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Abstract

The resemblance between the integer number system with multiplication and
division and the system of convex objects with Minkowski addition and decompo-
sition is really striking. The resemblance also indicates a computational technique
which unifies the two Minkowski operations as a single operation. To view mul-
tiplication and division as a single operation, it became necessary to extend the
integer number system to the rational number system. The unification of the two
Minkowski operations also requires that the ordinary convex ob ject domain must
be appended by a notion of inverse ob Jjects or negative objects, More interestingly,
the concept of negative ob Jects permits further unification. A nonconvex object
may be viewed as a mizture of ordinary convex object and negative object, and
thereby, makes it possible to adopt exactly the same computational technique for
convex as well as nonconvex objects. The unified technique, we show, can be easily
understood and implemented if the input polygons and polyhedra are represented
by their slope diagram representations.

Key words: Mathematical morphology, Minkowski operations, negative object, slope
diagram representation.

1 Introduction

1.1 Problem definition

In this paper we deal with the computational aspects of morphological operations of
boundary-represented geometric objects. Two operations considered in this paper are

1



Minkowski addition @ (also called dilation) and Minkowski decomposition & (also known
as erosion). These two operations which form the kernel of all other morphological

operations are defined as follows.
If A and B are two arbitrary sets of points in the real Euclidean d-dimensional space

E¢, their Minkowski addition, A & B, is defined as
Ao B={a+b|a€ A, be B}, (1)

where ‘+’ denotes the normal vector addition of two points, and A and B are called the
summands of the sum A & B. It can also be expressed in terms of the set union and
geometric translation operations. If A, denotes the translate of a set A by a vector p,
that 1s, A, = A © {p}, then it is easy to see that

AeB=BoA=J 4 =] B. ' (2)
beB acA

Minkowski decomposition AS B is the inverse of Minkowski addition in a “restricted”
sense. It is defined as,

AcB= ﬂ A_y. (3)
—~beB

The set B = {—b | b € B} is called the symmetrical set of B with respect to the origin
point.

We use the concept of negative shape in dealing with the computational problem of
these two operations.

1.2 Motivation

The motivation to take up this problem and the approa.ch adopted by us have been
origined from the following facts.

o Morphology for high-level vision. Till this day morphological operations are mostly
used for low-level image processing, that is, for early processing of binary or
grayscale discrete images [18]. But their applications in representing or under-
standing 2D or 3D geometric objects for high-level object recognition is very lim-
ited. This is certainly an enigmatic situation by considering the fact that these
operations are essentially functions of the form f : G(E¥) — G(E?), where G(E?)
denotes the power set of the real d-dimensional Euclidean space E?; their def-
initions do not discriminate whether the underlying sets are discrete images or
continuous geometric objects. Moreover, a number of researchers have pointed out
the relevance of these operations in high-level vision applications such as geometric
modeling, spatial planning, biological form description and understanding, crystal-
lography and textured object modeling, etc. [2, 3, 5, 11, 15]. The close resemblance
between the generalized cylinder representation and Minkowski addition operation
has also been observed.



One reason that may account for this situation is the computational problems as-
sociated with Minkowski operations of continuous objects. Note that any binary
image can be modeled as a set consisting of finite number of discrete points. There-
fore, in computing the Minkowski sum A @ B of two binary images A and B, one
can directly use Eqn.1 or Eqn.2. Similarly, Minkowski decomposition 4 & B of a
binary image A can be computed by means of Eqn.3.

On the other hand, a continuous “well-formed” object (such as polygon, circle,
ellipse, etc. in 2D, or polyhedron, sphere, ellipsoid, etc. in 3D) cannot be specified
as a collection of finite number of points. In general, such an object, say A, is
specified by its oriented boundary, say 6A. This necessitates the computation of
the boundary 0(A @ B) or (A 6 B) of the products from the boundaries A4 and
OB of the operands. But one can immediately see that (A © B) # 9A @ 8B
and also (A © B) # 0A S 0B. In general, 8(A© B) = f(84,8B), and also
0(Ae B) = g(0A,0B), where ‘f’ and ‘g’ denote some complicated functions
whose computations turn out to be quite nontrivial.

Resemblance between morphology and the theory of numbers. We observe a remark-
able similarity between some number theoretic results and morphological theorems,
particularly in the domain of convex objects. Let us consider the number system
(N, +, /), where N denotes the set of natural numbers {0,1,2,...}, and “” and
“/” denote multiplication and division operations respectively, Since within N the
division operation is noi an exact inverse, but only a “restricted” inverse of the
multiplication operation, we may define the division of a number m by another
number n as |m/n]; the floor function notation |z| means the greatest integer
less than or equal to . This number system may be compared with the géornetric
sytem (K, @, ©), where X denotes the set of all compact convex subsets of E¢.
We refer to Table 1, where 4, B,C € K and m,n,p € N.

From the table it appears, as if A @ B in the convex domain is alike to m - n,
whereas A © B is alike to |[m/n|. In this paper we do not attempt to seek why
such a resemblance exists. Instead we adopt the computational guideline that may
be derived from this resemblance. The value of m/n is, in general, a real number
which consists of the “integer part” |m/n| and the “fractional part” m/n — |m/n].
In the integer number domain, at the time of division we discard that fractional
part and take only the integer part. We find, the morphological operations may
also be treated in the similar way. The idea is to devise an operation which is the
“exact” inverse of Minkowski addition operation such that the application of this
operation on two convex objects will produce a generalized geometric object (like
producing real number by division of two integer numbers) which has a physically
‘realizable part” (analogous to integer part) and a “non-realizable part” (analogous
to fractional part). Minkowski decomposition A © B may then be thought of as
the realizable part of the object after discarding the non-realizable part.

The non-realizable part of a generalized object will be referred to as the negative
part. (We avoid using terms such as “non-realizable” or “fractional” part, since



Table 1: Resemblance between morphological system and integer number system

System (K, &, 8) System (N, -, /)
l. |AeB=Bag A m-n=n-m
2. |Ae(Be(C)=(AeB)sC m-(n-p)=(m-n)-p
3. |ADBimpliesCo8 ACCO B m > n implies [p/m| < |p/n]
4, |ACBoeCiff BDAaC m< |nfpl ifn>m-p
5. | Ao B=((A®B)eB)® B m-n=|(m n)/n|-n
6. |A6B=((AeB)eB)eB (m/n] = [(lm/n] -n)/n]
7. |(AeB)eC=A6(BeC) Llm/n]/p] = |m/(n- p)]
8. |Ae(BoC)C(AeB)sC m - |n/p] < |(m-n)/p]
9. |(46B)6CC(46C)0B |m/n] -5 < |(m- 8)/n)
10. | (AeB)@BCA . lm/n| -n<m
11. | (AeB)oB = (((A6B)©B)eB)®B | |[m/n] -n = |(|m/n] -n)/n] -n
12| fA6B=A@C,then B=C Im-n=m-p, thenn=p

they have some widely accepted literal meanings.) The realizable part, that is,
any ordinary geometric object may be called positive.

In our subsequent discussion we show how such a computational strategy can be
devised.

