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Abstract

With the increasing demand for minerals, the development of
efficient techniques for mineral recovery is important. The
application of image analysis techniques to mineral beneficiation
studies 1is described in this paper. We carry out ore
identification not pixel-by-pixel but rather by considering the
average reflectance of grains. This is accomplished by first
carrying out segmentation, a process in which a facet model based

edge operator is used to delineate the boundaries of grains.



I. Introduction

The increasing demand for mineral resources, the increasing
dependence on lower grade resources, and the increasing costs of
energy necessitate the development of new, and the streamlining
of old techniques in the mineral industry. Image analysis
techniques which have already been found useful in research areas
such as biomedical applications, industrial automation and remote
sensing, are just beginning to find applications in the mineral
processing industry. The present paper describes the application
of image analysis techniques to the characterization and analysis

of mineral beneficiation products.

Petruk [Pe76] of the Canada Center for Minerals and Energy
Technology (CANMET) describes the application of the Quanitimet
image analyser to quantitative mineralogical analysis. In 1978,
a Leitz-T.A.S. automatic image analyser was installed in the
Mineralogy Division of the National Institute for Metallurgy in
South Africa. A general description of the system is appeared in

[Oo801.

Grains can generally be differentiated on the basis of their
differing reflectances. In most commercial machines presently
operational, a threshold decision on reflectances is made on a
pixel by pixel basis depending upon their reflectance. This
technique is highly susceptable to the noise of the random
variations inherent in the grains, thereby making area counts of
grains having similar but different reflectances subject to

inaccuracies. In contrast, the approach we suggest here first
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segments the 1image using an edge operator to delineate the
boundary of the grain. To identify the grain we use the average
reflectance of all pixels surrounded by the edges. Section II
describes the entire grain identification process which starts
from the low level image preparation and image segmentation steps
to the higher level property extraction and grain classification

process.

II. Processing of Mineral Images

II.1 Image Preparation

Most ore minerals are opaque and hence are studied by means of
reflected light microscopy. Samples were cut, ground and polished
according to the procedures described by Craig and Vaughan
[Cr8l]. In our system, ore images are either generated directly
from a Hamamatsu C-1000 television camera mounted on a Leitgz
Orthoplan microscrope or digitized from a 35mm film negative by a
laser scanner. The size of the image generated by the television
camera can be as large as 512x512 pixels, while the laser scanner
can produce a 1000x1000 image from a 35mm negative. The
individual pixels each have a reflectance (or grey tone
intensity) which is proportional to the composite reflection
coefficient of the ore sample at the corresponding spatial

location in the sample.

Images generated by these methods are subject to noise. Our
methodology includes noise removal operations such as median
filter, box filter and peak noise removal to remove these

undesirable features from the image. This reduces the occurrence
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of error in later processing. Figure 1 shows an example of a
digitized image (256x256). Figqure 2a and 2b show the surface

plots of the original image and the smoothed image respectively.

II.2 Edge Detection

The facet model is wused to accomplished the step edge
detection which is required in our segmentation process. A
precise mathematical description of the edge operator can be
found in [Ha82] and [Ha83]. The facet model states that any
analysis made on the basis of the pixel values 1in some
neighborhood has its final authoritative interpretation relative
to the underlying grey tone intensity surface and that the
neighborhood pixel values are noisy sampled observations of the

underlying surface.

Pixels which are part of regions have simple grey tone
intensity surfaces over their areas. Pixels which have an edge
in them have complex grey tone intensity surfaces over their
areas. Specifically, an edge occurs in a pixel if and only if
there is some point in the pixel's area having a zero crossing of
the second directional derivative taken in the direction of a

non-zero gradient at the pixel's center.

To determine whether or not a pixel should be marked as a step
edge pixel, its underlying grey tone intensity surface must be
estimated on the basis of the pixel values in its neighborhood.
For this, we use a least squares fit with a functional form
consisting of a 1linear combination of the tensor products of

discrete orthogonal polynomials. The highest order tensor product
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we currently use is cubic (i.e. the highest order terms are x3,

xzy, xy2 and y3). The appropriate directional derivatives are
easily computed from this kind of a function. By using a 7x7
neighborhood, Figure 3 shows the detected edges of the image of

Figure 1.

