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Abstract This paper introduces error propaga-
tion techniques for analytically propagating posi-
tional image error to the estimated quantity pro-
duced by a vision algorithm. We focus on vision
algorithms whose input and output are related ei-
ther explicitly or implicitly. We then demonstrate
the utilities of the error propagation techniques for
a specific vision problem: curve-fitting.

Keywords: Error propagation, performance char-
acterization, computer vision

1 Introduction

Each computer vision problem begins with
noisy images. The noises in the images
may result from digitization, projection, sen-
sor noises, etc. The accumulated effect of these
noises induces locational error to each pixel
in the image. In the subsequent vision algo-
rithm, the locational error will be carried over
through each vision step up to the final result.
Compounded by additional error introduced by
each intermediate vision step, the output of a
vision algorithm is often uncertain. The uncer-
tainties with the output of a vision algorithm
determine the performance of the algorithm.
Take the industrial inspection for example, the
precision of a vision system largely depends on
the uncertainties associated with the final mea-
surements. Development of the best inspec-
tion algorithm requires understanding how the
uncertainty due to perturbation affecting the
input images propagates through different al-
gorithmic steps and results in a perturbation
on the output measurements. This means that
we must propagate image error through each
intermediate vision step up to the final output
to characterize the performance of the vision
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algorithm.

The problem of error propagation is a funda-
mental issue in computer vision. We encounter
this problem in different disguises. This prob-
lem occurs often in many applications of com-
puter vision and can be considered of great
practical importance [3]. In this paper, we
discuss the problem of analytically computing
the uncertainty of output parameters that are
functions, either explicit or implicit, of some
input measurements. We focus on error propa-
gation for vision algorithms that obtain its out-
put by minimizing a scalar criterion function,
which is employed by many vision algorithms.

2 Image Error and Estimation

Understanding relationship between input per-
turbation and output perturbation requires to
understand the nature of input perturbation
and its distribution. Input to a vision algo-
rithm consists of an image or image points.
Image is noisy and is subject to various image
€errors.

Errors are introduced to an image from a
variety of sources. Image errors may be classi-
fied into systematic errors and random errors.
Systematic errors may include errors caused by
lens distortion, perspective projection, etc. For
error propagation purpose, we assume system-
atic errors are small or have been accounted
for. Sources of random image errors may in-
clude illumination, spatial quantization, sen-
sor position, and feature extraction techniques.
These errors collectively cause intensity and
positional inaccuracies to image points. Be-
cause of random uncertainties, as evidenced by
the small differences between observations of



the same image point, it is customary to model
the random positional inaccuracies by means of
a stochastic model.

Let X, = (Zn, §in) be the perturbed but ob-
served pixel coordinates of an image point and
X, = (zp,yn) be the ideal (without pertur-
bation) but unknown pixel coordinates of the
same image point. It is assumed that a small
additive perturbation AX, added to X,, leads
to Xn, ie.,

~

X, = X, + AX,, (1)

where AX,, represents the additive input per-
turbation. AX, can be quantitatively char-
acterized by its covariance matrix ¥ax,. A
simple but commonly used form for ¥ax, is

2
Sax, = ( T ) @)
where ai and 05 represent image perturbations
in z and y directions. If we assume that the
image perturbation in z and y directions are
identical and independent, the noise model can
be further simplified to

Yax, = o1 (3)

where 02 = 03

trix.

A more reasonable model is to assume that
the uncertainty of an image point is along the
direction of the image gradient at this point.
This yields the following noise model

Tn Zn, cos 6
o) () ()

where 6 is image gradient direction at point
(Zn,yn) and &, represents the random spatial
perturbation with a variance of ¢2. This per-
turbation model leads to the following form for
YAX,

20 in 6 cos 6
Sax. 202< cos sin § cos ) (5)

= 02 and I is an identity ma-

sin 6 cos 0 sin? 6

Graphically, ¥ax, can be represented by an
ellipse with major and minor axes being the
eigenvectors of Yax,, .

While the proposed noise models do not nec-
essarily represent all perturbations, there are
many visions algorithms where these models
may hold or hold approximately.