2 DMorphological operations of convex polygons

2.1 Computation by means of support function vectors

The boundary of a convex polytope A in E? can be precisely defined by means of
supporting function of the polytope. (A convex polytope, the analogue of a convex
polygon in E? and a convex polyhedron in E?, is a bounded set which can be written
as the intersection of a finite number of half-spaces in E%) The supporting function

H(A,u) of A is defined for all u € E? by
H(A,u)=sup{< a,u> | a€ A},

where < a,u > denotes the scalar product of the vectors a and u, and “sup” stands for
‘supremum’ or ‘least upper bound’.
Now the following result concerning Minkowski addition of convex polytopes can be

easily proved [6].
Theorem 1 If A and B are two convez polytopes in E?, then for every u € E9,
H(A® B,u) = H(4,u)+ H(B,u). (4)
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From Theorem 1 we can immediately infer:

o For Minkowski addition, it is the direction of u, but not its magnitude, which is
of concern, provided u # 0. Thus without loss of generality we assume that v is a
unit vector, that is, u € §9*, where S9! denotes the unit sphere in E°.

e Furthermore, for convex polygons addition it is not necessary to compute the
supporting function H(A @ B,u) for every u € S* (S* in E? is nothing but a unit
circle); since a convex polygon is completely specified by its oriented edges, it is
sufficient to consider only those u’s whose directions are the same as the outer
normal directions of the edges of the summand polygons.

Let us, therefore, consider the class of convex polygons whose edges have the same
outer normal vectors. In other words, any two polygons belong to this class have pairwise
parallel and similarly directed edges. Note that every convex polygon in E? can be
included in this class by means of introducing edges of zero length. Let C(U) denotes
this class, where U is the ordered set of outer normal vectors of the edges, that is,
U ={w,...,un}. In other words, if any convex polygon A € C(U), then

A={pEE2[ <p,u-;>S T (7::1:'-';”')}

for some 7; € R (¢ = 1,...,n), where R denotes the set of real numbers. Note that 7
1s nothing but the value of the supporting function of A4 in the direction of the outer
normal ;.

As we know, each 7; along with w; specify a closed half-space (in 2D “half-space”
is generally called “half-plane”), and the intersection of all these half-spaces for 1 =
l,...,n, in turn, specify all the edges of A. Therefore, once U is given, A is specified
completely by the vector (71,...,7,). We call it the supporting function vector of A,
and denote it by A(A4).

From Theorem 1 we can now easily derive the following result concerning convex
polygons.

Proposition 1 If two convez polygons A, B € C(U) are represented by the supporting
function vectors (nf,...,n2) and (B,... ,nE) respectively, then their Minkowski sum
A © B 1s specified completely by the vector (nf +n2,... 74 +7B). '

Proposition 1 implies that Minkowski addition of two convex polygons can be seen as
the vector addition A(A)+h(B) of two points h(A) and A(B) in an n-dimensional space.
From this observation we can now define the “exact” inverse of Minkowski addition. In
computing AS B, we shall first compute the vector h(A)+(—h(B)). This vector, like the
vector h(A)+h(B), again specifies n number of half-spaces having outer normals u;'s, but
some of the half-spaces may become redundant in this case. Minkowski decomposition
A© B then turns out to be discarding those redundant half-spaces, and considering the
rest. Let us state this result as the following proposition.

Proposition 2 If two convez polygons A, B € C(U) are represented by the supporting
function vectors (nf,...,n2) and (nB,...,nB) respectively, then the Minkowski decom-
position A©S B can be obtained by discarding the redundant half-spaces specified by the
vector (nf' =07, ...,n2 — 7).



The novelty of our approach lies in our treatment of not discarding those redundant

half-spaces, but retaining them as essentials.
Example. Let us clarify the idea described so far by means of an example (Fig.1).

ul3 —:(0.1 ) ; i3 3
(-5,3) : (3,3) f 43 = (0,1) % - ’ v3=(-6,3) v2=(4,3)
: u2=(10) AB H
......... E......... e T i temsmseelgareenaransenantacecneseen: —— eaeseehgmessntocooconcboneene
i ; (-1,0) ¥ (1,0) : e  E—
(-1/d,-1/d)” A Eul:(O,-I) ud” 3 ud " 3
P 3-5) : R vd(2,45) § vI=(4-5)
h(A)=(5,3,3.2/d)  h(B)=(0,1,0,1/d) ul ul
(a) Convex polygons A and B whose h(A) + h(B) = (5,4,3,3/d) ADB

U= (u1, u2, u3d, ud),

[d= sqrt(2) ] (b) Realization of Minkowski sum from its supporting function vector

specification in terms of intersection of half-spaces,
and then converting the sum polygon in terms of
vertices and edges

u3 u3
\ 4 § (-4,3) t (2,3)
| — w2
s B .
v\ (2-5) -};1 " ‘}uI h=(3,2,3,1/d)

wl
h(A) + (-h(B)) A O B after removal
h(A) + (-h(B)) = (53,2,3,1/d) as a self-crossing of redundant
polygon half-spaces
(c) Support function vector h(A)+(-h(B)) in terms (d) Removal of redundant
haif-spaces

of half-spaces,

and then converting the half-spaces in terms
of vertices and edges (which becomes a self-
crossing polygon)

Figure 1: Minkowski addition and decomposition by means of supporting function vectors.

As is evident from the example (Fig.1b), Minkowski addition of two convex polygons
1s quite straightforward by means of the supporting function vector h(A)+h(B). In com-
puting the decomposition A © B from the supporting function vector h(A)+(—=h(B)) =
(nit=nE,...,n2=nE), note (in Fig.1c) that one of the half-planes, namely, the half-plane
corresponding to the outer normal u, is redundant. The normal custom is to abandon
this redundant half-plane altogether for further consideration. That effectively means,
appropriate reduction of the corresponding value of the supporting function in the sup-
porting function vector A(A) + (—A(B)). In our example, the corresponding supporting
function value 7 — 52 = 5 has been reduced to 3 (see Fig.1d). This clearly explains

why, in general, (A © B)® B C A. O



2.2 Computation by means of edges: Emergence of Boundary
addition operation W

Representing a convex polygon A by means of its supporting function vector h(A) is not
a very common practice. A more popular representation is the edge length representation
where the boundary 0A is represented by means of a starting vertex v# and the length
it of the edge corresponding to every w;, that is, 64 = {{v#} {4, ..., 4}}. From the
h(A)-representation it is easy to arrive at the edge length representation by finding out
the intersection points of adjacent half-spaces (see the second figures in Fig.1b or Fig.lc).

