Information for the ob-
servation (X = u,Y = v) for random variables X and Y is de-
fined by

pmi(X = u; Y = v) = log
p(X = u,Y = v)

p(X = u)p(Y = v)

The expectation of the pointwise mutual information is the mu-
tual information.

EXY [pmi(X; Y)] = I(X; Y)

Note that pmi(X = u; Y = v) is positive when the joint proba-
bility is greater than what would be expected if the two variables
were independent and is negative when the joint probability is
less than what would be expected if the two variables were in-
dependent and is zero when X and Y are independent. (Church
and Hanks, 1990) were the first ones to use pointwise mutual in-
formation in the calculation of word associations in the compu-
tational linguistics area. When p(X = u; Y = v) = p(X = u) =

P(Y = V), then pmi(X = u; Y = v) = − log P(X = u; Y = v)
which can be very large and positive. This is not unusual to hap-
pen when the event (X = u) and the event (Y = v) are highly re-
lated and the marginals are small. (Thanopoulos et al., 2002) ar-
gued that the pmi measure needed to be normalized by subtract-
ing from pmi the self information of the event (X = u,Y = v)
which is − log p(X = u,Y = v). He called the normalized mea-
sure mutual dependence.

Definition 13. The Mutual Dependence of the event (X =

u,Y = V) is defined by

md(X = u; Y = v) = log
p2(X = u,Y = v)
p(X = u)P(Y = v)

(Bell, 1962) defined two normalized mutual information
measures

Definition 14. Bell’s Normalized Mutual Information mea-
sures are defined by

C′(X,Y) =
I(X; Y)

min{H(X),H(Y)}

C′′(X,Y) =
I(X; Y)

max{H(X),H(Y)}

They have the following properties:

• 0 ≤ C′′(X,Y) ≤ C′(X,Y) ≤ 1

• C′′(X,Y) = C′(X,Y) = 0 if and only if X and Y are
independent

• C′(X,Y) = C′(Y, X)

• C′′(X,Y) = C′′(Y, X)

• C′(X,Y) = 1 if and only if X = f (Y) for some function f

• C′′(X,Y) = 1 if and only if X = f (Y) for some one-one
function f

• C′′(X,Y) = 0 implies C′(X,Y) = 0

• C′(X,Y) = 0 implies ρmax(X,Y) = 0

He notes that no two of the three measures ρmax(X,Y), C′(X,Y),
and C′′(X,Y) are equivalent. Furthermore, for strictly positive
probability spaces and when H(X,Y) < ∞, C′ and C′′ satisfy
all seven of Rènyi’s properties.

Bell makes two modifications in Rènyi’s property (E).
(E′): δ(X,Y) = 1 if and only if there is strict dependence X =

g(Y) or Y = f (X)
(E′′): δ(X,Y) = 1 if and only if X and Y are functions of each
other
He also modifies (G).
(G′): δ(X,Y) is a strictly monotone function of |ρ(X,Y)|, if the
joint distribution of X and Y is normal
Now C′ satisfies (E′) and (G′); C′′ satisfies (E′′) and (G′). ρmax

does not satisfy (E′) or (E′′).
(Kvalseth, 1987) argues that Bell’s C′ is a good measure of

dependency.
There are some information theoretic forms that are metrics.

(Cover and Thomas, 1991)(p.46), (Meilă, 2007), (Meilă, 2003)
and (Meilă, 2005) all mention that

d1(X,Y) = 2H(X,Y) − H(X) − H(Y)
= H(X,Y) − I(X; Y)
= H(X) + H(Y) − 2I(X,Y)

is a metric. Notice that with this definition, if X and Y are inde-
pendent, then d1(X,Y) = H(X,Y) = H(X) + H(Y). d1(X,Y) = 0
if and only if Y = f (X) for some one-one function.

(Kraskov et al., 2005) proved that

d′1(X,Y) = 1 −
I(X,Y)
H(X,Y)

=
2H(X,Y) − H(X) − H(Y)

H(X,Y)

d2(X,Y) = 1 −
I(X,Y)

max{H(X),H(Y)}

are metric normalized to take values in the interval [0, 1].
(Vinh et al., 2010) proved that d3 is a metric.

d3(X,Y) = H(X,Y) − min{H(X),H(Y)}
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(Horibe, 1985) proved that

d4(X,Y) =
H(X,Y) −min{H(X),H(Y)}

max{H(X),H(Y)}

=

{ H(X,Y)−H(Y)
H(X) if H(X) > H(Y)

H(X,Y)−H(X)
H(Y) otherwise H(X) ≤ H(Y)

is a metric.
d′1(X,Y) = d2(X,Y) = d4(X,Y) = 1 if and only if X and Y are

independent and d′1(X,Y) = d2(X,Y) = d4(X,Y) = 0 if and only
if Y = f (X) for some one-one function.

The forms that are metrics bring the information theoretic
measures a little bit closer to measures used with variables that
are numerically valued. The metrics which are normalized so
that they take values in the interval [0, 1] are important because
the similarity s(X,Y) between variables X and Y can be defined
by

s(X,Y) = 1 − d(X,Y) (6)

where d(X,Y) is one of the normalized metrics. Because of the
triangular inequality satisfied by metrics, a similarity function
defined by (6) inherits an interesting property:

s(X,Z) ≥ s(X,Y) + s(Y,Z) − 1

(Watanabe, 1960) defined what he called the total correlation
coefficient for variables X1, . . . , XN . His paper provides theo-
rems by which the total correlation coefficient can be decom-
posed in terms of the partial correlations of various subsets of
{X1, . . . , XN}.

Definition 15. The Total Correlation among variables
X1, . . . , XN is defined by

CT (X1, . . . , XN) =

N∑
n=1

H(Xn) − H(X1, . . . , XN)

Let I = {1, . . . ,N} be the set of the indices for the random vari-
ables. Let variable Xn take on values in range set Ln, n ∈ I. Let
Q = {Q1,Q2} be a partition on I, and let Q1 = {i1, . . . , iK1 } and
Q2 = { j1, . . . , jK2 } and K1 + K2 = N. We denote the projection
operator projecting x = (x1, . . . , xN) to the components indexed
by J ⊂ I by πJ(x). Then we define3

p(πQ1 (x)) = p1(xi1 , . . . , xiK1
)

=
∑

x j1∈L j1 ,...,x jK2
∈L jK2

p(x1, . . . , xN)

p(πQ2 (x)) = p2(x j1 , . . . , x jK2
)

=
∑

xi1∈Li1 ,...,xiK1
∈LiK1

p(x1, . . . , xN)

3In the first summation, we have to sum over the variables in Q2 and in the
second summation, we have to sum over the variables in Q1

H(Q1) = −
∑

u1∈L1,...,uK∈LK1

p1(u1, . . . , uK1 ) log p1(u1, . . . , uK1 )

H(Q2) = −
∑

v1∈L1,...,vK∈LK2

p2(v1, . . . , vK2 ) log p2(v1, . . . , vK2 )

Suppose that the values of the variables indexed by Q2 have
been observed. Then the ignorance about the values of the
variables indexed by Q1 becomes

H(Q1|x j : j ∈ Q2) =

−
∑

xi∈Li:i∈Q1
p(xi : i ∈ Q1 | x j : j ∈ Q2) log p(xi : i ∈ Q1 | x j : j ∈ Q2)

Then its expected value is

E[H(Q1|x j : j ∈ Q2)] =
∑

x j∈L j: j∈π2

p2(x j : j ∈ Q2)H(Q1|x j : j ∈ Q2)

= −
∑

x

p(x) log
p(x)

p(πQ2 (x))

= H(I) − H(Q2)

Before any observations, the ignorance about the variables
indexed by Q1 is H(Q1). After the observation of the values of
variables indexed by Q2, the ignorance is H(I)−H(Q2). There-
fore the decrease in ignorance, which is the information about
the values of the variables indexed by Q1 given the observations
of the values of variables indexed by Q2, is

H(Q1) − (H(I) − H(Q2)) = H(Q1) + H(Q2) − H(I) (7)

Because of the symmetry of (7) the decrease in ignorance,
which is the information about the values of the variables in-
dexed by Q2 given the observations of the values of variables
indexed by Q1 is also H(Q1) + H(Q2) − H(I).

