Unimodal Search

Robert M. Haralick

Computer Science, Graduate Center City University of New York

E 990

Monotonic Increasing Functions

Definition

Let *I* be any interval of the real numbers *R*. A function $f : I \rightarrow R$ is Monotonically Increasing if and only if for every $(x, y) \in I \times I$, if $x \ge y$, then $f(x) \ge f(y)$.

Monotonic Decreasing Functions

Definition

Let *I* be any interval of the real numbers in *R*. A function $f: I \rightarrow R$ is Monotonically Decreasing if and only if for every $(x, y) \in I \times I$, if $x \ge y$, then $f(x) \le f(y)$.

Strictly Increasing Functions

Definition

Let *I* be any interval of the real numbers in *R*. A function $f: I \rightarrow R$ is Strictly Increasing if and only if for every $(x, y) \in I \times I$, if x > y, then f(x) > f(y).

イロト イヨト イヨト ・

Э

Strictly Decreasing Functions

Definition

Let *I* be any interval of the real numbers in *R*. A function $f: I \rightarrow R$ is Strictly Decreasing if and only if for every $(x, y) \in I \times I$, if x > y, then f(x) < f(y).

イロト イポト イヨト イヨト

Э

Unimodal Functions

Definition

Let [a, b] be any interval of the real numbers in R. A function $f : [a, b] \rightarrow R$ is Unimodal if and only if there exists $x^* \in [a, b]$ such that

- $f(x^*) \ge f(x), x \in [a, b]$
- *f* is strictly increasing in [*a*, *x**]
- *f* is strictly decreasing in [*x**, *b*]

Or

- $f(x^*) \le f(x), x \in [a, b]$
- *f* is strictly decreasing in [*a*, *x**]
- *f* is strictly increasing in [*x**, *b*]

Unimodal Functions

Golden Search

Unimodal Functions

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 めんぐ

Information in Unimodality

Suppose *f* is a unimodal function on [0, L] with a maximum at x^* . Suppose $x_1 > x_2$ and $x_1, x_2 \in [0, L]$. Consider $f(x_1)$ and $f(x_2)$. There are 3 cases:

- $f(x_1) < f(x_2)$
- $f(x_1) > f(x_2)$
- $f(x_1) = f(x_2)$

ヘロン 人間 とくほ とくほ とう

 $f(x_1) < f(x_2)$

If $f(x_1) < f(x_2)$, then it is impossible for the maximum to be in the interval $[x_1, L]$. The search need only continue in the interval $[0, x_1]$, an interval of length x_1 .

 $f(x_1) > f(x_2)$

If $f(x_1) > f(x_2)$, then it is impossible for the maximum to be in the interval $[0, x_2,]$. The search need only continue in the interval $[x_2, L]$, an interval of length $L - x_2$.

$$f(x_1)=f(x_2)$$

If $f(x_1) = f(x_2)$, then it is impossible for the maximum to be in the interval $[0, x_1]$ or $[x_2, L]$. The search need only continue in the interval $[x_1, x_2]$. Without loss of generality, this case can be included either in case 1 or case 2.

Where To Place A Trial

If $f(x_1) < f(x_2)$, the maximum must be in the interval $[0, x_1]$. If $f(x_1) > f(x_2)$ the maximum must be in the interval $[x_2, L]$. If either of these intervals were larger than the other, the search could lose efficiency. Therefore

$$x_1 = L - x_2$$

The ratio of the length of the new interval of uncertainty to the length of the old interval of uncertainty is

$$r = \frac{x_1}{L}$$

Where To Place A Trial

If $f(x_1) < f(x_2)$, the interval of uncertainty is $[0, x_1]$ and the interior completed trial is x_2 . We must place the next trial x_3 so that

$$x_2 = x_1 - x_3$$

The ratio of the length of the new interval of uncertainty to the length of the old interval of uncertainty is

$$r=\frac{x_2}{x_1}$$

System of Equations

$$x_1 = L - x_2$$

$$r = \frac{x_1}{L}$$

$$r = \frac{x_2}{x_1}$$

Hence

$$\frac{x_1}{L} = \frac{x_2}{x_1}$$
$$x_1^2 - x_2 L = 0$$

Therefore,

$$\begin{array}{rcl} x_1 + x_2 & = & L \\ x_1^2 - x_2 L & = & 0 \end{array}$$

Ð,

System of Equations

$$\begin{array}{rcl} x_2 &=& L-x_1\\ x_1^2-x_2L &=& 0 \end{array}$$

Substituting x_2 into the second equation,

$$\begin{aligned} x_1^2 - (L - x_1)L &= 0\\ x_1^2 + x_1L - L^2 &= 0\\ \left(\frac{x_1}{L}\right)^2 + \left(\frac{x_1}{L}\right) - 1 &= 0\\ \frac{x_1}{L} &= \frac{-1 \pm \sqrt{1^2 - 4(1)(-1)}}{2}\\ &= \frac{-1 \pm \sqrt{5}}{2} \end{aligned}$$

Golden Search

$$\frac{x_1}{L} = \frac{-1 \pm \sqrt{5}}{2}$$

Since, $\frac{x_1}{L} > 0$ and $\sqrt{5} > 1$
$$r = \frac{x_1}{L}$$
$$= \frac{-1 + \sqrt{5}}{2}$$
$$\approx .618$$

16/15

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Golden Search

17/15

Golden Search

If the continued interval of uncertainty is the left interval, then

イロト 不同 とくほ とくほ とう

ъ

Golden Search

If the continued interval of uncertainty is the right interval, then

イロト イポト イヨト イヨト

ъ

Golden Section Search For Maximum

```
float golden_section_max(float *f,float a,float b,float eps)
r = (-1.+sqrt(5))/2;
x1=a+r*(b-a);
x2=b-r*(b-a);
while abs(x1-x2) > eps
  if(f(x1) < f(x2)) / left interval
    b=x1;
  else
    a=x2; /right interval
  x1=a+(b-a)*r;
  x2=b-r(b-a);
  }
return (a+b)/2;
}
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●