If the other summand B is also represented in the similar way, that is, 9B =

{{v2},{:2,...,:8}}, then by a straightforward computation we get,
MA)+h(B) = ({vif + 071 {d + 48, + 8D, ()

Eqn.5 states that the boundary 8(A & B) of the Minkowski sum of two convex poly-
gons can be easily computed when the boundaries 84 and 8B are represented in their
edge length forms. The computation essentially involves addition of the lengths of the
corresponding edges of the summands. This operation may be termed as the boundary
addition operation and is denoted by the symbol “&”. Eqn.5 can, therefore, be rewritten
as,

8(A© B) = 048 0B = {{v} +vF}, (i + &, ..., 14 + 5}). (6)

For computing Minkowski decomposition, we convert the support function vector
—h(B) to the equivalent edge length representation which turns out to be

_h(‘B) & {{—-Uf}, {_"‘IB: Ay —f’f}}'

The polygon represented by —k(B), if drawn pictorially, appears like a hole or a negative
region, without any positive region surrounding the hole (Fig.2b). This is because, for
any ordinary convex polygon (Fig.2a) all the outer normals u;’s “diverge outward”,
whereas the normals u;’s of —A(B) appear to “converge inward”; but the directions of
the normals remain exactly the same in both the cases. We may distinguish these two
cases by introducing the concept of sense of the outer normals. The outer normals of
ordinary convex objects which diverge outward may be thought of having a “positive”
sense, whereas the normals of —A(B) have a “negative” sense. We may consider the
polygon represented by —A(B) as the additive inverse of the polygon- B, and may denote
it by the symbol B,

As far as the geometric shape is concerned, B! appear exactly like its symmetrical
set B. But notice the differences among the objects B, B, and B~!. The sense of every
outer normal of both B and B is the same, which is positive, while the directions of the
outer normals at the corresponding faces of the two are exactly opposite. Because of the
positive sense of the outer normals, we consider both B, and B as positive objects. On
the contrary, the directions of the outer normals at the corresponding faces of B and
B~ are exactly the same, but the senses are opposite. Because of the negative sense of
the outer normals, B~! may be considered as a negative object.
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Figure 2: A geometric interpretation of inverse shape B~1: B is also shown for com parison.

Using the notations of boundary addition, we can write
WA)+(~h(B))=8A8OB™ = {{v}! =2}, {4 - /F,...., 8 - B}}. (1)

Since ~(A) + (—h(B)) may contain redundant half-spaces, the polygon represented by
0A Y 0B~ will be, in general, a self-crossing polygon (see the second figure in Fig.1c).
Considering the senses of the outer normals, a self-crossing polygon may appear like a
polygon having a positive part and a negative part (the negative part is shown shaded
in Fig.1c). Since we obtain A © B from h(A) + (—h(B)) by discarding the redundant
half-spaces, equivalently A © B is obtained from 6A & §B~1 by discarding the negative
part of the polygon A & 6B, and considering only its positive part. This can be
expressed symboliczlly as,

8(A© B) = Pos(8AW dB™Y), (8)

where Pos(X) denotes a unary operation which extracts the positive portion of a self-

crossing object X

(Note: In case one is interested only in the “shapes” of the objects but not upon their
positions in the plane, then the starting vertices v vE etc. (appeared in Eqn.6 and

Eqn.7) may be ignored.)

2.3 Computation by means of slope diagrams: Unification of
Minkowski addition and decomposition

The slope diagram representation of a polygon is essentially the edge length represen-
tation in a pictorial form. Since all the outer normals u;’s of a convex polygon lie on
a unit circle 5%, in slope diagram representation we consider a unit circle as the basis.
The representation scheme goes as follows (refer to Fig.3a):

a. The outer normal direction at each edge of the polygon is represented by the cor-
responding point on a unit circle. It is called an edge point. (By “corresponding
point” we mean, that point on the unit circle where the outer normal direction is
the same as the outer normal direction of the edge.)

b. At each vertex of the polygon, it is possible to draw innumerably many outer normals
filling an angle (supplementary to the interior angle at the vertex). This set of outer
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normal directions at the vertex is represented by the corresponding arc on the unit
circle. It is called a vertez arc.

c. Apart from the direction of an outer normal, the sense of the outer normal must also
be indicated. If the sense of an outer normal js negative it will be shown by thick
black points or arcs, while an outer normal having positive sense will be drawn by
thin lines.

d. The length of each edge is associated with its corresponding edge point like a label.
2 2 Q 2+e2 g/2-¢2
: : b1 ; b1z
" i -” 13 13 '
A 135 e, el

2 122
1
/
ABGB
-el (d) Minkowski

& -2
& -1 Y
e24 B _I__B "
el
Po7 * el

(a) Operands A, B and its additive inversa,
and the corresponding slope diagrams

(b) Merged slope diagram {c) Merged slope  decomposition
of AB diagram of A, AOB
and realization of g1 and
A -
3 tH 93 9/‘1 B aﬁ 1

Figure 3: Minkowski addition and decom position by means of slope diagrams; in this case,
0AYOB = 3(A@ B), but 9(A6 B) = Pos(0Aw HB1).

COMPUTATION OF BOUNDARY ADDITION w
Computation of AW 8B or 6A W 8B-1 (vefer to Eqn.6 or Eqn.7; we ignore v, vZ etc,
at present) by means of slope diagrams becomes quite starightforward:

1. [Merging of slope diagrams] Merge the slope diagrams of the two operands into a
single one.

2. [Realization of the boundary sum] From the merged slope diagram, realize the polygon
it represents. The term “realization” means “concatenation” of the edges (that is,
joining end-point of one edge to the start-point of the next edge) in the sequence
they appear in the merged slope diagram (Fig.3b or Fig.3c).

The realization/concatenation process may need some more clarification. First, refer
to Eqn.6 concerning Minkowski addition. In the merged slope diagram two distinct cases
may arise: (1) If two edge points of the summands occur at the same position of the
unit circle, it means both the edges have the same outer normal direction. Therefore,
concatenation of these two edges effectively means the addition of the lengths 2 + /2
of the edges. (2) If one edge point of a summand lies on a vertex arc of the other
summand, it means the edge of the second summand has zero length at that outer
normal direction. Adding zero length is nothing but considering only the edge of the
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first summand, and that is precisely we achieve by concatenation. N ext, refer to Eqn.7
concerning Minkowski decomposition. Here all other things remain as before except that
some of the edge points (resulting from the B~? polygon) in the merged slope diagram
are black, that is, have negative sense. If the sense is negative we have to subtract the
corresponding length of the edge of B from that of A. Clearly, the subtraction of a
directed edge from another is nothing but reversing the direction of the former and then
concatenating with the latter.
The slope diagrammatic approach clearly brings out the following facts:

o Just as in the real number arithmetic, instead of treating the division m/n as a
separate operation we may consider it as the multiplication with the multiplicative
inverse 1, in the similar way the Minkowski decomposition 8(A © B) operation
may also be viewed as the addition with the additive inverse §B-1.

e Just as in the system (N, -, /) we do not obtain closure under the division operation
and we need to extend the number domain from N to the set of all positive
rational numbers Q* for the purpose of closure, similarly to obtain closure under
Minkowski decomposition it is necessary to extend the domain K of the ordinary
convex objects; it is done here by introducing the concept of negative shape.

o Both Minkowski addition and decomposition can be reduced to a single operation
W; Minkoweld addition involves ho ndary addition ¥ of two positive (ordinary)
objects, while Minkowski decomposition involves boundary addition of one positive
and one negative object. Boundary addition, as we have shown, is essentially
nothing but addition of real numbers (representing the lengths of the edges of the
operand polygons; lengths may be positive or negative).

e Just as [m/n] is obtained by discarding the the fractional part of m/n, similarly
9(A © B) is obtained by discarding the negative part of AW 8B,

3 In the domain of convex polyhedra

One of the basic theses of this paper is: Minkowski operations of three- or higher-
dimensional boundary-represented objects in K¢ eventually reduce to Minkowski opera-
tions of polygons in E?, which, in turn, boil down to addition of real numbers. At present
we shall take up the case of polyhedral objects, though our approach is general enough
to extend beyond 3-dimension. The approach is to find relations for convex polyhedra
which will be similar to Eqn.6 and Eqn.7, and then to resort to the slope diagrammatic
technique as we have done for convex polygons.