For most vision algorithms, image pixels
that participate in the computation are usu-
ally edge points or corner points. Most feature
points are detected via a curve-fitting process
(e.g., line fitting for corners and ellipse fitting
for ellipse points). o2 can therefore be esti-
mated from the residual fitting errors.

Specifically, let f be the curve function (ei-
ther line or ellipse), © be the ideal curve pa-
rameters, and X = {X,|n = 1,2,...N} be
the observed coordinates of N image points,
we want to perform a least-squares curve fit-
ting to fit X to f. Then O, the least-squares
estimate of ©, is found by minimizing the sum
of geometric distances

62 — % f2(Xn7 é) (6)
— (Bf()?n,é))t(af()?m@))
n= X, X

Linearizing f(X,,©) with respect to the ideal
value X, leading to

9f(Xn,©)

00X,

since f(X,,0) = 0, then f(X,,0) is dis-
tributed as N (0, (3)122 )tZXn(g)j;’; )), where f,, =
f(Xn, ©). The distribution of f(X,,©) can be
further simplified using equation 3

f(Xnv 9) = f(XTh 9) + ( )tAXn

5 af, af.
2 n o\t n
£, ©) ~ NO0,0* (5 (53)
Approximately, it follows that
€~ U2X%V—p (7)

where p is the dimension of ©. Hence, we have

&2, an estimate of o2 is obtained via
2
~92 €
o = 8
e ®)
&2 can be used as an unbiased estimate of

o?. This estimator is available for each curve-
fitting (line or ellipse). Because there may exist
multiple curves in an image, the average esti-
mator taken over all curve-fittings may be used
as a good and stable estimate of 0.



3 Relationships between In-
put and Output

A computer vision algorithm works with three
kinds of objects: an input vector, an output
vector, and a function that maps input to out-
put. Let X be the ideal but unobserved input
vector with a dimension of N x1. Added to this
unobserved ideal unperturbed vector is an ran-
dom vector AX of the same dimension. This
leads to X = X + AX, the observed input vec-
tor. Let © represents the ideal parameters vec-
tor of dimension K x 1 generated by the vision
algorithm if ideal input X is given. Given X,
the vision algorithm outputs © instead, which
relates to © via © = © + AO.

For a computer vision algorithm, the rela-
tionships between its input (either X or X)
and the output quantity it computes (either
O or @) can be grouped into three categories:
explicit relationship, implicit relationship, and
neither explicitly nor implicitly related through
an analytic form. In the first case, input and
output of a vision algorithm are explicitly re-
lated through an analytic function. Standard
error propagation can be used to perform er-
ror propagation. The results are summarized
in section 4.1 which gives the covariance ma-
trix of the output parameters as a function of
the Jacobi matrix and the covariance matrix
of the measurements. Computer vision prob-
lems such as calculation of curvature, gradi-
ents, vanishing points, and feature points fall
into this category.

In the frequent case where the parame-
ters are obtained by minimizing some criterion
function, the covariance matrix of the output
parameters are expressed as the Hessian ma-
trix and the covariance matrix of the measure-
ments. This result is summarized in section
4.2. This is basically an optimization problem.
This relationship embodies a wide variety of
computer vision problems that can be analyt-
ically formulated as an optimization problem
(either linear or non-linear). These problems
may include curve-fitting, feature extraction,
camera calibration, pose estimation, 3D recon-

struction, and motion estimation as outlined
by Haralick [4].

For cases where input and output can not be
related either explicitly or implicitly through
an analytic form, a statistical re-sampling tech-
nique described by Cho et al [1] may be em-
ployed for numerically estimating the covari-
ance matrix of the output parameters.

4 Error
niques

Propagation Tech-

In this section, we describe the techniques for
analytically propagating error from input to
output, where input and output are related ei-
ther explicitly or implicitly. The error estima-
tion and propagation techniques studied here
represents an extension of the standard error
propagation technique [2].