Watanabe notes that by virtue of Gibb’s theorem,

H(I) ≤ H(Q1) + H(Q2)

where equality holds if and only if Xi is independent of X j for
i ∈ Q1 and j ∈ Q2. Hence, H(Q1)+H(Q2)−H(I) ≥ 0. This leads
Watanabe to define a measure of strength of the information
correlation between the variables indexed by Q1 and Q2.

Definition 16. The Information Correlation between the
variables indexed by Q1 and Q2 is given by

C(I; Q1,Q2) = H(Q1) + H(Q2) − H(I)

5.1. Jensen-Shannon Divergence

(Lin, 1991) showed the way that the Jensen-Shannon Diver-
gence bounds error rate for a Bayes rule.

Definition 17. Let π1, π2 be prior probabilities
π1, π2 ≥ 0 with π1 +π2 = 1. The Jensen-Shannon Divergence
is defined by

JS π(p1, p2) = H(π1 p1 + π2 p2) − π1H(p1) − π2H(p2)
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Fig. 5: Shows an example of a partition of a two-dimensional space not ex-
pressable as a product of partitions on each of the dimensions. However, its
structure is a tree.

It is well known that the error rate for a Bayes rule having prior
class probabilities π1 and π2 and class conditional probabilities
p1 and p2 is given by

Pe(p1, p2) =
∑
x∈X

min{π1 p1(x), π2 p2(x)}

where X is the set of possible values a measurement tuple x can
take.

Lin proved these lower and upper bounds on the Bayes error
rate.

1
4

(H(π1, π2)− JS π(p1, p2))2 ≤ Pe(p1, p2) ≤
1
2

(H(π2, π2)− JS π(p1, p2))

5.2. Estimating Mutual Information For Continuous Variables

There is no problem estimating the mutual information for
two discretely valued variables, since everything is defined in
sums. But what if the two variables are continuously val-
ued in some interval? The natural way to do this is to parti-
tion their corresponding intervals, form the contingency table
corresponding to their product partition, and then approximate
the mutual information of the continuously valued variables by
the mutual information of the discretized variables forming the
contingency table. By a theorem of (Dobrushin, 1959), as the
partitions get finer and finer the mutual information of the re-
sulting contingency tables converge to the mutual information
of the continuous variables.

One common way is to use partitions formed by equal sized
intervals for each of the continuously valued variables. Another
common way is to use partitions formed by intervals having
equal probability. Both these ways have a problem with effi-
ciency, the first way more than the second. Different cells in the
product partition contribute to the estimate with a variable ef-
ficiency, just because some cells may have very low count and
other cells have a much higher count. (Darbellay and Vajda,
1999) formulate a way to fix this problem by using an adaptive
partitioning, not based on a product partition, but rather a tree
partition as shown in Figure (5).

The adaptive method is as follows:
Let LX be the range of continuous variable X and LY be the

range of continuous variable Y . On LX × LY construct a se-
quence of nested partitions π0, . . . , πn, . . .. For any cell A× B in

a partition, denote by nAB the number of observations that fall
into the cell.

• Base Case:

– π0 = LX × LY

– Define an indicator variable c(LX × LY ) = 1

• kth iteration:

– If for all A × B ∈ πk, c(A × B) = 0, then finish

– Else

∗ If A×B ∈ πk and nAB = 0, then put A×B in πk+1

∗ If A × B ∈ πk and c(A × B) = 0, then put A × B
in πk+1

∗ If A × B ∈ πk and c(A × B) = 1, then construct a
partition {A1, A2} of A and a partition {B1, B2} of
B and let ni j = n(Ai × B j), i, j ∈ {0, 1}

∗ Put partitions Ai × B j in πk+1, i, j ∈ {0, 1}
∗ If the test for independence using

(n11, n12, n21, n22) is not rejected then set
c(A, B) = 0, and put A × B ∈ πk+1 else put
Ai × B j ∈ πk+1 and c(Ai, B j) = 1, i, j ∈ {0, 1}

(Jain and Murthy, 2016) describe a different and fast method
to estimate the mutual information. They generate a product
partition in a two step procedure.

5.2.1. Testing Independence
Let nrc be the number of observations in the (r, c) entry of an

R by C contingency table, where X is the random variable gov-
erning the row entries and Y is the random variable governing
the column entries. To test the hypothesis that X and Y are in-
dependent, the χ2 test of (4) or the mutual information test (8)
can be used.

2I(X; Y) = 2
R∑

r−1

C∑
c=1

nrc log
n..nrc

nr.n.c
(8)

Both the χ2 test statistic of (4) and the mutual information test
statistic of (8) have a χ2 distribution with (R−1)(C−1) degrees
of freedom. In the case that R = 2 and C = 2, the test statistic is
compared to χ2

1α where 1 is the number of degrees of freedom
and α is the significance level of the test. α is the probability of
the tail of the distribution for values larger than χ2

1α.

6. Maximal Information Coefficient

(Reshef et al., 2011) state that the measure of dependence
should have generality and equitability. Generality means that
the measure of dependence can detect all kinds of functional
relationships and not be sensitive only to linear relationships
like the correlation coefficient. Equitability means that with a
fixed sample size, the same amount of noise perturbing pairs of
variables in different kinds of relationships should reduce the
strength of the dependency in similar ways. For this purpose,
(Reshef et al., 2011) define for continuous variables a maximal
information coefficient.
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The concept behind the maximal information coefficient of
variables X and Y is to find a partition on the range of X and
a partition on the range of Y such that the mutual information
of the resulting product partition is the highest over all product
partitions consistent with the sample size, the number of obser-
vations.

Let πx be a partition on the range LX of X and πy be a partition
on the range LY of Y . Denote the mutual information of X and
Y relative to their partitions πx and πy by I(X,Y; πx, πy). For
A × B ∈ πx × πy, let nAB denote the number of observations that
fall into rectangular cell A × B. Then,

I(X,Y; πx, πy) =
∑
A∈πx

∑
B∈πy

nAB log2
nAB

nA.n.B

Definition 18. The Maximal Information Coefficient be-
tween variables X and Y where a sample of N observations
are made of pairs of values of X and Y is defined by

MIC(X,Y; N) = sup
πx,πy

I(X,Y; πx, πy)
min{|πx|, |πy|}

where the sup is taken over all pairs of partitions πx and πy

satisfying |πx| × |πy| < N .6 and |πx| designated the number of
cells in partition πx.

The algorithm used by (Reshef et al., 2011) fixed partition πy

and used a dynamic programming algorithm to find the optimal
πx. (Zhang et al., 2014) improved on this algorithm using a sim-
ulated annealing genetic algorithm. (Kinney and Atwal, 2014)
challenge the properties resulting from the Reshef definition.

Finally, (Nguyen et al., 2014) defined a maximal information
correlation measure for the multivariate case.