3.1 Computation by means of faces

The boundary of a convex polyhedron can be represented by means of vertices, edges,
and facets. Our approach demands these concepts to be defined more precisely.



If for some u # 0, we have H(4,u) < co (this condition ensures that A4 is bounded),
then the hyperplane

L(Au)={p€ B | <pu>=H(A4u)}

is called the supporting hyperplane of A with outer normal u. In E? the supporting
hyperplane becomes the supporting line of a convex polygon A with outer normal u,
while in E? it is the supporting plane of a convex polyhedron A.

A face of A with outer normal u, denoted by F(A4,u), is then defined as

F(A,u)=L{A4,u)N A.

Thus F(A,u) is precisely that set of boundary points of A where the outer normal is
either u or parallel to u. Now considering all the directions of the B¢ space as the
directions of the outer normal u, the collection of the corresponding faces will describe
the entire boundary of A. That is, the entire boundary of A can be described as 84 =
U F(A4,u).
uES§d-1
This notion of F(A, ) is related to our conventional concept of boundary of an object

in terms of vertices, edges, faces, etc. in the following way. If 4 is a convex d-dimensional
object then L(A,u) is a (d — 1)-dimensional hyperplane. Therefore, F(A,u) may have
dimensions 0,1,...,(d—1). Normally, a face F/(A,v) of dimension » (r = 0,1,...,d— 1)
is called a r-face of A. A maximal proper face of 4, that is, a (d — 1)-dimensional face
is called a facet of A. Clearly, if A is a 2-dimensional convex polygon, then F(A,u)is
either a O-face (vertez) or an 1-face (edge). Since an edge of a polygon is a maximal
proper face, it may also be called a facet of the polygon. When A is a 3-dimensional
convex polyhedron, in addition to being either a vertex or an edge, F(A,u) may also be
a 2-face (facet).

(Note: For 3D objects, instead of “facet”, the term planar “face” is more frequently

used.)
From Theorem 1 it is not difficult to derive the following result [, 10].

Theorem 2 Let A and B be two convez polytopes in E. Then for every u € 591,
F(A® B,u) = F(A,u) ® F(B,u).

Therefore, the boundary 8(A @ B), in terms of faces of the summands, can be expressed
as,
0(AeB)= |J F(A@B,u)= |J (F(4,u)® F(B,u)) (9)
ugSd-1 wESd—1
Eqgn.9 will be our basis of computing Minkowski operations of convex polyhedra. We
shall first argue that it is not necessary to compute (F(4, 1)@ F(B,u)) for every u € §?
in the three-dimensional space. Just as a convex polygon is completely specified by
its oriented edges, similarly a convex polyhedron is completely specified by its oriented
facets (planar faces). Therefore, it is sufficient if we compute only the facets of A & B,
but not every F(A @ B,u)’s. The facets of A @ B, as is evident from Eqn.9, can be
obtained by
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1. Minkowski addition of two facets: adding a facet of A with a facet of B, that is,
facety @ facetp,

2. Minkowsk: addition of a facet and an edge: adding a facet of one of the two
summands with an edge of the other, that is, facets @ edgep or edges @ facetg,

3. Minkowsk: addition of a facet and a vertez: adding a facet of one of the two
summands with a vertex of the other, that is, facet4@vertezp or vertez 4@ facetp,

4. Minkowski addition of two non-parallel edges: adding non-parallel edges of A and
B, that is, edges @ edgep,

where the facets, edges, and vertices so added lie in supporting planes with parallel outer
normals. ,

Now Minkowski addition of two facets which lie in supporting planes having parallel
outer normals is equivalent to Minkowski addition of those facets lying in the same plane.
That, in turn, is nothing but Minkowski addition of two convex polygons in E?. The
same is true with Minkowski addition of a facet and an edge, or, addition of two edges.

In Fig.4 we depict a typical such addition.

S=A88

Figure 4: Computation of |J (F(A,u)&® F(B,u)) for two convex polyhedra A and B in
ugSd-t .

E3,

(In the similar way we can continue further and show that Minkowski addition of
two convex polytopes in E? reduces to Minkowski additions in E4~1,.. ., and eventually
reduces to Minkowski additions of convex polygons in E2. That means, it finally reduces
to additions of real numbers.)

In computing Minkowski decomposition A © B, exactly like the polygonal case, the
first step is to compute the boundary addition 84 & B~! and then to determine the
positive portion Pos(GAW 0B™!) of it. In terms of the faces of the operand polyhedra
the first step is the computation of U (F(S,u)® F(B~',u)). Therefore, according

uEsd-—l
to our previous discussion it will reduce to facety @ facetg-i, facety @ edgeg-1 or

edges® facetg-1, facet y@uvertezp-1 or vertez 4@ facetg—1, and edge @ edgeg—1 (where
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Figure 5: (a) Geometric representation of a negative polyhedron B~*; (b) Computation of
A © B using boundary addition operation.

they lie in supporting planes with parallel outer normals). Each of these additions, as
we have argued before, can first be reduced to the boundary addition of a positive and a
negative convex polygons in E?, which, in turn, reduces to subtractions of real numbers.

In Fig.5a we present an example of a negative polyhedron B~*. In Fig.5b we show
Minkowski decomposition of two convex polyhedra by means of boundary addition &
and the Pos operation thereafter.

3.2 Slope diagram representation of convex polyhedron

The essential idea of the slope diagram representation of an object is to capture the
behavior of the outer normals of the object in an explicit way. The behavior of the
directions of the outer normals at various faces (that is, at the facets, edges, and vertices)
of a convex polyhedron can be described as follows:

1. At each interior point of a facet of a polyhedron, there can be drawn only one
outer normal.

2. At each point of an edge (different from a vertex), it is possible to draw an infi-
nite number of normals filling a plane angle which will be supplementary to the
corresponding interior angle. (In some literature this interior angle is called the
dihedral angle corresponding to the edge. The exact definition is: the dihedral
angle corresponding to an edge is the angle between the planes of its two adjacent
facets).

13



3. At each vertex, it is possible to draw infinitely many outer normals which fill a
solid angle (interpolating between the incident facet normals).