4.1 Error propagation with explicit
function

Following the same notation as introduced in
section 2, here input vector X explicitly relates
to the output vector © by a non-linear function
F.ie.,

6 =F(X) (9)

Linearizing both sides of the above equation
with respect to the ideal input X and output
© yields

OF (X)

O+A0=F(X)+( 5X

)PAX

where A® is the perturbation added to © due
to AX. As a result,

OF(X)
X

AO = ( )IAX

Hence the perturbation on O, characterized by
its covariance matrix X ag, is

Sae = E[(AO)(AO)]

= A8y, (PEX) g

~—




4.2 Covariance Propagation for Im-
plicit Functions

In many cases, © and X are not related
through an explicit function but through an
non-linear minimization function F, i.e., O is
determined by minimizing F (X, @) Then co-
variance propagation from X to © can be per-
formed using Haralick’s covariance propaga-
tion theory[4]. Covariance propagation can be
performed in unconstrained case and uncon-
strained case. We summarize the results in
each case

4.2.1 Covariance propagation for un-
constrained minimization

In this case, © is determined solely by min-
imizing F(X' ,(:)) without subject to any con-
straints. The technique assumes that 1) the
criterion function F' to be minimized has finite
second partial derivatives; 2) F(©,X) = 0 for
the ideal input and output parameters X and
©; 3) the input and out perturbations are small
and additive.

Let g(X,0) = M then the perturba-
tion on the calculated parameters G), as repre-
sented by its covariance matrix ¥g, relates to
the input perturbation XA x by

99 1099 vosy (9999

Sae = [(55)1  (53) Eax (55 (50) 1 (11)

4.2.2 Covariance propagation for con-
strained minimization

Under this case, © is determined by minimiz-
ing F(X,©) subject to constraints S(©) = 0.
Introducing the Lagrange multipliers, the func-
tion to be minimized is

F(X,0)+ 81(0)A

where A is a vector of Lagrange multipliers.
Define g to be g(X,0) = % then mak-
ing the same assumptions as in unconstrained

case, we obtain

ZAG,AA = A_IBZXBtA (12)

where

(8 8) ()
S\ (g8) 0 -

Y A@ can be obtained from the first K x K sub-
matrix of Ja A.

For both the unconstrained and constrained
cases, all functions are evaluated at ideal © and
X. In practice, X and © are not available. We
can obtain an estimate of the covariance matrix
by replacing X with X and © with ©, which
is obtained from the minimization procedure.

)

oX

5 Covariance Propagation for
Curve-fitting

As part of the application of the error prop-
agation techniques introduced in the previous
section, this section demonstrates how to ap-
ply them to a very important computer vision
problem: curve-fitting.

Least-squares curve fitting refers to deter-
mining the free parameters © of an analytical
curve F(z,y,0) = 0 such that the curve is the
best fit to a set of points (%, ¥,) in the least-
squares sense. A best fit is defined as a fit that
minimizes the sum of squares of the geometric
distances [5] as defined by

N 2/ A ~
F (mn Yn ®)
=) e (13)
— (3F(3$£:yn))2 + (8F(;:;r:yn))2

Error propagation here relates the perturba-
tions of points (&, J,) to the perturbation of
O, the least-squares estimate of curve param-
eter ©. Let Xax and XA be the covariance
matrices of the observed points and estimated
curve parameters. They are related via equa-
tion 11, where g(X, ©) is defined as

_oe?
PTe)

From equation 14 and using F'(X,,0) = 0, we
obtain

(14)

(15)



And let X, = (2 yn)! and X = (X7... Xy)!,
hence
9 _ (52) (58!
0X, (5E2)2 + (&2 )2
99 _ (2 9 )t
0x - oXy °°° 08X,
It is clear from the above that
99 \+, 99 dg
RCAU SR b A 1
(BX) (8X) 00 (16)

Substituting the above relation and XaAx =
oI into equation 11 yields

Zao = 20720 )]

50 (17)

6 Covariance propagation for
line, circle, and ellipses

6.1 Covariance Propagation for Line
Fitting

Given a line expressed as

F(z,y,0) =xcosf +ysinf+ p (18)

A least-squares line fitting amounts to finding
the line parameter © = (6, p) that best fits a
set of points X = (Z1y- ey &nyJ1y---,YN). Er-
ror propagation is concerned with estimating
the perturbation of @, a least-squares estimate
of ©, given the perturbation with X. © is ob-
tained by minimizing
N
€ = Z(ﬁ:icosé + 9 sinf — p)?
i=1

(19)

Hence, g—g can be computed from equations 15
and 18 as follows

9 N k2 —ky,
I (A

where k, = z, sin 0 — y,, cos 6.