Definition 19. Let X1, . . . , XN be random variables on range
sets L1, . . . , LN , respectively. For any n ∈ {1, . . . ,N} let πn be a
partition on range set Ln: πn = {In1, . . . , Inmn }. Define the func-
tion qn : Ln → {1, . . . ,mn} by qn(x) = k, when x ∈ Ink. Define
the quantized (discretized) variables Yn = qn(Xn). Let K be a
given upper bound on |πi| × |π j|. For example K = M.6, where
M is the number of observations. The Maximal Information
Correlation Coefficient ρmax in f is defined by

ρmax in f (X1, . . . , XN) = max
{π1 ,...,πN }
|πi ||π j |<K

∑N
n=1 H(Xn; πn) − H(X1, . . . , XN ; π1, . . . , πN)∑N

n=1 log |πn| −maxk log |πk |

(Ge et al., 2016) used the maximal information correlation
measure to remove features of little association with pheno-
types in a bioinformatics application.

6.1. Kullback-Liebler Divergence
For a pair of probability distributions, (Kullback, 1959) de-

fined what has been called the Kullback I and J divergence.
I is more commonly known as the Kullback-Liebler diver-
gence, (Kullback and Liebler, 1951), although in their paper
they called it the directed divergence.

Definition 20. The Kullback I Divergence and J Divergence
are defined by

I(p, q) =
∑
x∈X

p(x) log
p(x)
q(x)

J(p, q) = I(p, q) + I(q, p)

I(p, q) is a measure of the information lost when probability
distribution q is used to approximate p. It is also the amount of
additional bits needed to encode independent samples coming
from p using a code optimized for independent samples com-
ing from q instead of a code optimized for independent sample
coming from p.

There are many ways in which the Kullback divergence is
important. One is its relationship to the L1 difference between
probability distributions.

Definition 21. The L1 Difference Between Probability Dis-
tributions p and q defined on the same domain X is given by

V(p, q) =
∑
x∈X

|p(x) − q(x)|

V(p,q) is also called the Variational Distance between two
probability distributions.

It follows that 0 ≤ V(p, q) ≤ 2.
(Lin, 1991) proved lower bounds for I using the L1 difference

between probability distributions.

I(p, q) ≥ max{ L1(V(p, q)), L2(V(p, q)) }

L1(v) = log
2 + v
2 − v

−
2v

2 + v
0 ≤ v ≤ 2

L2(v) =
v2

2
+

v4

36
+

v6

288
0 ≤ v ≤ 2

The bounds imply that as the I divergence goes to zero, the L1
difference between two probability distributions goes to zero.

And (Lin, 1991) proved

K(p1, p2) =
∑
x∈X

log
p1(x)

1/2(p1(x) + p2(x))

= I(p1, 1/2p1 + 1/2p2)

≤
1
2

I(p1, p2)

L(p1, p2) = K(p1, p2) + K(p2, p1)

≤
1
2

J(p1, p2)

K(p1, p2) ≥ max
{
L1

(
V(p1, p2)

2

)
, L2

(
V(p1, p2)

2

) }
L(p1, p2) ≤ V(p1, p2)

These bounds imply that as the L1 difference between two
probability distributions goes to zero, their I divergence goes to
zero.

(Pinsker, 2005) proved that 1
2 V(p1, p2)2 ≤ I(p1, p2). A re-

finement by (Fedotov et al., 2003) is the bound inequality

I(p1, p2) ≤
1
2

v2 +
1

36
v4 +

1
270

v6 +
221

340200
v8

where v = V(p1, p2). (Zhang, 2007) proved a new upper bound.
Let λ = V(p1, p2) and H(λ) = −λ log λ− (1−λ) log(1−λ), then

I(p1, p2) ≤ 2λ log(MN − 1) + H(λ)

where M is the number of of values the random variable associ-
ated with p1 can take and N is the number of values the random
variable associated with p2 can take.
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N3

N3

N4

N4

N1

N1

N2

N2

r − 1, c − 1r − 1, cr − 1, c + 1

r, c − 1r, cr, c + 1

r + 1, c − 1r + 1, cr + 1, c + 1

N1 = {((r, c), (u, v)) ∈ (R ×C)2 | (u, v) = (r − 1, c + 1) or (u, v) = (r + 1, c − 1)}
N2 = {((r, c), (u, v)) ∈ (R ×C)2 | (u, v) = (r, c + 1) or (u, v) = (r, c − 1)}
N3 = {((r, c), (u, v)) ∈ (R ×C)2 | (u, v) = (r − 1, c − 1) or (u, v) = (r + 1, c + 1)}
N4 = {((r, c), (u, v)) ∈ (R ×C)2 | (u, v) = (r − 1, c) or (u, v) = (r + 1, c)}

Fig. 6: The graph is the conditional independence graph of the neighborhood.
Also shown is the notation for the local neighborhoods. N1 is the lower right
to upper left, N2 is the left to right, N3 is the lower left to upper right and
N4 is the vertical neighborhood. Next to an edge connecting two nodes is the
neighborhood to which the edge belongs.

7. Texture

In this section we give a texture example visually illustrating
the difference between dependency that depends on the numeri-
cal values of variables and dependency that does not depend on
the numerical values of variables.

Any patch of an image that shows a texture is a region having
a stochastic dependency among the pixel values of the patch.
The gray level cooccurrence matrices can be used to charac-
terize the dependency and various functionals of the cooccur-
rence matrix can be used as features in distinguishing one tex-
ture from another

(Haralick et al., 1973) based their textural features on
the probabilities determined from the angular neighborhoods
N1,N2,N3,N4 of Figure (6). For each k=1,2,3,4 they defined
Pk by

Pk(i, j) =
#{((r, c), (u, v)) ∈ Nk | I(r, c) = i and I(u, v) = j}

#Nk

where I(r, c) is the pixel gray level at pixel location (r, c). Be-
cause of the symmetry, Pk(i, j) = Pk( j, i). Let I = J be the
number of possible gray levels. First define

P{k,row}(i) =

J∑
j=1

Pk(i, j)

P{k,col}( j) =

I∑
i=1

Pk(i, j)

µk =

I∑
i=1

iP{k,row}(i) =

J∑
j=1

jP{k,col}( j)

The features they used included:

σ2
k =

I∑
i=1

(i − µk)2P{k,row}(i) =

J∑
j=1

( j − µk)2P{k,col}( j)

ρk =

I∑
i=1

J∑
j=1

(i − µk)( j − µk)
σ2

k

Pk(i, j)

ρ =

4∑
k=1

ρkθk

where
∑4

k=1 θk = 1 and 0 ≤ θk ≤ 1.
Their cooccurrence features included entropy features:

E1k =

I∑
i=1

J∑
j=1

P2
k(i, j)

E2k = −

I∑
i=1

J∑
j=1

Pk(i, j) log Pk(i, j)

E1 =

K∑
k=1

E1kθk

E2 =

K∑
k=1

E2kθk

Each E1k is an un-normalized form of the Rènyi generalized
entropy with α = 2. Each E2k is the Shannon entropy of proba-
bility distribution Pk.

(Haralick et al., 1973) included contrast and inverse contrast
features.

ck =

I∑
i=1

J∑
j=1

|i − j|Pk(i, j)

dk =

I∑
i=1

J∑
j=1

1
1 + α|i − j|

Pk(i, j)

Finally, they included the maximal correlation coefficient. Let
the normalized joint probability matrix Qk = (qk(i, j)) where

qk(i, j) =
Pk(i, j)√

P{k,row}(i)P{k,col}( j)

Let the second singular value of Qk be λk,2. The maximal cor-
relation coefficient is given by ρ{max,k} = λk,2. 4

(Haralick, 1975) used the cooccurrence probabilities to form
a textural transform image. Let I be the input image, Pk, k =

4Note that in (Haralick et al., 1973), the maximal correlation coefficient was
computed in a similar manner to (Witsenhausen, 1975) where Qk = (qk(i, j))
and

qk(i, j) =
∑

m

Pk(i,m)Pk( j,m)
P{k,row}(i)P{k,col}(m)

and the maximal correlation coefficient is given by
√
λ2, where λ2 is the second

eigenvalue of the matrix Qk .
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N3

N3

N4

N4

N1

N1

N2

N2

r − 1, c − 1r − 1, cr − 1, c + 1

r, c − 1r, cr, c + 1

r + 1, c − 1r + 1, cr + 1, c + 1

P(I(u, v) : (u, v) ∈ N(r, c)) = P(I(r, c)) ×∏
(u,v)∈N1(r,c) P1(I(u, v) | I(r, c)) ×∏
(u,v)∈N2(r,c) P2(I(u, v) | I(r, c)) ×∏
(u,v)∈N3(r,c) P3(I(u, v) | I(r, c)) ×∏
(u,v)∈N4(r,c) P4(I(u, v) | I(r, c))

Fig. 7: Using the conditional independence graph, this figure shows the calcu-
lation of the joint neighborhhood probability for the 3 by 3 neighborhood tree
dependence.