For the slope diagram of a polyhedron, we have to start with a unit sphere 52,

a. Facet representation. Similar to the polygonal case, each facet can be represented
by the corresponding point on the unit sphere. It is referred to as a facet point.

b. Edge representation. Each edge of the polyhedron, we claim, can be represented by
the arc of the great circle joining the two facet points corresponding to the two
adjacent facets of the edge. We call such an arc an edge arc of the polyhedron.
(Note: The intersection of the surface of a sphere by a plane is called a great circle
if the plane passes through the center of the sphere. Clearly, only one great circle
can be drawn through two given points on the surface of the sphere, except when
the points are the extremities of a diameter of the sphere. By the “arc of a great
circle” generally we mean the shorter of the two arcs joining the two points.)

c. Vertex representation. According to the scheme, it easy to see that the directions
of the outer normals at any vertex v of the polyhedron will be represented by a
region on the unit sphere. This region is bounded by the edge arcs corresponding
to the edges incident at v, and the vertices of this region are the facet points
corresponding to the facets of the polyhedron incident at v. We call it a wertes
TEGION.

d. To denote the sense of an outer normal and the length of an edge we use the same
conventions as adopted for polygons.

In Fig.6 we show the slope diagram representations of two convex polyhedra. The
thick lines and black dots in the diagrams indicate negative sense of the outer normals.
(Note: In Mount and Silverman [12] and Guibas and Seidel [8] we find notions partly
similar to the idea of slope diagram of convex polyhedron. But they did not take into
account the notion of “sense” of a outer normal which is a crucial notion in our approach.)

Since the slope diagram of a polyhedron is a 3D figure, it may not be a very convenient
representation to deal with for the purpose of intuitive understanding and visualization.
We, therefore, transform this representation to an equivalent two-dimensional form by
means of the stereographic projection. The stereographic projection is a projection of a
sphere from one of the points s onto the plane T' tangent to the sphere in the diametrically
opposite point s’. The point s is called the projection center.

The transformation equations for the stereographic projection are given in many
standard texts such as [16]. Consider a unit sphere whose center o is at the origin,
and the projection center s is located on the oz axis. In this case the point s has the
coordinates (0,0,1) and the projection plane 7' is the plane Z = —1. Let the point
p(z,y, z) of the sphere be projected stereographically into the point p'(2’,y’, —1) of the
plane T'. Then the coordinates of the point p, corresponding to the point p/, are equal to

14



(b) Negalive convex polyhedron

Figure 6: Two convex polyhedra and their slope diagram representations (drawings are not
done according to exact measure).

@ = ?fﬁf'ﬂ’ y= —,gfg;ijrz, % = Ei,;i—gi—z. The inverse mapping, that is, the coordinates
of the ‘point p', corresponding to the point p, are equal to 2’ = 22y = i

From the above equations we find that if p is the projection center s itself, that is, p =
(0,0,1), then we have difficulty in computing @’ and y'. This difficulty is circumvented
by extending the plane T by an “ideal” point which is called the point at infinity.

In the stereographic projection of a slope diagram, any facet point at (z1,¥1, z;) will
be projected onto the point (z1',1') of the T-plane; the point (z1',%1') can be determined
using the above equations. Any edge arc will be projected either as a straight line or
a circular arc. An edge arc joining two facet points (z1,¥1,21) and (22,2, 22) will be
projected on the plane T' as: (z1y2 —zqy1)(z" +9")+4(y122 —y2)z' +4(21T2 — 231)y' —
4(z1y2 — zay;) = 0. This is the equation of a circular arc unless 1y, = T2y1 when it
degenerates into a straight line segment.

In Fig.7 we present the stereographic projections of the slope diagrams shown in

Fig.6.

3.3 Computation by means of slope diagrams

Assume that two convex polyhedra A and B are given in the form of their slope diagram
representations. Exactly like the polygonal case, the boundary addition computation
involves two steps: (a) merging of slope diagrams of the operands, and (b) realization
of the boundary sum from the merged slope diagram.

If we merge these two slope diagrams (that is, overlay both the slope diagrams on
the same unit sphere 5?), we can immediately identify the corresponding F/(A,u)’s and
F(B,u)’s (or, F(B™%,u)’s in case of decomposition) which have the same outer normal
direction u, because they will occupy the same position on the sphere. That means,
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(a) Projected slope diagram (b) Projected slope diagram
of a positive tetrahedron of a negative parallele-
(the shaded regions de- piped
note vertices, the arcs (black dots denote facets;
denote edges, and the the facet point {5 is projected
vertex points denote oa the point at infinity).
facets).

Figure T: Stereographic projections of the slope diagrams of the convex polyhedra depicted
in Fig.6 (drawings are not done according to exact measure).

wherever there are intersections between two slope diagrams, the corresponding faces of
the operands need to be added (or, subtracted).

To realize the boundary sum 0AWIB or AW OB~ from the merged slope diagram,
we have to identify only the facet points of the boundary sum. Any facet point will be
created in one of the following ways: (a) intersection of a facet point of one operand
with that of the other (which wneans, addition of two facets), (b) intersection of a facet
point of one with an edge arc of the other (which means, addition of a facet and an
edge), (c) intersection of a facet point of one with a vertex region of the other (which
means, addition of a facet and a vertex), and (d) intersection of an edge arc of one with
a non-parallel edge arc of the other (which means, addition of two non-parallel edges).

In case of Minkowski decomposition, if A4 & OB~! turns out to be a self-crossing
polyhedron (as shown in Fig.5b), we have to discard the negative portion and to consider
the positive portion only.

In Fig.8 we demonstrate computation by means of slope diagrams through an exam-
ple of addition of a rectangular plane (A) which is parallel to the zz-plane to another
rectangular plane (B) parallel to the yz-plane. The resulting sum shape 4 @ B will be
a rectangular parallelepiped.

4 Morphological operations of nonconvex objects

4.1 Problems with nonconvex objects

If the summands A and B are nonconvex objects, Theorem 1 or Theorem 2 do not hold
any longer. We encounter three kinds of problems. We briefly discuss the problems
and suggest some remedies so that Minkowski operations of convex as well as nonconvex
objects can be viewed through a single algorithmic framework. (Unless otherwise stated,
the operands are assumed to be simply connected). '
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L(A, u)

A AN

(a) Nonconvex palygon (b) Nonconvex polyhedron

Figure 9: Local supporting hypérplane L({A,u) at the neighborhood of a point a of A.

a. Localized definition of F(A,u). A hyperplane L(A,u) supporting a nonconvex
object A at some point a on the boundary of 84, unlike convex object, may not
be a supporting hyperplane of A - it may intersect the interior of A (Fig.9).

To remedy this situation we can extend the notion of supporting hyperplane to
relative/local supporting hyperplane. The idea is to consider, not the whole of
the object A4, but only a neighborhood of the point a. The neighborhood of q,
a very small circular disk (or spherical ball in case of 3D object), is commonly
denoted by N(a). We call L(4,u) a local supporting hyperplane of A if it is a
supporting hyperplane of the set AN N(a). That means, L(A,u) is a supporting
hyperplane only locally near the point a € 84, but not globally for all the points
of GA. Assuming L(A,u) to be local supporting hyperplane, we may extend the
definition of a face F(4,u) accordingly, that is, F(4,u) = L(A,u)N (AN N(a)).