II.3 Region Extraction

Once edge pixels have been marked by the edge operator, the
regions extracted are the largest connected areas of pixels which
are entirely surrounded by edge pixels. This process 1is
accomplished by a connected components algorithm which assigns a
unique label to each maximally connected group of non-edge
pixels. An efficient memory limited connected components
algorithm is implemented and its validity is proved [Lu82]. This
algorithm requires only one top-down scan and one bottom-up scan

of the entire image.

After the non-edge pixels have been labelled, the edge pixels
which exist between regions will stay unaffected. If a more
accurate area count of grains is desired, a symmetric fill
operator can be used to fill up all or part of these gaps by
expanding the regions. Experiments show that polished effects at
grain boundaries and internal imperfections (due to scratches,
inclusions etc.) often create a large number of small regions.
These regions will 1lead to an inaccurate count of grains and to
misclassification of grains. In order to avoid these problems,
small regions with sizes less than a certain size threshold are

first marked and then eliminated by expanding symmetrically the
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neighboring unmarked regions. By eliminating all regions with
less than ten pixels, the resulting segmentation of the image of

Figure 1 is illustrated in Figure 4.

The region extraction process, though works well for most
images, sometimes produces opened regions when the detected edges
are unable to close the boundaries of grains. In these cases,
the edges are expanded symmetically for a few pixels or until the
gaps are closed. The expanded edges are then shrunk by expanding

the labelled regions after the connected components step.

IT.4 Region Property list

Once an image has been segmented into regions, properties of
the regions are computed. Currently, as many as thirty
measurements are kept for each region. Among the set of
properties measured for each region, the following measurements
are most useful in mineralogical analysis.

(1) Area and perimeter of a region. They are measured
respectively as the number of pixels in a region and the number
of boundary pixels of a region.

(2) Grey level information consists of the four grey level
region properties: maximum, mininum, mean and variance.

(3) The center of mass (X,y) of a region. It gives the spatial
distribution of the regions in the image.

(4) Elongation and angle are measures of the shape and

orientation of a figure. Elongation is obtained as the ratio of
the length of the major axis to the length of the minor axis of

the best fitting ellipse of the region. Angle is measured as the



slope of the major axis of the best fitting ellipse.

(5) The ellipticity measure satisfies the following criteria:

1. it increases as a figure becomes more circular;
2. the results for digital figures follow those for the
corresponding continuous figures;

3. it is orientation independent; and

4. it is size independent.
Haralick [Ha74] shows that the ratio of the mean u. to the
standard deviation S, of the distances from the center of the
figure to its boundary points has these properties. - We calculate
ellipticity after rotating and scaling the region so that its
best fitting ellipse becomes a circle. This is done to separate
the effect of elongation from ellipticity. For a region R
centered at (X,¥), the radius of a boundary point (x,v} of R is
computed as:

r = [e*((x-%)sin® + (y-y)cos®)2 + ((x-%)cose - (y—fz)s:‘.ne)zllf2
where e and 6 are elongation and angle respectively. And the

ellipticity measure CR is given by:

II.5 Grain Classification

After the segmentation process, each region in the segmented
image is tagged with a unique 1label. A region property file
which contains for each region in the segmented image a set of
properties is also generated. The individual regions can then be

classified on the basis of their average grey intensities, which
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are stored in the property file. The results of classification
are then written back into some designated areas of the property

file.

A training phase is required in order to obtain the parameters
necessary for «classifying grains of different types. In the
training phase, ore samples of known reflectances are prepared
and input to the computer as training images. From a training
image we generate a segmented image and a corresponding region
property file. The operator can then identify, with the aid of
an interactive display, all the grains of a particular type. A
simple decision rule, which is usually based on the average grey
intensities of the segments of the known grains, is then obtained
and entered into the system and is used to identify grains in

unknown samples.

The above classification process relies upon the differences
in reflectances to separate one phase from another. Such
separation is readily accomplished if there are broad differences
between the reflectances but becomes difficult if the reflectance
differences are small and/or variable (e.g. due to differences in
polishing, in bireflectance, or high density of inclusions of
fractures). Figure 5 illustrates the reflectance curves for
pyrite, pyrrhotite, chalcopyrite, magnetite and sphalerite from
400nm to 700nm. The distinct differences between pyrite,
pyrrhotite, and magnetite at all wavelengths are apparent; these
differences allow for relatively easy discrimination in

reasonably well polished samples. The reflectance curve for
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chalcopyrite lies below that for pyrrhotite at wavelengths less
than 460 nm but above the pyrrhotite curve at wavelengths above
about 500 nm. It is known that chalcopyrite, although distinct to
the human eye because of its yellow color, is difficult for image
analysis systems (operating in black and white) to separate from
pyrrhotite because the reflectances are similar when averaged
across the white light spectrum. The present investigators found
that if monochromatic light in the ranges 440-460nm or 560-620nm
were used for illumination, phase separation of pyrrhotite and

chalcopyrite should be most readily accomplished.

