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the output will be

x0 = A, sin (wt + ¢;) + A3 sin 3wz ds) 2)

where ¢; is the phase shift at w, ¢3 is the phase shift at 3w,
A, =gain at w, and- A3 = gain at 3w. The output signal is
delayed by ¢;/w so changing the time origin of the signal

wt+ @, =wr
or
=7~ ¢/w, :
x0 =Aq sin wr + A3 sin {3w(T- ¢y/w)+ ¢3} 3)
x0=A, sin wr + A3 sin {3wr+ ¢3 - 3¢} “4)
x0 = A, sin wr + A3 sin Bwr - 0) (5)
where the relative phase angle
0=3¢, - ¢5. (6)

For a system which has a region with a linear phase response
where 6 =0, a difference equation may be used to evaluate
¢(w) from 0, i.e.,

3p(w) - ¢(3w) =0(w)
PBw) - 36(9w) = 36(3w)
1o(ow) - 1o27w) = J6(9w).

Summing
3¢(w) = 0(w) + 10(3w) + 50(9w)
+ higher terms which tend to 0,

SO

kad 1
o) =3 Sy 6G™W).

n=0

As this series converges in the area of linear phase response,
¢(w) may be evaluated, although terms independent of fre-
quency will not be represented.
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Prosthesis Control Using a Nearest Neighbor
Electromyographic Pattern Classifier

DAVID C. DENING, F. GAIL GRAY,
AND ROBERT M. HARALICK

Abstract—An investigation was conducted into the feasibility of apply-
ing a nearest neighbor algorithm to the problem of recognizing electro-
myographic (EMG) signal patterns for prosthesis control. A nearest
neighbor algorithm correctly identified arm motions as belonging to
one of six pattern classes from 72 to 100 percent of the time. A con-
densed nearest neighbor classifier was constructed to determine what
minimum number of vectors was necessary in the look-up table.

INTRODUCTION

The application of a nearest neighbor classifier to the prob-
lem of EMG pattern discrimination for prosthesis control was
investigated. The amplitude of the EMG signals, detected by
active electrodes from multiple sites, was input to a micro-
computer which could serve as a data collection system or
which could run a real-time nearest neighbor pattern classifier
program. The microcomputer-based pattern classifier provided
experience in the on-line training capability of a nearest neigh-
bor classifier and an example of the classification accuracy
that might be expected.

The differential EMG signal induced on the electrode plates
was amplified and low-pass filtered to remove noise above the
1500 Hz frequency content of the desired signal. The signal
was then high-pass filtered above 100 Hz to reduce 60 Hz pickup
and to eliminate the very low frequency (less than 10 Hz)
noise created by slight movements of the electrodes (motion
artifacts). After half-wave rectification of the signal to obtain
its amplitude envelope, the envelope signal was low-pass fil-
tered for smoothing. This final output signal from the active
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electrodes was a voltage proportional to the muscle contrac-
tion levels under the pickup electrodes.

The set of voltages obtained from the electrode complement
was treated as a data vector. Four electrode pairs were em-
ployed in this evaluation; therefore, data vectors and the total
data space contain four dimensions. The ends of the data
vectors were found to cluster when plotted in the data space.
Each cluster was associated with a set of vectors obtained from
a distinct limb position and it was also found that the clusters
tended to elongate radially outward from the origin. Since a
nearest neighbor pattern (cluster) recognition algorithm was
to be implemented, it was felt that the accuracy could be im-
proved and the size of the look-up table minimized by normal-
izing the data vectors and using direction cosines instead of the
voltages as they were input into the microcomputer.

PERFORMANCE OF THE MICROMPUTER-BASED CLASSIFIER

Four electrodes were placed around a normal subject’s right
midforearm in roughly the four quadrants. Then five vectors
were recorded for each of six limb configurations and entered
into the look-up table. The limb configurations used were the
following: hand grasp, hand open, wrist flex, wrist extend, fore-
arm pronate, and forearm supinate. During the experiment,
the subject received immediate feedback of any errors, and as
aresult an improvement in accuracy was obtained that was at-
tributed to a learning process. The experiment was conducted
by proceeding through the list of limb orientations, both for-
ward and backward, and by requesting a position and then
activating a single vector classification in the microcomputer.

The confusion matrix resulting from this total run of 600
vectors is shown in Table I. The vector labels in the left
column indicate the pattern class for which a vector was re-
quested. The numbers across each row are the percentage of
time each class was chosen by the microcomputer classifier.