1, 2, 3, 4 be the cooccurrence probabilities, Nk, k = 1, 2, 3, 4
be the local neighborhoods associated with the cooccurrence
probabilities as shown in Figure (6). Define J , the textural
transform image, by

J(r, c) =

4∑
k=1

∑
(u,v)∈Nk(r,c)

Pk(I(r, c),I(u, v))θk

where the 0 ≤ θk ≤ 1 and
∑4

k=1 θk = 1.
Motivated by (Haralick, 1975) we describe what can be

called the joint probability image. In the joint probability im-
age, each pixel takes the value which is the joint probability of
the array of pixel gray levels in its neighborhood under a con-
ditional independence assumption specified by the tree whose
root is the center pixel. Examining the conditional indepen-
dence graph, (Whittaker, 1990), of Figure (6) it can be seen that
from the gray level of the center pixel, there are eight indepen-
dent branches: one to the left, one to the right, one above and
one below, and likewise for the four diagonal directions. Under
the conditional independence graph shown in Figure (6), the
joint probability for the gray levels of the of each of the neigh-
bors given the gray value of the center pixel, can be written
as the product of the conditional probabilities of each neigh-
bors gray level given the gray level of the center pixel times the
probability of the gray value of the center pixel. This is shown
in Figure (7).

The idea can be extended to any kind of neighborhood, reg-
ular or non-regular. Define the 5 by 5 distance 2 neighborhood
N2 by

N2(r, c) = {(u, v) | (u, v) = (r, c) + (i, j), i, j ∈ {−2,−1, 0, 1, 2}}

For the 5×5 neighborhood, the conditional independence graph
is shown in Figure (8). It can be seen that there are eight in-
dependent branches from the center pixel as is in Figure (6)

N3

N3

N3

N3

N4

N4

N4N4N4

N4N4N4

N1

N1

N1

N1

N2

N2

N2

N2

N2

N2

N2

N2

r − 2, c + 2r − 2, c + 1r − 2, cr − 2, c − 1r − 2, c − 2

r − 1, c + 1r − 1, cr − 1, c − 1

r, c + 1r, cr, c − 1

r + 1, c + 1r + 1, cr + 1, c − 1

r + 2, c + 2r + 2, c + 1r + 2, cr + 2, c − 1r + 2, c − 2

r − 1, c + 2

r, c + 2

r + 1, c + 2

r − 1, c − 2

r, c − 2

r + 1, c − 2

Fig. 8: Shows the joint probability tree dependence for the 5 by 5 neighborhood.

to the 8 nearest neighbors of the center pixel. Then just like
what happened with the center pixel and its 8 neighbors, in the
5×5 neighborhood, this happens with each of the center pixel’s
neighbors to their neighbors who are max distance 2 to the cen-
ter pixel. Thus the conditional independence graph of Figure
(8) leads to equation (9) for the joint probability for the pixel
values in the 5 × 5 neighborhood.

(Chow and Liu, 1968) gave an algorithm for determining the
dependence tree from conditional probabilities obtained from
data. Here the tree is fixed by design.

P(I(u, v)(u, v) ∈ N2(r, c)) = P(I(r, c)) ×
∏

(u,v)∈N1(r,c)

P1(I(u, v) | I(r, c))× (9)

P1(I(r − 2, c − 2) | I(r − 1, c − 1) × P1(I(r + 2, c + 2) | I(r + 1, c + 1) ×∏
(u,v)∈N2(r,c)

P2(I(u, v) | I(r, c)) × P2(I(r, c − 2) | I(r, c − 1)) ×

P2(I(r, c + 2) | I(r, c + 1)) × P2(I(r − 1, c − 2) | I(r − 1, c − 1)) ×

P2(I(r + 1, c − 2) | I(r + 1, c − 1)) × P2(I(r − 1, c + 2) | I(r − 1, c + 1)) ×

P2(I(r + 1, c + 2) | I(r + 1, c + 1)) ×
∏

(u,v)∈N3(r,c)

P3(I(u, v) | I(r, c)) ×

P3(I(r − 2, c + 2) | I(r − 1, c + 1)) × P3(I(r + 2, c − 2) | I(r + 1, c − 1)) ×∏
(u,v)∈N4(r,c)

P4(I(u, v) | I(r, c)) × P4(I(r + 2, c) | I(r + 1, c)) ×

P4(I(r + 2, c − 1) | I(r + 1, c − 1)) × P4(I(r + 2, c + 1) | I(r + 1, c + 1)) ×

P4(I(r − 2, c) | I(r − 1, c)) × P4(I(r − 2, c − 1) | I(r − 1, c − 1)) ×

P4(I(r − 2, c + 1) | I(r − 1, c + 1))

Figure (9a) shows a texture image and in Figure (9b) the
joint probability transform image. The calculation was done
as a sum of logarithms of probabilities rather than as a product
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(a) Original (b) Joint Probability Transform

Fig. 9: Shows a texture image and the texture joint probability image. White
means the gray level configuration in a 5x5 window in the original image has a
high joint probability.

of probabilities and the resulting image was histogram equal-
ized.5 Everyone who has processed images will recognize the
joint probability transform image as looking like some kind of
edge operator operated on the Lena image as shown in Fig-
ure (10). The original image shown in Figure (9a) is actually
a random gray level permutation of the Lena image of Figure
(10a). Thus the spatial dependence of the gray level permuted
image and the original image determined by the cooccurrence
probabilities are identical. There was no edge operator based
on numerical differences of gray values. The darker local ar-
eas correspond to areas having lower joint probability in their
5× 5 neighborhoods. This is an example showing that the 5× 5
neighborhood joint probability in a gray level randomly per-
muted image as shown in Figure (9a) carries the structure of
the cooccurrence probabilities but does not carry the structure
of contrast changes that would be indicated by statistically sig-
nificant changes in gray levels across a boundary, a structure
that our visual system would interpret as boundaries. Never-
theless, since the gray level arrays of local neighborhoods that
have edges also have low neighborhood joint probability, the
neighborhood joint probability can detect edges.

Since Figure (10) illustrates the dependency only coming
from the cooccurrence probabilities and none coming from the
contrast, the gray level differences across a boundary, it is prob-
ably a surprise that so much of boundary/contrast information
is contained in cooccurrence probabilities. This suggests that
edge operators that are based on the computation of gray level
differences to estimate derivatives of the underlying sampled
gray level surface should be complemented with some kind
of local joint probability estimate determined by cooccurrence
probabilities.

5Thanks to Vishal Bharti who prepared the images and their transforms.

(a) Lena (b) Joint Probability Transform

Fig. 10: Lena and its joint probability transform.

(a) Original (b) Joint Probability Transform

Fig. 11: Shows one of the more uniform texture Brodatz images.

(a) Texture Mosaic (b) Joint Probability Transform

Fig. 12: Shows one of the multiple texture mosaic Brodatz images.