The price we pay for this localized definition of F(A,u) is this: if any of the
summands A4 or B is nonconvex, it can no longer be assumed, like the convex case,

that all the points in the collection |J (F(A,u)® F(B,w)) will lie on the global
ueSd-1
boundary (A @® B) of the sum; some of the points in the collection may happen to

be interior points of A ® B. Symbolically, A® B)C U (F(4,u)8& F(B,u)).
uEegd-1

b. Anomalous behavior of the outer normals at the nonconvex faces. Some of
the faces of a nonconvex object are convex faces, while the rest are nonconves faces.
In Fig.10a the vertex vy, or the edges a;, a; of the polygon are nonconvex faces,
while vy, 3, or edges as, a4 are convex; similarly, the edge e; of the polyhedron is
a nonconvex face. (The term “nonconvex face” is used here in the following sense.
Consider a simple (nonconvex) polygon. A vertex of it is called a nonconvex
vertex (v; in the example figure) if the internal angle at the vertex is more than
180 degrees; otherwise it is convex. The edges of the polygon that are incident to a
nonconvex vertex (a; and a; in Fig.10a) are called nonconvex edges, or, nonconvex
faces, in general. Similarly, for a polyhedron an edge is nonconvex if the internal
angle is more than 180 degrees, and the facets incident to a nonconvex edge are
the nonconvex faces.)
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(&) Nonconvex pelygen (b) Nonconvex polyhedron

Figure 10: Anomalous behavior of the outer normals at the nonconvex faces.

The basic problem is, the nature of outer normal at a nonconves face is different
from that at a convez face. As we have already described in Sec.2.2, all the faces of
an ordinary convex object are convex, and the outer normals at any two adjacent
convex faces appear to diverge outwards from a point inside the object. In contrast
to that, the outer normals at any two adjacent nonconvex faces converge to a point
outside the object.

We remedy this problem in the following way. Consider the region complement
of the nonconvex part of the object 4 (part of this complement region for the
polygon is shown shaded in Fig.10a). This complement region is like a hole or a
negative region, and the nonconvex faces of A constitute a part of the boundary
of this hole. (Intuitively, a nonconvez object can be regarded as a combination of
positive and negative convez objects).

If we would have added (in the Minkowski addition sense) the positive object B to
this hole, the resulting faces would have been determined by subtracting each face
of the hole from the corresponding face of B. In other words, a nonconvex face
Fy(A,u) of A and the corresponding convex face F(B,u)of B are of opposite types;
if one is considered as positive, the other one would be considered as negative. Since
we are adding to B — not the hole — but the positive part of A, it necessitates that
the corresponding face of B has to be subtracted from the nonconvex face of A.

Going by the same logic, in computing A & B which reduces to the boundary
addition of the positive object A and the negative object B~!, a convex face of
B~! is subtracted from the corresponding convex face of A, whereas it has to be
added with the corresponding nonconvex face of A.

c. Need to maintain explicit topological information of the operands. Here
by “opological information” we mean how the various faces of the object are
connected. In case of a convex polytope, the topological information need not
be maintained explicitly, since it can be easily derived from the outer normal
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directions of the faces. For a given outer normal direction u, a convex polytope
has one and only one face; moreover the faces of a convex polytope are connected
in such a way that their outer normal directions are automatically arranged in
sorted angular order (though the sorting orders for three- and higher-dimensional
polytopes are more complicated). Because of this reason, we have already seen in
case of a convex polygon, the topological connections are automatically established
if the consecutive edge points and vertex arcs are appropriately marked on the
unit circle of its slope diagram (see Fig.3 where we can say, by inspecting the slope
diagram of a polygon, that an edge /; is connected to the edge I, etc.).

However, that does not happen with nonconvex objects. Consider the nonconvex
polygon shown in Fig.10a. For some outer normal direction, say u, the polygon has
three vertices vy, vz, and vs, and the vertices are all disconnected. The remedy is to
maintain explicitly, in case of a nonconvex object, the information how the various
faces of the object are connected. By means of slope diagram representation, we
shall shortly show, this can be easily achieved.

4.2  Boundary addition of nonconvex polygons by means of
slope diagrams

The slope diagram representation of a nonconvex polygon is slightly more complicated
than that of a convex polygon. For the convex edges and vertices, the representation
is exactly the same as explained in Sec.2.3. For the nonconvex portion, the following
additional considerations must be made:

¢ To maintain the topological connectivity of the edges, we have to observe a forward
and backward motion along the unit circle corresponding to a nonconvex vertex

(Fig.11b or Fig.12b).

o The sense of the outer normals at a nonconvex vertex is opposite to that at a
convex vertex. Therefore, the vertex arc corresponding to the nonconvex vertex
must be depicted by thick black lines to indicate its negative sense.

Computation of boundary addition & by means of slope diagrams remains exactly the
same, that is, (a) merging of the slope diagrams of the operands, and (b) realization of
the bounda,ry sum from the merged slope diagram. However, the second step is slightly
more involved in case any of the operands is nonconvex.

First, consider the boundary addition A W 8B. As we have noted, in a nonconvex
portion of a slope diagram the path along the unit circle is traversed “three times” — twice
in the positive sense and once in the negative sense (Fig.11b or Fig.12b). Therefore, at
the time of realization of the merged slope diagram if there is any edge point of the other
summand lying within this portion, it must be considered three times in the appropriate
manner. The term “appropriate manner” means, in the negative arc portion (depicted
by thick black lines) the edge has to be subtracted, while in the positive arc portions it
has to be added in the usual way (Fig.11c). Clearly, the subtraction of a directed edge
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Figure 11: Minkowski addition of nonconvex polygons by means of slope diagrams.

from another is nothing but reversing the direction of the former and then adding it
with the latter (Fig.11d).

One important point to be noted here. Since a nonconvex polygon is treated here ag
a combination of positive object and negative object, the boundary addition 84 & 8B
of nonconvex polygons, unlike the convex case, does not directly produce the boundary
9(A @ B) of the Minkowski sum. In general, as shown in Fig.11d, A W 6B may be an
oriented self-crossing polygon. The boundary of the sum can be obtained by determining
the positive region enclosed by the resulting self-crossing polygon (Fig.1le). We may
symbolically express the complete Minkowski addition as,

8(A® B) = Pos(0A W 8B), - (10)

for general polygons — convex or nonconvex.

The computation of 8AWAB~! is in 1o way different, except that senses of the edge
points and vertex arcs of B! are exactly opposite to those of B. 4 W 8B~! will be, in
general, a self-crossing polygon, and (A S B) = Pos(8A W 0B-1).

In Figure 12 we show an example of Minkowski decomposition.
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Figure 12: Minkowski decomposition of nonconvex polygons by means of slope diagrams.

4.3 Nonconvex polyhedra and the slope diagrammatic ap-
proach

The slope diagram of a nonconvex polyhedron, like a convex one, can be captured on
a unit sphere by indicating the facet points, edge arcs, and vertex regions. A typical
such example is shown in Fig.13b. Note that the edge arc connecting the facet points
f, and fs are drawn by thick black lines to indicate its negative sense. The projected
slope diagram is also shown in Fig.13c.