These results compare favorably to those reported by Herberts
et al. [1] who used a linear combination discriminant function
as a classifier to the EMG signal amplitudes from six sites and
positioned the electrodes for optimum pattern separation. In
both cases, the same limb configurations were used. Before
the training, Herberts obtained correct classification accuracies
ranging from 57 to 100 percent, and the majority of the classes
were identified correctly more than 95 percent of the time.

The effect of the limited training that occurred during the
course of the experiment can be seen by comparing the con-
fusion matrix obtained for the last half of the experiment,
shown in Table II, with that obtained for the entire experi-
ment. As is evident in a comparison of the two tables, the
classification of the first four movements (grasp, open, flex,
and extend) did not improve substantially. However, the ac-
curacy with which the last two classes were identified, i.e., pro-
nate and supinate, did improve through the training process.

Further enlightenment as to why these particular results were
obtained may be found from an examination of the look-up
table used by the microcomputer. This is shown in Figs. 1 and
2 for two three-dimensional projections of the four-dimensional
data space. The vector codes are A-grasp, B-open, C-flex, D-
extend, E-pronate, and F-supinate. As may be seen best in
Fig. 2, the vectors for classes A, B, C, and D formed reasonably
tight groupings. Note that the operation of this classifier will
place the unknown vector into the look-up table space (as is
shown in the figures) and will pick the class of the closest
vector. There was one “flier” from class A (grasp) that is close
‘to class D (extend) and class F (supinate) and is probably
responsible for those 3 percent errors shown in TableI. Class E
(pronate) and F (supinate) were the most diffuse clusters, an
indication that the unknown input vectors from these classes
also had a corresponding spread. In addition, these diffuse
clusters can sabotage the other classification results. Cluster
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TABLE 1
CONFUSION MATRIX FOR THE TOTAL TEST

VECTOR CLASSIFIED AS:

INPUT GRASP  OPEN  FLEX EXTEND PRON  SUPIN

VECTOR

CLASS: GRASP 99 0 0 0 0 1
OPEN 0 83 0 0 17 0
FLEX 0 0 100 0 0 0
EXTEND 3 0 0 97 0 0
PRONATE 0 8 14 4 63 11
SUPINATE 3 1 0 0 18 78

TABLE 11

CONFUSION MATRIX FOR THE LAST HALF OF THE TEST

VECTOR CLASSIFIED AS:

INPUT GRASP  OPEN  FLEX EXTEND PRON  SUPIN

VECTOR

CLASS: GRASP 98 0 0 0 0 2
OPEN 0 84 0 0 16 0
FLEX 0 0 100 0 0 0
EXTEND 0 0 0 100 0 0
PRONATE 0 12 6 6 72 4
SUPINATE 4 0 0 0 10 86

B, corresponding to hand open, contains two reasonably close
vectors from cluster E (pronate). As aresult, it is not surprising
that a vector generated by a hand open movement could fall
closer to one of the intruding class E vectors than one from
the correct class B cluster. This is reflected in the confusion
matrix as the 17 percent erroneous classification of forearm
pronate for vectors generated by a hand open motion.

The results reported in this section show what may typically
be expected from this application of a nearest neighbor pattern
classifier to the myoelectric prosthesis control problem. There
are obvious places for improvement. For example, by judicious
positioning of the electrodes, the discrimination of vectors for
the pattern classes could be improved, as was indicated by
Herberts et al. In addition, a fine tuning of the look-up table
could eliminate many of the errors caused by the intrusion of
“bad” vectors from one class into the domain of another class.

CONDENSED NEAREST NEIGHBOR
ALGORITHM EVALUATION

. The previously described experiment using the microcompu-
ter-based classifier provided an indication of the error rate with
five vectors for each class template. An attempt was then
made to determine the necessary size of the look-up table and
to determine the resulting classification accuracy.

Two complete data sets of the EMG vectors were recorded
for the limb configurations: hand grasp, hand open, wrist flex,
wrist extend, forearm pronate, and forearm supinate. Both
test data files, containing equal numbers of vectors (100) for
each of the six pattern classes, could be accessed by the pat-
tern classifier programs for training and evaluation. This
method of algorithm evaluation removed any possibility of
subject learning, which had been observed in the microcom-
puter evaluations. The resulting classification scores were thus
lower than those reported earlier.