When the scale of the texture and size of window are com-
parable, the joint probability is about the same for each 5 × 5
window. This is shown in Figure (11). Figure (12) shows an
example of a Brodatz texture mosaic. Within each uniform tex-
ture area, the joint probability in a 5 × 5 window is nearly the
same when the texture scale and the window size are similar.

Notice that the joint probability images of Figures (12) and
(13) would be suitable for an image segmentation operator,
whereas the original texture mosaic would have to be processed
by a segmentation operator that was designed for textures.

Figure (13) Shows another example of a texture mosaic im-
age whose gray levels have been randomly permuted and the
joint probability texture transform image.
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(a) Gray Level Permuted (b) Joint Probability Transform

Fig. 13: Shows another one of the multiple texture mosaic Brodatz images.
The original image(a) is operated on with a random gray level permutation.
The joint probability transform image shows the structure of the textures that
were put together to make up the mosaic.

8. Manifold Methods

If there is an ideal dependency among variables, the values
of the variables are constrained. This constraint can be uti-
lized in both in the clustering context such as (Haralick and
Harpaz, 2005), (Haralick and Harpaz, 2007), (Harpaz and Har-
alick, 2007), and (Haralick et al., 2016) and in the supervised
learning context.

Suppose there are N features. If for any class c, there are
subsets Ikc, k = 1, . . . ,Kc of indexes of features that have a
dependencies of the form fkc(πIkc (x)) = 0, k = 1, . . . ,Kc. we
can think of each of these dependencies as defining a manifold

Mkc = {x | fkc(πIkc (x)) = 0}

Since there may be multiple such dependencies for different
subsets of variables, the entire constraint set is given by

Mc =

Kc⋂
k=1

Mkc

Here, Mc is the manifold containing all measurement space tu-
ples (x1, . . . , xN) labeled as class c satisfying all the constraints.

This way of representing dependencies is similar to what is
known as universal approximation functions, (Cybenko, 1989),
(Hornik et al., 1989) and (Baron, 1993). The theorem of uni-
versal approximation states: Let f be some continuous function
defined on the N-dimensional unit hypercube. Let ϕ : R → R
be a nonconstant, bounded, and monotonically-increasing con-
tinuous function. For every ε > 0, there exists an integer
J = J(ε), real constants v j, b j ∈ R and real vectors w j ∈ RN ,
satisfying ∣∣∣∣∣∣∣∣

J∑
j=1

v jϕ
(
w′jx + b j

)
− f (x)

∣∣∣∣∣∣∣∣ ≤ ε
Here the form w′jx + b j can be understood as producing the

projection of x onto a one-dimensional linear manifold, repre-
senting the projection relative to the coordinate system of the
linear manifold. The function ϕ operating on that projection is
a simple bounded non-linear monotonically increasing opera-
tor. The sum combines the resulting values.

The universal approximation theorem is what gives multiple
layer neural networks the potential for being universal approxi-
mators.

Analogous to the universal approximation theorem, we con-
jecture the following kind of theorem that would make clas-
sifiers based on sub-manifolds the way to think about classi-
fiers. Let C be the set of classes and Q = [0, 1]N be the N
dimensional unit hypercube. Let f : Q → C be the desired
classification function. If f is sufficiently simple, then for ev-
ery ε > 0, there exists a J = J(ε) and very simple functions
h jc : [0, 1]Kc → R, j = 1, . . . , J, c ∈ C and Kc � N, such that

P
(
{x ∈ Q | min

j∈J
h jc(π jc(x)) ≥ min

j∈J
h jd(π jd(x))∀d ∈ C}∆ f (x)

)
≤ ε

where each π jc(x) is an orthogonal projection operator onto
some small subset of the components of x, ∆ means the sym-
metric set difference and for any S ⊂ Q, P(S ) is the probability
that an observation lies in the set S . Alternative versions replace
the min with

∑
or max

P

{x ∈ Q |
∑
j∈J

h jc(π jc(x)) ≥
∑
j∈J

h jd(π jd(x))∀d ∈ C}∆ f (x)

 ≤ ε
or

P
(
{x ∈ Q | max

j∈J
h jc(π jc(x)) ≥ max

j∈J
h jd(π jd(x))∀d ∈ C}∆ f (x)

)
≤ ε

If the conjecture is true, it hints that simple classification func-
tions imply that there are dependencies among the subspaces of
the features and the classes.

There are many papers on manifold learning and manifold
learning with respect to applications in computer vision and sig-
nal processing. We just reference a few of them as we are not
making a review of the area. See for example (Kim et al., 2015),
(Liu et al., 2004), (Turaga et al., 2011), (Srivastava and Klassen,
2004) and (Lui, 2012). Brahma et al. (2016) reinforce the idea
that the deep learning with feedfoward neural networks can be
understood through the concept of manifolds and the way that
successive layers of the networks act is to flatten the manifolds.

8.1. Subspace Classifiers and Subspace Ensemble Classifiers
A classifier characterizes the dependency between the mea-

surement tuple and the class. In effect the classifier assigns a
measurement tuple to the class having the largest positive de-
pendency to it.

A subspace classifier is one which, for each class, projects the
measurement tuple x to one or more subspaces, each of which
produces a value and which for each class combines the results
and assigns x to that class having the highest combined result.
When the subspaces are chosen in some random way, the clas-
sifier is called an ensemble classifier. The main issues for the
ensemble classifier are (1) how to generate multiple nearly in-
dependent classifiers and (2) how to combine the outputs of the
classifier to make a class assignment.

The reason for the nearly independent requirement goes
back to the eighteenth century Condorcet’s jury theorem which
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states, relative to our classifier context, that if there are L inde-
pendent classifiers each with probability p > .5 of being cor-
rect, then the probability q of the majority of the classifiers be-
ing correct must satisfy q > p. That is, more classifiers will
lead to higher classification accuracy. And in the limit as the
number of classifiers grow, q approaches 1.6

There are many papers on ensemble classifiers and we only
give a few references since it is not our purpose here to make
a comprehensive review. (Haralick, 1976) discussed how to
combine results using class conditional probabilities of multiple
shallow probability-based classifiers. (Kittler et al., 1998), dis-
cussed a variety of general methods for combining classifiers.
(Breiman, 1996) introduced the bagging methods. (Freund and
Shapire, 1997) introduced the boosting methods. (Kittler and
Roli, 2000) organized one the early workshops that encom-
passed ensemble classifiers and other ways in which multiple
classifiers can be utilized to give higher accuracy than any of
the highly trained single classifiers. Reviews of ensemble clas-
sifiers can be found in papers in (Kittler and Roli, 2000),(Di-
etterich, 2000), (Valentini and Masulli, 2002), (Rokach, 2010)
and (Džeroski et al., 2000). (Yu et al., 2016) discusses a method
for ensemble learning that simultaneously uses the data sam-
pling space and the measurement or feature space.

Here we establish the notation we use to describe any sub-
space ensemble classifier. Let there be N components to the
measurement tuple and let I = {1, . . . ,N} be the index set for
these N components. Let there be M randomly selected sub-
spaces and K classes. Let us denote by Tmk the mth shallow
classifier for class k. Let Qm ⊂ I denote the indexes specifying
the randomly selected subspace for the Tmk shallow classifier.
We denote the projection operator to this mth selected subspace
by πQm Then Tmk(πQm (x)) represents the strength of the depen-
dency of the measurement tuple x with respect to the mth sub-
space to class k as specified by the shallow classifier Tmk. The
measurement tuple x is then assigned to class k where

k = argmax
i

M∑
m=1

Tmi(πQm (x))

An alternative way of combining is given by

k = argmax
i

M
min
M=1

Tmi(πQm (x))

We begin with the N-tuple classifier, which was developed
for recognizing hand printed block characters and typewritten
characters by (Bledsoe and Browning, 1959). Then we discuss
the subspace classifier due to (Watanabe, 1969), who developed
a methodology for selecting different subspaces for different
classes.