The boundary addition ¥ of nonconvex polyhedra also remains exactly identical,
that is, merging of the slope diagrams of the operands, and then realization of the
boundary sum from the merged slope diagram. In case of nonconvex polyhedra too,
like the nonconvex polygonal case, the boundary sum will be a self-crossing polyhedron,
in general, even if both the summands are positive polyhedra. In Fig.14 we present
an example of Minkowski addition by means of the boundary addition and the Pos

operation.
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Figure 13: A nonconvex polyhedron and its slope diagram representation; the projected slope
diagram is also shown (drawings are not done according to exact measure).

< A Lz e
oAlaB d(A® B) = Pos(3AlDB)

Figure 14: Minkowski addition: boundary addition of two positive polyhedra, and the be-
havior of the sum at the nonconvex portion.
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5 The summary of our approach: A unified algo-
rithm

5.1 TUnified algorithm

We can summarize our discussion by saying that we have arrived at a unified approach
to compute Minkowski operations of boundary represented geometric objects. We find

that:

o Both Minkowski addition and decomposition are essentially the same operation;
while Minkowski addition is basically a boundary addition operation of two positive
objects, Minkowski decomposition is the boundary addition of one positive and one
negative objects;

e Minkowski operations of both convex and nonconvex objects are essentially the
same; the only extra consideration needed is to treat the nonconvex faces as the

faces of a negative object;

o Minkowski operations of both 2D and 3D objects (in fact, general d-dimensional
objects) are exactly alike; they eventually reduce to addition/subtraction of real

numbers.

- Below we present our unified algorithm to compute Minkowski operations of polyg-
onal and polyhedral objects.

Unified algorithm to compute Minkowski operations
(Input operands are polygons or polyhedra which are specified in their boundary repre-

sented forms.)
A. COMPUTATION OF BOUNDARY ADDITION OPERATION &

1. [Formation of slope diagrams] Represent the operands in their slope diagram
forms. (In case of computing A @ B the operands are A and 8B, while the

operands are §A and B! in computing A& B.)

2. [Merging of slope diagrams] Merge the slope diagrams of the two operands into
a single one.

3. [Realization of the boundary sum/ From the merged slope diagram, realize the
polygon or polyhedron it represents. This polygon or polyhedron is the
boundary sum 8A W 8B or 0A W 0B, which is, in general, a self-crossing
geometric object. Let us call it Spoun.

B. COMPUTATION OF MINKOWSKI OPERATIONS

4. [Determination of Pos(Ssun)] Compute the boundary of the positive portion
of Shoun. This will be equal to 8(4A & B) or 8(A © B).
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5.2 Complexity analysis of the unified algorithm

Consider the complexity of the algorithm for 2D polygons. Let ny; and n; be the number
of edges of the input polygons. Step 1 of the algorithm can then be carried out in
O(mny + ng), that is, in O(n) time, where n = n; + ny = total size of the input. Let k be
the number of edges of the boundary sum Seoun. Step 2 and Step 3 then require O(k)
time. Thus the computation of Spoun totally takes O(n + k) time. Note that the size
of k may vary from n; + n; (in case of Minkowski addition of two convex polygons) to
O(nins) (in the most general case). In computing Pos(Skoun), that is, in Step 4, the
basic algorithmic step is to “determine all the intersections among k given straight line
segments in the plane”. This can be done by using the method of Bently and Ottman [14]
whose time complexity is O((k +m)log k), where m denotes the number of intersections
among the k line segments. There is another improved, but slightly difficult algorithm
proposed by Chazelle [14] whose time complexity is O(m+ (klog® k/ log log k)). Thus the
overall time complexity of the unified algorithm will be O(n+k+m-+(k log? &/ log log k)).
Note that, in general, m < ( ; ) = O(E*)

In case of 3D polyhedra, let n; and n; be the number of edges of the two input
polyhedra. Since the number of vertices, edges, and facets of a polyhedron without any
hole follow the Euler’s formula,

no. of wvertices — no. of edges + no. of facets = 2,

we can say that the numbers of vertices and facets of a polyhedron are related to its
number of edges by a small constant factor. In other words, we say that the sizes of
the input polyhedra are of the orders O(n;) and O(n;) respectively. Therefore, Step 1
of the unified algorithm can be carried out in linear time, that is, in O(n) time, where
n = ny + ng. If k denotes the total number of edges in Syoun, then Step 2 and Step 3
take O(k) time. Therefore, the computation of Syoun totally takes O(n + k) time. The
major computational cost in the 3D case arises in Step 4. The crudest approach to
the computation of Pos(Soun) consists of determining the intersections of each facet of
Spoun With every other facet. It is easy to verify that such an approach may take as
much as O(k?) time. Clearly this step dominates the initial step of determining Sioun,
and the overall time complexity of the algorithm becomes O(k?), that is, O(n*) in the
worst case.

6 Simplification of the unified algorithm depending
on the type of inputs

At this point we must clearly state that the unified algorithm presented above is a
general framework in which the underlying methodology of computation of Minkowski
operations is expressed in an algorithmic form; but we do not stress that exactly the
same algorithm should be used in every case. In other words, if the input set is endowed
with more structure, for example, if both the operands are convex, etc., it is necessary
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to modify the algorithm and the data structures appropriately in order to increase tke
computational efficiency. We take up here a few special cases to demonstrate how the
structure of the input set can be exploited fully to make the algorithm more efficient.
We also show how, in certain cases, the unified algorithm automatically reduces to a
simpler algorithm, since some of the computational steps may no longer be required.

TWO-DIMENSIONAL CASES

1. Minkowski addition of two convex polygons

In Sec.2.3 we have given an algorithm for addition when both the input polygons A
and B are convex. Step 4 of the unified algorithm is not required, since (A ® B) =
Pos(0AYOB) in this case. Therefore, the complexity of the algorithm becomes O(n+k).
Since, in this case, £ = ny + n, = n, the complexity is linear, that is, O(n). The reader
may also refer to an algorithm by Schwartz [17]. :

2. Minkowski decomposition of two convex polygons

In Sec.2.3 we have also discussed how to determine A© B, when both A and B are convex.
The same algorithm is discussed in detail in Ghosh [3, 4]. It is easy to see that the
computation of the boundary sum AW 8B~ will take O(n) time, since k = ny +ny =n
in this case too. However, Step 4 may not be avoided since the boundary sum, in
general, is a self-crossing polygon. But it is quite easy to obtain a much faster algorithm
to execute Step 4, since the n line segments in the boundary sum are not arbitrary
line segments in the plane; these segments are, in fact, translated edges of the convex
polygons A and B. In [3] an O(n,) algorithm for Step 4 is given, where n; denotes the
number of edges of A. Thus the overall time complexity again reduces to O(n). We also
refer the reader to Guibas et al [7].

3. Minkowski decomposition A © B where 4 is a convex polygon
Consider the decomposition A & B, where A is a convex polygon, but B is a general
polygon, not necessarily convex. From the set theoretic result we know [3], if A is convex

set, then
A6 B = A6 conu(B),

where conv(B) denotes the convex hull of B. Therefore, to obtain an efficient algorithm,
it is advisable to determine the convex hull of B first, and then to use the convez-convez
decomposition algorithm as discussed above. Let n, and ny be the number of edges of
A and B respectively. To determine conv(B) we may use any standard convex hull
construction algorithm, such as Graham’s scan algorithm [14] that runs in O(n; logn,)
time. As shown above, A © conv(B) takes O(n) time, where n denotes the total size of
the input polygons. Therefore, A © B can be determined in O(n + n, logny) time.