A condensed nearest neighbor classifier [2] was constructed
to determine a typical size for the reference list template
from which all unknown vectors are measured, and to compare
its performance with that of the parametric classifier. The
construction procedure for a condensed nearest neighbor
classifier proceeds as follows. The reference list is seeded with
one of the unknown vectors in the training set. Then all of the
data vectors, in turn, are classified by measuring the distance
(geometrically in this case) from the unknown vector to all the
vectors in the reference list. The class of the nearest vector in
the reference list is assigned to the unknown. If the classifica-
tion is incorrect, that data vector is then added to the reference
list. The procedure of classifying all of the training set is re-
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Fig. 1. Microcomputer look-up table projected onto the X1, X2, X3
dimension.

peated until either all data vectors can be classified correctly,
or all the training set has been transferred to the reference
list. However, in all trials this procedure converged with less
than 23 percent of the training set in the reference list.

As is illustrated in the literature [3], this type of classifier
tends to pick the initial reference list vectors randomly in the
data space, but becomes more selective later as the decision
boundary becomes better defined. The vectors chosen later
tend to lie close to the decision boundaries. A further pro-
cessing procedure was employed to prune the unneeded vectors
from the reference list. In turn, each vector in the reference
list was removed and the resulting list was used to classify the
entire training set. If the entire training set was not correctly
classified, the removed vector was placed back in the refer-
ence list. This pruning process reduced the reference list by
11-14 percent. o

After the reference list was pruned, it was used as a template
to classify the other data file (unknown vectors). The procedure
was then repeated. The second data file was used to create

the condensed reference list and the first data file was used for
classifier evaluation. The combined results of training on one
set and classifying the other for both data files is shown in the
confusion matrix in Table III.

It was found that the number of vectors in the reference list
tended to be low for the cases in which the classification ac-
curacy was good. It was observed from studying the data files
that the vectors for the classes “hand open” and “forearm
supinate” tended to overlap in the data space and, as a result,
were difficult for the algorithm to classify. This finding was
also reflected in the relative class populations in the reference
list for the various classes. The reference lists constructed in
classifying the two data files contained the following average
numbers of vectors per class.

Grasp 6
Open 39.5
Flex 1.5

Extend 6
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Fig.2. Microcomputer look-up table projected onto the X1, X3, X4
' dimension.

TABLE III
CONFUSION MATRIX RESULTING FROM A NEAREST NEIGHBOR CLASSIFIER
USING A CONDENSED REFERENCE LiST

VECTOR CLASSIFIED AS:

INPUT GRASP OPEN FLEX EXTEND PRON SUPIN

VECTOR

CLASS: GRASP 91 45 0 3 0 1.5
OPEN 5 39.5 0 0 0 60
FLEX 0 0 9.5 0 0 5
EXTEND 9 0 0 9 0 0
PRONATE 1 6.5 0 2.5 89 1
SUPINATE .5 38.5 2 0 0 63

Pronate 5

Supinate  46.

This distribution provides a useful check on the reference list
size needed for class separation. For easily distinguished clusters

such as grasp, flex, extend, and pronate, only a few vectors are
required to produce good classification accuracies.

DISCUSSIONS AND CONCLUSIONS

When the microcomputer-based nearest neighbor classifier
was evaluated, five vectors were placed into the reference list.
This decision was based on previous qualitative evaluations of
the classifier and a desire to keep the cycle time of the classifier
as low as possible. The validity of this decision was confirmed
during the algorithm evaluations when the condensed refer-
ence lists were found to average between two and six vectors
for most classes. The exceptions were the difficult to separate
hand open and forearm supinate motions, which were heavily
represented in the reference list because of the criteria used to
classify a vector correctly during training or to add that vector
to the reference list.

An inconsistency was observed between the results reported
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for the microcomputer-based pattern classifier and the results
obtained from the prerecorded data files. As was reported for
the microcomputer-based system, the patterns for pronate and
supinate were difficult to resolve with the same accuracy as
the other patterns. When the classifier was applied to the pre-
recorded data files, the difficult patterns to classify were open
and supinate. The reason for this pattern difference is probably
related to electrode placement and the fact that the two experi-
ments were performed with different individuals.

In this experiment, the four electrodes were positioned around
the four quadrants of the midforearm. A minimal amount of
electrode repositioning was employed to optimize the correct
pattern classification. In both cases, when the vectors were
classified in the microcomputer and when data were recorded
for the data files, the complete data sets were processed in
one session to avoid the possibility of errors in replacing the
electrodes.