(Ho, 1995) and (Ho, 1998) was the first one to discuss the
random forest method. Here the forest consists of many shal-
low decision trees, each one using a random subspace sampling,
whose outputs are combined. (Dietterich, 1998) compared de-
cision tree methods like bagging, boosting, and random sub-
space sampling. (Breiman, 2001) showed that the generaliza-

6See https://en.wikipedia.org/wiki/Condorcet’s jury theorem

Fig. 14: Shows an example window in which the character is located. The
pixels shown in red are the pixels that are selected by one of the multiple tables
maintained by the N-tuple method for the classification of the printed character.

tion error converges asymptotically to a limit as the number of
trees in the forest becomes large.

On a completely different line of thinking we have the area
of Bayesian Networks, developed by (Pearl, 1988), and graph-
ical models, developed by (Lauritzen, 1996). Neither of these
is considered as a subspace classifier, but in fact each is. The
method of combining is the multiplication of class conditional
probabilities and all the components of the measurement tuple
involved in any one conditional probability is a projection of
the full measurement tuple to a subspace determined by the se-
lected components. It is this correspondence that will allow us
to suggest an alternative way to work with the N-tuple classifier.

8.2. The N-tuple Method

The N-tuple method was one of the early successes in printed
character recognition over a half century ago. The method in-
cluded segmenting each character into a fixed window of M×N
pixels. Each pixel is thresholded so that its value is just 0 or 1.
The technique was designed for specialized fast table lookup
hardware and there were a variety of different character recog-
nition hardware implementations that incorporated the N-tuple
method such as the Wisard hardware, (Aleksander and Morton,
1995). Through the 1990’s, many of the IBM products that had
classifiers used N-tuple classifiers.

Since the Bledsoe and Browning paper, there have been many
papers describing specialized hardware, experimental results,
and variations of the original N-tuple classifier. (Aleksander
and T.J.Stonham, 1979) give a general review. (Allinson and
Kolcz, 1997) discuss how it can be used for estimating a gener-
alized regression function. The technique has been extended to
a scanning mode by (Lucas and Amiri, 1995). (Rohwer, 1995)
gives a Bayesian treatment of the N-tuple method. (Rohwer and
Morciniec, 1998) and (Jorgensen and Linneberg, 1999) give a
theoretical analysis. There are reviews such as (Ludermir et al.,
1999). And of course there are papers describing experimental
results such as Morciniec and Rohwer (1995) and (Ghazanfar
and Ghani-Haider, 2016), just to cite a few.

In the original method, a small number of pixel positions are
randomly selected multiple times. Since the sequence of pix-
els values can be considered a tuple, each random selection of
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pixels corresponds to a random sampling of a subspace.
Because of the thresholding, each of these positions has a bi-

nary 0 or a binary 1 value. The binary values of the selected po-
sitions are concatenated to form a binary number. This number
is used to form an address for one of the many tables in mem-
ory. There is a set of tables for each character class and there
are multiple sets of such randomly selected pixel positions for
each character class.

Let there be M pattern sets of randomly selected pixel posi-
tions and K character classes. Let us denote by Tmk the lookup
table for pattern set m and class k. Because there are M pattern
sets of randomly selected pixel positions, a printed character
produces M binary addresses b1, . . . , bM . Tmk(bm) holds a bi-
nary 1 if some character in the training set of class ck has the
binary number bm for the mth pattern set The table lookup cal-
culation is one of the following.

fk =
M

min
m=1

Tmk(bm) (10)

fk =

M∑
m=1

Tmk(bm) (11)

The N-tuple method assigns the character to unique class ck,
if there is one, for which fk > 0 is highest. Otherwise reserve
decision. (Aleksander and T.J.Stonham, 1979)

In the original N-tuple classifier, the subspaces are chosen at
random and the value placed in the table Tmk(x) is related to the
class k conditional probability of πQm (x). An improvement can
be made by initializing each of the Qm at random and then it-
eratively altering one of them at a time by removing one index
and adding in another, keeping the alteration if the probability
of correct assignment improves. Improvement can also be made
by choosing a table at random and iteratively changing the value
of one entry in the table so that the probability of correct assign-
ment improves. The two searches can be done alternately. First
select a Qm and make a change to increase probability of cor-
rect assignment and then select an entry in a table and make a
change to increase probability of correct assignment.

In an implementation variation, the contents of Tmk(bm) is the
training set estimated class conditional probability P(bm | ck).
Then taking the minimum for each k amounts to the computa-
tion

M
min
m=1

P(bm | ck) (12)

It is easy to change the maximum likelihood form of equation
(12) to a Bayesian form by incorporating the class priors. Just
use

P(ck)
M

min
m=1

P(bm | ck)

In effect, the class prior probability weights the combined out-
put for the classifier for ck.

To explain what is the meaning of this minimum, we need
some notation. Let x be the observed measurement tuple to
be assigned a class. Let I = {1, 2, . . . ,N} be an index set for
the components of the measurement tuple x. Then our ob-
served measurement tuple can be denoted by the pair (I, x). Let

Q1, . . . ,QM be the M pattern sets. Each Qm ⊂ I. They are de-
signed so that Q1, . . . ,QM is a cover for I. bm(I, x) is essentially
the linear address for the multidimensional array storing the
probabilities of the projection πQm (I, x). This is the projection
of x onto its components indexed by Qm. Thus P(bm(I, x) | ck) =

P(πQm (I, x) | ck). Since ∪M
m=1Qm = I, the event that (I, x) arises

from class ck is the same event as ∩M
m=1πQm (I, x) arises from

class ck. But for any events A and B, P(A ∩ B) ≤ P(A) and
P(A ∩ B) ≤ P(B) so that P(A ∩ B) ≤ min{P(A), P(B)}. In gen-
eral, P(∩M

m=1Am) ≤ minM
m=1 P(Am). Therefore,

P((I, x) | ck) = P(∩M
m−1πQm (I, x) | ck) ≤

M
min
m=1

P(πQm (I, x) | ck)

Since minM
m=1 P(bm(x) | ck) = minM

m=1P(πQm (I, x) | ck), assign-
ing x to the class ck where

M
min
m=1

P(bm(x) | ck) ≥
M

min
m=1

P(bm(x) | c j)

means assigning x to the class ck having the largest upper bound
on the class conditional probabilities of the subspaces.

Let us describe another variation of the N-tuple method. As
before, there are M pattern sets of randomly selected pixel po-
sitions and K character classes. A printed character x produces
M binary addresses b1(x), . . . , bM(x). We designate by Tm the
lookup table for pattern set m. Tm(bm) holds the set of classes
associated with the binary address bm for the mth pattern set. A
class c ∈ Tm(bm) if P(c | bm) > θc Define F = ∩M

m=1Tm(bm). The
character is assigned to unique class ck, if there is one, where
ck ∈ F and |F| = 1. Otherwise reserve decision.

To explain what this variation of the N-tuple method does,
we make a shift of notation to be able to discuss relations. Each
of the selected pixel positions of Figure (14) is considered as
a variable. Let X1, . . . , XN be the N variables. Let Ln be the
possible values variable Xn can take. Let R be the relation con-
taining all the tuples in the training set for one class. Since we
assume that N is large, we expect that each training observation
is unique. There are no duplicates. Thus,

R ⊆
N�

n=1

Ln

Since we need to discuss various kinds of projections of a
relation, we need to keep track of the what variables are asso-
ciated with some N-tuple that has a selection of components of
the measurement tuples of the training set. We will do this by
an index set.