Although mineralogic identification is generally accomplished
by means of differences in reflectance (grey-level), our system
also allows identification on the basis of size, shape, surface

texture or color from multi-band images.

ITI. Applications to Mineral Processing

III.]1 Liberation Studies

The "degree of liberation™ is a measure of the degree to which
mineral particles occur as individual singlephase units in a
crushed sample. Determination of the degree of liberation of
each type of mineral species in beneficiation is vital in mineral
processing. The degree of liberation (Li) of mineral component i

can be determined by the following formula:

where Aif is the total area of mineralogical component i
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occurring as free particles, Ail is the total area of
mineralogical component i occurring as locked particles, and fi
is the locking factor of the mineral. A region is considered to
be locked if it is adjacent to any other non-background region of

different type, and is considered to be free otherwise.

To accomplish the liberation computation, a region adjacency
graph must be determined. The region adjacency graph contains
indexes of all pairs of adjacent regions in the segmented image.
Two regions Rl and R2 are said to be adjacent if there exists
some pixel in Rl having a neighboring pixel in R2. Once a region
adjacency graph is obtained, locked and free particles can easily
be determined by comparing the mineral types of pairs of adjacent

regions from the adjacency graph.

In additional to the degree of 1liberation, the following co-
occurrence measurements can also be obtained from the region
property list and the region adjacency graph, (1) the percentage
of a phase which occurs as locked particles; (2) the percentage
of particles which are locked; and (3) the correlation of each

mineral species with each other mineral species.

III.2 Shape Analysis

Mineralogical shape 1in an ore or rock is a function of the
growth characteristics of the mineral (i.e. some minerals such as
pyrite and garnet have a strong "force of crystallization"™ and
characteristically assume euhedral shapes), the environment of

initial formation (i.e. open voids vs crystallizing melts etc.),
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and their post-depositional history (i.e. recrystallization or
fracturing due to metamorphism). The shape of the mineral grain
may in turn affect the manner in which it responds to crushing,
grinding, and liberation. We currently allow the gquantitative
determination of particle shape in terms of elongation and
circularity. Examples of elongation and circularity measurements
are demonstrated for ideal shapes and for real grain in complex

sulfide ores in Figure 6 and Figure 1.

III.3 Areal and Grain Size Distributions

The mineralogical composition of an ore or benefication
product is measured in terms of the area occupied by each mineral
in a polished section or thin section. Figure 7 represents a
typical histogram of mineral reflectance versus abundance for the
image shown in Figure 1; once limits are specified, the

calculation of areal percentages of each phase is immediate.

Measurements of the sizes of the individual mineral grains
and/or the distributions of grain sizes in samples are extremely
important, because the sizes determine the degree of liberation
of minerals during beneficiation. Knowledge of the size
distribution therefore allows for prediction of liberation
characteristics and the use of minimal amounts of energy during

comminution.

IV. Concluding Remarks

We have described in this paper the application of image

processing techniques to mineral benefication studies. The
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success of our work will help the mineral industry in recovering
base metal efficiently £from the domestic fine-grained ore
deposits. Furthermore, the basic*knowledge gained in this work
is hoped to benefit the other application areas in image

processing.
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Figure | illustrates an exanrple of a digitized image of
pyrrhotite-pyrite ore.
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Figure 2a shows the surface plot of the image of Figure | in which the
surface irregularity indicates the variations in the reflectance.



Figure 2b shows the surface plot of the smoothed image of the image of
Figure 1.



Figure 3 illustrates an exanple of the edge image of the image
of Figure 1.



Figure 4 illustrates the resulting segmentation of the image
of Figure 1. The minimun size of individual segrents
is 10 pixels.
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Figure 6 shows the circularity and elongation measures for ideal and real
figures. The real figures correspond to the nurbered grains of

Figure 1.
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Figure 7 illustrates the histogram of mineralogical content of image

in Figure 1 in terms of reflectance.
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