N
Let up = 22215 and §2 = SV (kn — wp)?,
we have 1
< N Sk
Sky K2
Yre = a2 i n

Nk =3 kn > kn

"note k2 — knpx = (kn —pe)” and >_ k2 = Sz + Npuj

y 4

S S

_ 2 k k

= 0 w1 2 (20)
s N ' st

6.2 Error Propagation for Circle Fit-
ting

A circle can be represented by equation
F(ZI?,y,@) = (LE - a)2 + (y - b)2 - R = 0,
where (a,b) is the center of the circle and R
is the radius of the circle. Given point scatter
X = (&#n,9n),n = 1,..., N, the least squares
fitting amounts to estimating the parameter
© = (@, b, R) by minimizing the sum of squares
of geometric distances as defined in equation
13.

Given F'(z,y,©) as defined above, we have

oF, 94 In—a
o = | T | =-2| m-b
OFy,
OR R
Hence wusing equation 15 leads to

dg 9 XN: ( w2 wpzn Ruwn )

2
72 = 53 WnZn  Zn Rz, (21)
96 R =\ Rw, Re R
where w, = z, —a and z, = y, — b. In the
polar coordinate system, a circle is represented
as

Tp =a+ Rcosa,, vy, =b+ Rsina,

where «,, is the direction from circle center to
point (2, yn)- g—g can therefore be reexpressed
as

Substituting equation 22 to 17 yields the co-
variance matrix of the circle parameters.

S cos® an > sinancosa, Y, COSan
Yae = o? Z sin ai, CoS aip z sin? o, Z sin oy,
> cosan > sinan N

we can conclude from the above equation that
1) the variances of the estimated circle param-
eters do not depend on the circle radius; and
2) the variance of the estimated circle radius
depends only on the number of points used.

P 3" cos? an > osinancosan Y CoSan
% =2 > sinancosas S sin? ay, Sisina, | (22)
> cosan > osinag, N

1

) (23)



6.3 Covariance Propagation for El-
lipse Fitting

An ellipse may be expressed by the general
conic equation

F(z,y,0) = Az

To ensure the resulting fitting curve be an el-
lipse, parameters A, B, and C must be con-
strained such that B? < 4AC. Haralick [5]
effectively proposed a way of implicitly incor-
porating this constraint in the fitting equation
by working with a different set of parameters.
According to this method, the parameters can
be expressed as

(5e)-(e)(sz) e

It is clear from this relation that there exists c,
d, and e, such that

A B c? cd
(B C>:<cd d2+62> (26)

In other words, there exist values of ¢, d, and
e to make B?2 — AC < 0. One set of possible
values for ¢, d, and e are:

A=c B=cd C=¢e+d°

This means that we can make the fitting prob-
lem to be ellipse-specific by using the free pa-
rameters ¢, d, and e rather A, B, and C. With
this perspective, the ellipse equation can be re-
expressed as:

F(z,y,0) = ¢
(d
Ellipse fitting amounts to finding an ellipse 6
that best fits a set of point X.

Let YAx and Xag be the covariance ma-
trices of the observed points X and estimated
ellipse parameter © = (a b ¢ d é)!, L ae may
be computed from from equation 17, where gg
is computed from equation 15 as follows.