Definition 22. If I is an index set and R ⊆
�

i∈I Li, then we say
(I,R) is an Indexed N-ary Relation on the range sets indexed
by I.

Our explanation involves the operation of relation join. This is
the equijoin or natural join in the database world.

Definition 23. Let I, J,K be index sets with K = I ∪ J. Let
R ⊂
�

i∈I Li and
�

j∈J L j. Then the Relation Join of (I,R) with
(J, S ) is denoted by (I,R) ⊗ (J, S ) = (K,T ) where



21

T = {t ∈
�
k∈K

Lk | πI(K, t) ∈ (I,R) and πJ(K, t) ∈ (J, S )}

and πJ(K, t) designates the projection of the tuple (K, t) onto
those variables or components specified by the index set J.
Likewise for πI(K, t).

Now we can re-express what this variation of the N-tuple
method does. Let Λc be the set of measurement tuples that are
assigned to a class c. Λc is the subset of measurement tuples in
the relation join of the tables associated with class c.

Λc = {([N], x) | πJm
([N], x) ∈ (Jm,Tmc),m = 1, . . . ,M}

= ⊗M
m=1(Jm,Tmc)

The Acceptance Region Ac for a class c is the set of all mea-
surement N-tuples that will be assigned to the class.

Ac = ⊗M
m=1(Jm,Tmc) −

⋃
{d∈C−{c}}

⊗M
m=1(Jm,Tmd)

The Reserve Decision Region is the set consisting of mea-
surement N-tuples that do not belong to any acceptance region.

R =

N�
n=1

Ln −
⋃
c∈C

Ac

(Tattersall et al., 1991) suggest that the N-tuple method,
which they call a single layer lookup perceptron, is in some
sense an interpolation system, and thus an approximator, that
interpolates, what we would say, are the class conditional prob-
abilities from sparse training sets. (Kolcz and Allinson, 1996)
argue that the N-tuple network operates as a non-parametric
kernel regression estimator with the advantage that instead of
having to store all the training vectors explicitly, it stores them
implicitly as the sampled N-tuples and thereby uses a fixed
memory size regardless of training set size. It is well known
that multilayer feedfoward neural networks can function as ap-
proximators. In fact, (Hornik, 1991) proves that if sufficiently
many hidden units are available, and the activation function is
bounded, continuous and not constant, then continuous map-
pings can be learned uniformly over compact input sets.

The way that we are asking the approximator question is not
with respect to class conditional probability estimation. We are
posing the problem from the point of view of the classification
function, which is a function from a high dimensional discrete
measurement space into the small set of classes. The set of
classes can be from two classes to hundreds of classes. Be-
cause of the ordering of the values in each dimension of the
measurement space, it should be possible to assign a complex-
ity measure to the classification function. Of course there is a
complexity of the N-tuple memory which can be measured as
the number of memory locations. Our conjecture is that there
might be an approximation theorem that states that if the com-
plexity of the classification function is less than C, then for a
fixed memory size M, it is possible to approximate the desired
classification function to within ε, where ε is the ratio of the
number of classification differences to the size of measurement
space.

8.3. The Watanabe Subspace Classifiers

The subspace classifier was introduced by Watanabe,
(Watanabe, 1969). He was motivated by entropy. The entropy
H of a K − dimensional multivariate Gaussian of uncorrelated
variables is given by

H =
1
2

(1 + log2π) +
K
2

K∑
k=1

logσk

where σk is the standard deviation of the kth variable.
From observations with his own data sets, he observed that

for any class, the few largest eigenvalues accounted for 90%
to 95% of the entropy. He based his CLAFIC (Class Featur-
ing Information Compression) method on this idea, (Watan-
abe, 1970). Suppose there are M classes and there are Lm

D-dimensional feature vectors xm
1 , . . . , x

m
Lm

from class cm. Let
N =

∑M
m=1 Lm be the total number of feature vectors in the train-

ing set. Define the global training set mean by µ.

µ =
1
N

M∑
m=1

Lm∑
k=1

xm
k

Define the scatter matrix for class cm by

Ξm =
1

Lm

Lm∑
k=1

(xm
k − µ)(xm

k − µ)′

Note that the mean µ is the global mean and not the class con-
ditional means.

Order the eigenvalues of Ξm, λm
1 ≥ λm

2 ≥ . . . ≥ λm
D. Let

tm
1 , . . . , t

m
D be the corresponding eigenvectors.

Given σ, 0 < σ < 1, the Jm most important directions for
class m are

tm
1 , . . . , t

m
Jm

where ∑Jm−1
j=1 λm

j∑D
j=1 λ

m
j

< σ ≤

∑Jm
j=1 λ

m
j∑D

j=1 λ
m
j

The CLAFIC method then assigns x to class cm where

Jm∑
j=1

(
(tm

j )′x
)2
≥

Jk∑
j=1

(
(tk

j)
′x

)2
, k = 1, . . . ,M

Let Tm be a matrix whose columns are the Jm orthonormal
eigenvectors. Define

T m =


...

... . . .
...

tm
1 tm

2 . . . tm
Jm

...
... . . .

...


Pm = T m(T m)′

Then Pm is the orthogonal projection operator onto the subspace
spanned by Col(T m). Re-expressed in terms of the orthogonal
projection operator, the CLAFIC method assigns x to class cm

where
||Pmx||2 ≥ ||P jx||2, j = 1, . . . ,M
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This is equivalent to assign x to class cm where

x′Pmx ≥ x′P jx, j = 1, . . . ,M

Specialized for the two class case, for any non-negative
threshold θ that balances the class misdetect rates between two
classes, the CLAFIC method assigns x to class c1 if

x′P1x
x′P2x

> θ

Else assign x to class c2
There is a geometric interpretation to what CLAFIC does. It

assigns a vector x to that class where the angle between x and
the class subspace is minimized.

Let P be an orthogonal projection operator to a subspace V
Let θ be the angle between x and V
Then

cos2θ =
x′Px
x′x

Hence, assign x to class cm when

x′Pmx ≥ x′P jx, j = 1, . . . ,M

is the equivalent to Assign x to class cm when

x′Pmx
x′x

≥
x′P jx
x′x

, j = 1, . . . ,M

cos2θm ≥ cos2θ j, j = 1, . . . ,M
θm ≤ θ j, j = 1, . . . ,M

(Watanabe and Pakvasa, 1973) further develop the subspace
method. They argue that among the M classes whose subspaces
are S 1, . . . , S M , there might be a non-trivial common subspace.
Such a subspace should not play a role in the classification.
Therefore, that subspace should be subtracted out of the pro-
jection operator.

(Therrien, 1975) details an easy way to do this. He proves:
Let Pm,m = 1, . . . ,M be the orthogonal projection operators to
subspaces S 1, . . . , S M . Let S = ∩M

m=1S m. Let Γ =
∑M

m=1 amPm

where the am’s are chosen so that 0 < am < 1 and
∑M

m=1 am = 1.
Then the orthogonal projection operator Q onto S is given by
Q = TT ′, where the columns of T are the eigenvectors of Γ

having eigenvalue 1.
To implement Watanabe’s idea, if P1, . . . , PM are the orthg-

onal projection operators to the subspaces S 1, . . . , S M and if
Q is the orthogonal projection to the common subspace S =

∩M
m=1S m, then the projection operators that project to their sub-

spaces minus their common subspaces are Q1, . . . ,QM where
Qm = Pm − Q. This is true because PmQ = QPm = Q which
makes Pm −Q be the orthogonal projection operator to the sub-
space S m ∩ (∩M

i=1S i)⊥. As before, assign x to that class ck where
x′Qk x ≥ x′Qmx, m = 1, . . . ,M.