Subject training was observed during the microcomputer-
based pattern classification. In addition, an observation was
made that various other EMG patterns could be generated by
motions different from those of the six classes employed.
With additional training, the nearest neighbor classifier could
be used to map unorthodox but easily distinguished limb
configurations for the desired classes.
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Dispersion of the Somatosensory
Evoked Potential (SEP) in Multiple Sclerosis

KIM B. ROBERTS, PETER D. LAWRENCE,
AND ANDREW EISEN

Abstract—A fast Fourier transform technique was used to quantitate
the dispersion of the somatosensory evoked potential elicited by me-
dian nerve stimulation. The evaluation was proportional to the log of
the SEP spectral energy between 380 and 1000 Hz. This was linearly
scaled to a range of numbers between zero and five representing mini-
mal to severe degrees of dispersion, respectively. In 21 controls, dis-
persion measured 1.5 + 0.6 with an upper normal limit of 2.5. In 24
MS suspects, dispersion ranged between 0.3 and 3.9. A Bayesian
decision-maker, based only on spectral energy, correctly classified all of
the control group and 63 percent of a patient group with definite,
probable, or suspected MS. Dispersion of the SEP, when used along
with other factors such as latency and shape, adds to overall diagnostic
accuracy.
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INTRODUCTION

Visual, auditory, or somatesthetic stimuli can be used to in-
duce electrical events, recordable over the cerebral cortex as
cerebral evoked potentials (EP’s). These potentials are termed,
respectively ; visual, auditory, and somatosensory potentials.
Somatosensory evoked potentials (SEP’s) were first recorded
by Dawson in 1947 [1] without the aid of computer averaging.
However, two and one-half decades elapsed before their use
was popularized, requiring the advent of relatively sophisti-
cated electronic equipment. Evoked potential recording is
presently routine in many clinical neurophysiological labora-
tories throughout the world.

Among the various diseases in which SEP’s are useful, multi-
ple sclerosis (MS) ranks high [2], [3]. This disease, which has
an incidence of about 100 per hundred thousand in Canada, is
presently of unknown etiology. It results in loss and destruc-
tion of the myelin covering of central nervous system axons.
Consequently, conduction in these fibers is slowed and eventu-
ally fails [4]. The altered conduction distorts impulse traffic,
which is interpreted at a conscious level as a variety of inap-
propriate sensations. Varying degrees of motor dysfunction
occur for similar reasons. In clinically definite MS [5], evoked
potentials are frequently abnormal, approaching 100 percent
when the system tested (i.e., visual, brainstem auditory, or
somatosensory) is overtly involved [2], [3]. However, in sus-
pected MS, a stage of the disease in which there is the greatest
need for confirmation, EP’s have a diagnostic yield generally
below 40 percent. This partially reflects the limited means
that have thus far been used to evaluate the EP quantitatively.

Characteristics of the SEP which have been or are potentially
measurable include its latency, amplitude, morphology (or
overall shape), and dispersion (or smoothness). These in turn
depend, respectively, upon the speed of impulse traffic, the
number of cortical or subcortical units that are simultaneously
activated at each generator site, the number of normal neural
generators that are sequentially excited, and the synchrony
with which impulse traffic travels. The first three of these give
useful information. However, desynchronization with result-
ing increased dispersion of the SEP can be expected to occur
earlier and to a greater extent than alteration of latency,
morphology, and amplitude [6].

In this study, we describe a method for measuring dispersion
of the SEP, a characteristic that has thus far not been quanti-
tated. The results in a normal control group are compared to
a group of patients with suspected or definite multiple sclero-
sis [5].

METHODS
Subjects and Patients

There were 21 normal volunteers without a relevant history
of neurological disease who gave informed consent for study.
Their mean age was 35.5 years (range 21-63 years). Eleven
were women. 7 patients with definite, 14 with probable,
and 3 with suspected MS, classified according to MacDonald
and Halliday [5], were similarly studied. Their mean age was
36.2 years (range 18-60), and 10 were women.

Electrophysiological Techniques

Previously reported methods were used [7], [8]. In essence,
the second digit was stimulated percutaneously using a DISA
model 15EQ07 stimulator with monophasic square-current
pulses applied through ring electrodes and an intensity 2.5
times sensory threshold (usually between 5 and 10 mA).
Stimulus rate was 5/s and stimulus duration was 0.2 ms. Re-
cordings were made from the scalp using needle electrodes po-
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