—a)?+2B(z —a)(y —b) +
Cly—b2—-1=0 (24)

(x — )2+2cd(w—a)(y—b)+
d® +€*)(y —b)* — (27

N OFn \(9Fn \t
9 _, 3 (56)(5e)
AFn OFn
00 — (aw" 2 4 (Byn )2
2
In Inhn —gnln —gnkn —gnWn
gathi  gnthn  gnthi  gnthT gnthi
gnhn 54 —hnly  —hnkn —hpwn
N g2+h2  g2+h2  gZ+hI  g2Z+hZ g2+h2
—9 Z —gnln  —lnhyg z lnkn Ly wy
g2+h2  gZ+hZ  gZ+hZ  g2+hZ  g2Z+h2
n=1 —gnkn  —knhp Enln k2 Enwn
gathn  gRtRL  gnthE  GR4RT gRthR
—gnWn —hnwn lnwn knwn Wy
g2+h2  gZ+hZ  g2+hZ  g2+hZ  g2Z+h2
where

gn = c? (xn - a) + Cd(yn b)

hy = cd(z, —a)+ (d® + €?)(y, — b)
ln = c(zy— a) + d(zy, — a)(yn — b)
kn = c(zn—a)(yn —b) +d(yn — )
sn = 2¢(zn, —a)+d(y, —b)

tn, = c(xn—a)+2d(y, —b)

1
dy = —
" 92 +h2
Wnp = e(yn - b)2

F, = Az, —a)®+ 2cd(z,
(@ + €?)(yn — 0)* —

—a)(yn —b) +

Substituting the above equation to equation 17
yields the covariance matrix of the estimated
ellipse parameters.

7 Covariance Propagation for
Line fitting

In this section, we introduce a new technique
[6] for error propagation with line fitting, where
perturbation model for image point is not o1
as used in section 6.1. The input perturbation
model follows equation 4. Following the same
notations as in section 6.1, an estimate of ©, is
obtained by minimizing

N
e = Z(:ﬁicosé + §jisind — p)? (28)
=1 9€?
O¢€? Ea
2x1 _ 7= 29
g 70 o (29)
9p

Then from equation 12, YAqg, the covariance
matrix of line parameter © can be computed



from equation 11. From equation 29, we obtain

dg 92F  9%’F
(9g2 X2 20 062 969p
20 99 9’F  9°F
Op 9p88  9p?
and, 92F 92F
0800z 9pdx1
9%F 9%F
9 g2N X2 90dy1  9pdy:
X = . .
0 9’F 9’F
000z  Opdxn
9%F 9%’F
080yn  OpOyn
2]\7 X2

For the given perturbation model in equation
4, the input covariance matrix XA x is given by

d ... 0 0
,| 0 d ... 0
Yax = o )
0 0 4/ nun
here
v d— cos?0  sinfcosf
“ \ sinfcos®  sin?@
Define N
. 1
kn = xpsinf—ypcosl = N an
n=1
N
SI% = Z(kn - ,Ulc)2
n=1
After algebraic operations and simplifications,
we obtain
> = &%
Z :<‘76 002p>202 % Sk
A0 T6p 9 ’5—’2 Nt

Interestingly enough, this equation is the same
as equation 20. This reveals that both noise
models (equations 3 and 5) yield the same co-
variance matrix for the estimated line param-
eters.

Geometrically, k, can be interpreted as the
signed distance between a point (z,,y,) and
the point on the line closest to the origin. As a
result, S,% represents the spread of points along
the line. From equation 30, it is clear that with

a larger S,%, i.e., points with larger spread along
the line, we can obtain better fit as indicated
with smaller covariance matrix. In addition,
1 is the mean position of the points along the
line. It acts like a moment arm. A larger ug,
i.e. a longer moment arm, can induce more
variance to the estimated p. Further investiga-
tion of 30 reveals that 03 is invariant to coordi-
nate translation and rotation while o2

p
variant to coordinate rotation that changes pg.

is only

8 Conclusions

In this paper, we introduce techniques for an-
alytically propagating image error to charac-
terize the performance of a vision algorithm
by studying the uncertainty (reliability) of its
output. Understanding error behavior of a vi-
sion algorithm often leads to finding techniques
for improving accuracy and precision. Even if
errors are inevitable, the knowledge of how re-
liable each vision algorithm is is indispensable
in guaranteeing performance of the IU systems
that use the algorithms. The proposed error
propagation techniques may apply to a variety
of vision algorithms. We are currently inves-
tigating the use of these techniques for impor-
tant vision tasks like camera calibration, 3D
reconstruction, and motion estimation.
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