N-tuple Classifier Stacking

Robert M. Haralick

Computer Science, Graduate Center City University of New York

프 🖌 🛪 프 🛌

Э

- Stacking means having a subspace classifier composed of layers of subspace classifiers
- Each layer has fewer inputs
- The last layer has a small enough outputs that the classification can be made by a Bayesian Classifier
- This is analogous to neural net hidden layers

Number of Dimensions96Number of Index Sets/Class12Size of Each Index Set8Number of Classes3Number of Scores Calculated $12 \times 3 = 36$

Number of Dimensions	36
Number of Index Sets/Class	9
Size of Each Index Set	4
Number of Classes	3
Number of Scores Calculated	$3 \times 9 = 27$

Number of Dimensions	27
Number of Index Sets/Class	6
Size of Index Sets	4, 4, 4, 5, 5, 5
Number of Classes	3
Number of Scores Calculated	18

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ⊙

Number of Dimensions	18
Number of Index Sets/Class	3
Size of Index Sets	6
Number of Classes	3
Number of Scores Calculated	9

Number of Dimensions	9
Number of Index Sets/Class	2
Size of Index Sets	4 <i>,</i> 5
Number of Classes	3
Number of Scores Calculated	6

Number of Dimensions6Number of Possibilities per Dimension6Size of Measurement Space $6^6 = 46,656$ Use Bayesian Classifier $6^6 = 46,656$

ヘロト ヘ戸ト ヘヨト ヘヨト

Requisite Variety Question

- In the Requisite Variety Analysis we did
 - We utilized mutually exclusive index sets
 - Small Overlapping of index sets should not change the analysis by much
 - Stacking may change the analysis
- For the Unstacked N-tuple Classifier We Wanted
 - For each class
 - The size of the training
 - to be more than 10 times
 - The size of all arrays storing class conditional probabilities

Requisite Variety Question

- For the case that all arrays store class conditional probabilities
 - Meaning of subsets of feature or scores
 - Where there is no optimization of values in the arrays
- Does the requisite variety criterion
 - Just apply
 - Class by class
 - To the arrays only in the first layer?
 - Or does it apply to all arrays in the stack?

- What kind of experiment can be done
- To determine the requisite variety criterion for each class
- On whether it is
 - The size of the arrays for each class for the first layer
 - Or the size of all arrays for each class in all stack layers