4. Minkowski operations of two planar regions whose boundaries are smooth

curves
First, consider the addition A & B. We assume that the boundary curves of both A

and B can be represented by smooth analytic functions. Let us denote them, in the
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Figure 15: Minkowski addition of two regions bounded by smooth curves.

parametric form, as follows:

0A = [Am(ti); Ay(tl)L
0B = [B.(t2), B,(t2)],

where 1, ; are two scalar quantities and are closed intervals on #;-axis and t,-axis
respectively; A; (1) represents a polynomial function of t;, etc. We assume that 94 and
0B are oriented in the sense corresponding to an increase in the parameters ¢; and #,
respectively. :

The corresponding faces F(A4,u) and F(B,u), in this case, means the points of 94
and ¢B respectively where the tangent lines are parallel and similarly oriented (Fig.15).
Therefore, the determination of AW B reduces to the following sequence of operations:
(a) For every point a € JA find the direction of the tangent line, and then determine
the corresponding point, say b € 0B, where the tangent line is parallel and similarly
oriented; then (b) vectorially add a and b, that is, a + b. The method is clearly depicted
in Fig.15.

In certain circumstances it may be possible to determine 84 & 6B completely ana-
lytically. Let a = [A,(¢;), 4,(21)] for some ¢; = ¢|. To obtain the corresponding point
b € OB, we have to solve the following equation for t,,

6By(ta)/bt §A,(t)/ 6t
]:53:(t2)/5t2] - [Mm(tl)/gtlL:t; (11)

Here 6 X(t)/6t denotes the differentiation of the function X(t) with respect to .
Eqn.11 yields the solution for ¢; in terms of #]. Let ¢, = h(¢}), where A(t)) de-
notes some polynomial in #;. Then the corresponding point b can be expressed as
b= [Bz(h(t1)), By(h(t,))]. Therefore, the analytic expression for the boundary sum will
be,
OAW OB = [Ax(t1) + Ba(h(t1)), Ay(tr) + By(h(t1))] (12)

Whether A W 0B will be a self-crossing curve or not clearly depends on the nature
of A and 0B. It is, therefore, not possible, in general, to comment on the overall com-
plexity of the algorithm which involves determination of Pos(0AW IB) if the boundary
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sum is self-crossing. However, in special cases where both A and B are convex, we may
get constant time algorithms.

For more details in this regard, we refer to Ghosh [1, 3]. We also refer to Horn and
Weldon [9] where there is a mention of sum of two eztended circular images. An extended
circular image of a shape is somewhat analogous to the slope diagram representation of
the shape.

THREE-DIMENSIONAL CASES

5. Minkowski addition of two convex polyhedra
From the unified algorithm it is not difficult to derive the following result,

Theorem 3 Let A and B be two conver polyhedra. Let vi* (i = 1,...,n;) be the
(position vectors of the) wvertices of A, and v;® (7 = 1,...,n2) be the vertices of B.
Then the sum

A B=conmv{vA4+v;® |i=1,...,m, 7=1,...,m2},
where conv(X) represents the convez hull of a set X.

This result can be used to devise a very simple two-step algorithm to add a convex
polyhedron to another convex polyhedron. The first step is to vectorially add every
vertex of A with every vertex of B. The total number of points thus generated will be
niny. So this step takes O(nyny) time. The second step is to determine the convex hull
of these niny points in the 3D space. Using some standard algorithm, say Preparata-
Hong algorithm [13], this can be accomplished in O(nyn;lognin,) time, which clearly
dominates the computation of the first step.

For the addition of convex polyhedra the reader may also refer to Guibas and Seidel

8].

6. Minkowski addition of a space curve by a spherical ball

We have already shown that if the boundaries of 2D operands can be expressed as
smooth analytic functions, it may be possible to obtain the boundary of the product
object purely analytically. Here we take up an example to demonstrate this fact for 3D

operands as well.
Let A be a space curve whose parametric equation is given by,

0A = [A.(1), Ay(2),0)],
and B be a sphere of radius r whose equation of the boundary is,
0B = [z,y, 2], where, z* +y* + 2° = 1%

The center of the sphere is assumed to be at (0,0, 0).

Let a be a point on the space curve, say a = GA(t = t'). We have to find out the
corresponding point(s) F(B,u) on B. Since A is a space curve, the outer normals at
a form a plane, called the normal plane at that point (Fig.16b). The equation of the
normal plane can be obtained in the following way.

28



-

A Normal plane "
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-
P
dB
(a) Sphere of radius r. " (b) A space curve and (c) Atypical  Spoup
ts "normal plane" at for Minkowski addition
the point a. of a closed space

curve and a sphere

Figure 16: Minkowski addition of space curve by spherical ball.

The unit tangent vector w of 04 at a is given by,

where Ag(t) = ‘i&(ﬂ, etc., and | = \/(Am(t))z + (A, (t))2. (Hereafter we shall write A,,
etc., instead of A.(t).

One point of the normal plane is the the point a, and the unit tangent vector w is
normal to that plane. Therefore, the equation of the normal plane at a is given by,

A
—(z— Az) + T"(y —A)+0(2-0)=0.
Or, . _
As(z — Az) + Ay(y — Ay) = 0,

where t = t'.
The corresponding points F(B,«) will be the intersection points of B with a plane
which is parallel to the normal plane and passes through the center of the sphere.
The equation of the plane parallel to the normal plane and passes through the point
(0,0,0) is,
Az + A,y =0, wheret=1

Substituting the value of y (in terms of z) from the above equation to the equation of
the sphere, we obtain
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Similarly, substituting the value of z, we get

Y

( ( 1+A::/A'.2 )

That means, the intersection points, that is, F(B,u) can be expressed as,

T =F,co80,y = F,cos8,z=rsiné,

where 6 varies from 0 to 27 radians, and

7-.2
R = i = F.(t=1),
\(1+ A 1A
F / e Fy(t =t')
y = \(1+AU2/Am2) -ty - 2
Therefore, 0A W dB will be given by,

z(t,0) = Fo(t) cos 8 + Ax(t), y(t,8) = F,(t)cos6 + Ay (), 2(t,8) = rsind.

One typical AW 0B is shown in Fig.16c.

7 A brief summing up
Let us mention the significant concepts introduced and developed in this paper:

o Resemblance between the geometric system (K,©®,8) and the number system
(N) "3 /) l

o Concept of inverse or negative shape, and thereby, a more generalized notion of
geometric objects

e Unification of Minkowski addition and Minkowski decomposition as a single oper-
ation of boundary addition W

e Boundary addition operation as additions of real numbers
o Nonconvex object as a mizture of positive and negative objects
o Slope diagram representations of 2D and 3D operands

o A unified computational framework for carrying out morphological operations of
boundary-represented objects by means of slope diagrams.
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