Since the 1973 Watanabe paper, there have been many oth-
ers on subspace methods. We just highlight a few. (Oja, 1983)
wrote a book all about subspace methods. (Prakash and Murty,
1996) clustered the training vectors for each class first and then
used the method of (Watanabe and Pakvasa, 1973) to identify
the best cluster and then the best class. For any vector x find

best cluster among all the clusters of all the classes and assign
x to the class associated with that best cluster. (Watanabe and
Katagiri, 1995) (not Satosi Watanabe) reframed the problem.
Instead of using the subspaces which best fit the training vec-
tors from each class, they changed the criteria: use the sub-
spaces that are most discriminative; the Minimum Error Learn-
ing Subspace. Their procedure is an iterative gradient search
procedure.

(Yin et al., 2014) and (Liang et al., 2016) are example pa-
pers that apply subspace learning for dimensionality reduction.
Nikitidis et al. (2014) brings in the idea of the maximum mar-
gins for determining the subspaces. It is interesting that many of
the recent papers on subspace classifiers do not reference their
origin in the Watanabe papers from the 1970’s.

8.4. Graphical Models as Subspace Classifiers

There are many papers and some books, (Lauritzen, 1996)
and (Koller and Friedman, 2009), to cite a couple, on graphical
models. However it is not the purpose of this section to make
a review of graphical models. Our purpose is just to show that
when a graphical model is used to express the class conditional
probabilities, then the associated classifier is a subspace clas-
sifier. And from this relation, there follows a way to optimize
ensemble classifiers.

Graphical Models associate a graph, called the conditional
independence graph, from which all the conditional indepen-
dencies can be easily seen.

Definition 24. A graph G = (V, E) is called a Conditional In-
dependence Graph of a random variable set Λ = {X1, . . . , XM}

if and only if V = {1, . . . ,M}, the index set for the variables in
Λ, and

Ec = {{i, j} | {i} y { j} | Λ − {i, j}}

where A y B | C means the variables indexed in A are con-
ditionally independent of the variables indexed in B given the
variables in C.

Definition 25. A graph is called Triangulated (Chordal)
graph if and only if every cycle of length 4 or more has a chord.

When the conditional independence graph has the property
of being triangulated, then the joint probability function can be
expressed with a probability product form. The product form is
a strong extension of the marginal probability terms of the prod-
uct and is based on the cliques and separators of the conditional
independence graph.

Definition 26. The cliques C1, . . . ,CK of G are said to be in
Running Intersection Order with separators S 2, . . . , S K if
and only if

S k = Ck

⋂k−1⋃
i=1

Ci

 , k = 2, . . . ,K − 1

and each S k consists of the vertices of a complete graph.
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C1 = {1, 2, 5} 1 y 4 | 2, 5
C2 = {2, 3, 5} 1 y 3 | 2, 5
C3 = {3, 4, 5} 2 y 4 | 3, 5
S 2 = {2, 5} 1 y 4 | 3, 5
S 3 = {3, 5} 1 y 4 | 2, 3, 5

1

2 5

3 4

P(x) =
P(πC1 (x))P(πC2 (x))P(πC3 (x))

P(πS 2 (x))P(πS 3 (x))
= P(πC1 (x))P(πC2−S 2 (x) | πS 2 (x))P(πC3−S 3 (x) | πS 3 (x))

Fig. 15: Shows a triangulated conditional independence graph for the variables
indexed by 1, 2, 3, 4, 5, the cliques and separators, some of the conditional in-
dependences and the resulting product form for the joint probability.

Proposition 1. If a graph G is triangulated graph and
C1, . . . ,CK are the cliques of G put in running intersection or-
der with separators S 2, . . . , S K , where

S k = Ck

⋂k−1⋃
i=1

Ci

 , k = 2, . . . ,K

then

P(x) =

∏K
k=1 P(πCk (x))∏K
k=2 P(πS k (x))

= P(πC1 (x))
∏K

k=2 P(πCk (x))∏K
k=2 P(πS k (x))

= P(πC1 (x))
K∏

k=2

P(πCk−S k (x) | πS k (x))

This is illustrated in the simple example of Figure 15.
Now if the graphical model is for the class conditional prob-

ability P(x | α), where α designates a class, x will be assigned
to class γ where

γ = argmax
α

P(πC1 (x) | α)
K∏

k=2

P(πCk−S k (x) | πS k (x), α)

Notice that this is exactly of the form of a subspace ensemble
classifier where the index sets C1, . . . ,CK are the cliques of the
conditional independence graph and designate the subspaces to
which the measurement tuple x is projected. The method of
combining is the product form which is equivalent to a sum
form where log probabilities are used instead of probabilities.

How can this help in optimizing an ensemble classifier? Let
Q1, . . . ,QM be the index sets designating the original subspaces

of the ensemble of shallow classifiers. For each Qm make a
complete graph and union all the complete graphs together to
form a graph G. From G, remove or add the smallest number
of edges to make the modified G triangulated. Now find the
cliques C1, . . . ,CK of the triangulated graph G. Then, form K
shallow classifiers based on projecting the measurement tuple
to the subspaces designated by C1, . . . ,CK . When this is done,
in the case of the N-tuple method, the N-tuple method becomes
a graphical model for the class conditional probabilities. And
since it is a graphical model, it carries with it the associated
conditional independence assumptions. These conditional in-
dependence assumptions make it possible to understand what
the combination of the marginal class conditional probabilities
means. The combinations are just the class conditional proba-
bilities for all the components of the measurement tuple.

Of course there is a difference between the ensemble clas-
sifiers and the graphical model classifiers. The idea of the en-
semble classifier is to use many overlapping low dimensionality
subspaces to define shallow and nearly independent classifiers.
The idea of the graphical model classifiers is to define not quite
as many overlapping low dimensionality subspaces to define the
shallow subspace classifiers whose dependencies are taken into
account by the inherent conditional independence assumptions.
This is related to the version of the N-tuple classifier that uses
conditional probabilities and whose combining method is by
taking products of the class conditional probabilities or equiva-
lently the sum of the logs of the class conditional probabilities.
What this N-tuple classifier is doing is the computation of the
products of the probabilities of the cliques. This is the numer-
ator of (13). It misses the denominator of (13) which is the
product of the separators.

9. Conclusion

For numerically valued variables, we have reviewed the prop-
erties of the correlation coefficient, the correlation ratio, the
maximal correlation coefficient, and the monotone correlation
coefficient. We gave examples illustrating some of the counter-
intuitive behavior of the maximal correlation coefficient and
suggested that the monotone correlation coefficient may be
more reasonable than the maximal correlation coefficient. We
explored information theoretic measures of dependence, all of
which are related to the mutual information between two vari-
ables. We discussed an adaptive partitioning method to estimate
the mutual information in the case that the variables are contin-
uously valued. We noted a few different ways that entropy and
mutual information can be combined so that the result, a nor-
malized form of mutual information is a metric. In addition,
we listed a few such metrics which take values on the interval
[0, 1].

We noted how the features of the cooccurrence probabilities
included the maximal correlation coefficient and information
theoretic measures of dependency. We discussed how cooc-
currence probabilities can be used to define a joint probability
image in which each pixel is the joint probability of the gray
levels in the pixel’s neighborhood. Neighborhoods can be reg-
ular such as 5×5 neighborhoods or can be entirely non-regular.
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Finally, we discussed the constraint that defines a depen-
dency. We took the case of the dependency between the fea-
ture vector and its ground truth class. Our setting was manifold
methods. In particular,we discussed the N-tuple method and
subspace classifiers and conjectured that there may be a uni-
versal approximation-like theorem by which the N-tuple and
subspace classifiers might be shown to be able to approximate
an arbitrary classification, under the constraint that the classifi-
cation zones are sufficiently simple. And we have shown how
the N-tuple classifier can be turned into a graphical model clas-
sifier.
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