Probability Models

Robert M. Haralick

Computer Science, Graduate Center
City University of New York

Outline

The Problem

- When there are many variables, the sample size is often too small
- When the sample size is too small, the class conditional joint probability cannot be estimated directly
- There must be some assumptions made to allow low order marginals to be combined in some manner to form class conditional joint probabilities to be used in the classification

The Markov Assumption

$$
\begin{aligned}
p\left(y_{1} \mid y_{2} \ldots y_{N}\right) & =P\left(y_{1} \mid y_{2}\right) \\
p\left(y_{2} \mid y_{3} \ldots y_{N}\right) & =P\left(y_{2} \mid y_{3}\right) \\
\vdots & \\
P\left(y_{N-2} \mid y_{N-1}, y_{N}\right) & =P\left(y_{N-2} \mid y_{N-1}\right)
\end{aligned}
$$

In general,

$$
P\left(y_{n} \mid y_{n+1} \ldots y_{N}\right)=P\left(y_{n} \mid y_{n+1}\right), n=1, \ldots N-1
$$

Conditional Probability

Now,

$$
\begin{aligned}
P\left(x_{1} \ldots x_{N}\right) & =P\left(x_{1} \mid x_{2} \ldots x_{N}\right) P\left(x_{2} \ldots x_{N}\right) \\
& =P\left(x_{1} \mid x_{2} \ldots x_{N}\right) P\left(x_{2} \mid x_{3} \ldots x_{N}\right) P\left(x_{3} \ldots x_{N}\right)
\end{aligned}
$$

Repeating the pattern,

$$
P\left(x_{1} \ldots x_{N}\right)=\left[\prod_{n=1}^{N-1} P\left(x_{n} \mid x_{n+1} \ldots x_{N}\right)\right] P\left(x_{N}\right)
$$

Under the Markov Assumption

$$
P\left(x_{n} \mid x_{n+1} \ldots x_{N}\right)=P\left(x_{n} \mid x_{n+1}\right), n=1, \ldots N-1
$$

Hence,

$$
\begin{aligned}
P\left(x_{1} \ldots x_{N}\right) & =\left[\prod_{n=1}^{N-1} P\left(x_{n} \mid x_{n+1} \ldots x_{N}\right)\right] P\left(x_{N}\right) \\
& =\left[\prod_{n=1}^{N-1} P\left(x_{n} \mid x_{n+1}\right)\right] P\left(x_{N}\right)
\end{aligned}
$$

The Markov Classifier

Assign $\left(x_{1}, \ldots x_{N}\right)$ to class c^{*} when

$$
\begin{aligned}
P\left(x_{1} \ldots x_{N} \mid c^{*}\right) & >P\left(x_{1} \ldots x_{N} \mid c\right), c \neq c^{*} \\
{\left[\prod_{n=1}^{N-1} P\left(x_{n} \mid x_{n+1}, c^{*}\right)\right] P\left(x_{N} \mid c^{*}\right) } & >\left[\prod_{n=1}^{N-1} P\left(x_{n} \mid x_{n+1}, c\right)\right] P\left(x_{N} \mid c\right)
\end{aligned}
$$

for all other c

The General Markov Classifier

Let i_{1}, \ldots, i_{N} be a permutation of $1, \ldots, N$. Assign $\left(x_{1}, \ldots x_{N}\right)$ to class c^{*} when

$$
\begin{aligned}
P\left(x_{1} \ldots x_{N} \mid c^{*}\right) & >P\left(x_{1} \ldots x_{N} \mid c\right), c \neq c^{*} \\
{\left[\prod_{n=1}^{N-1} P\left(x_{i_{n}} \mid x_{i_{n+1}}, c^{*}\right)\right] P\left(x_{i_{N}} \mid c^{*}\right) } & >\left[\prod_{n=1}^{N-1} P\left(x_{i_{n}} \mid x_{i_{n+1}}, c\right)\right] P\left(x_{i_{N}} \mid c\right)
\end{aligned}
$$ for all other c

Conditional Independence Assumption

Under the Markov assumption

$$
\begin{aligned}
P\left(x_{i}, x_{i+1}, \mid x_{i+2} \ldots, x_{N}\right) & =\frac{P\left(x_{i}, \ldots x_{N}\right)}{P\left(x_{i+2} \ldots x_{N}\right)} \\
& =\frac{P\left(x_{i} \mid x_{i+1} \ldots x_{N}\right) P\left(x_{i+1} \ldots x_{N}\right)}{P\left(x_{i+2} \ldots x_{N}\right)} \\
& =\frac{P\left(x_{i} \mid x_{i+1}\right) P\left(x_{i+1} \ldots x_{N}\right)}{P\left(x_{i+2} \ldots x_{N}\right)} \\
& =\frac{P\left(x_{i} \mid x_{i+1}\right) P\left(x_{i+1} \mid x_{i+2}\right) P\left(x_{i+2} \ldots x_{N}\right)}{P\left(x_{i+2} \ldots x_{N}\right)} \\
& =P\left(x_{i} \mid x_{i+1}\right) P\left(x_{i+1} \mid x_{i+2}\right)
\end{aligned}
$$

The General Markov Classifier

How To Choose the Permutation

- Use the training data to estimate $P\left(x_{i} \mid x_{j}, c\right), i \neq j$
- For permutation i_{1}, \ldots, i_{N}
- Use the first half of testing data to estimate the expected gain using $P\left(x_{i_{n}} \mid x_{i_{n+1}}, c\right)$
- Search for the permutation having the largest estimated expected gain
- For the best permutation, get an unbiased estimate of the estimated expected gain using the second half of the testing data

$$
P\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=p\left(x_{1} \mid x_{2}\right) P\left(x_{5} \mid x_{2}\right) P\left(x_{3} \mid x_{1}\right) P\left(x_{4} \mid x_{1}\right) P\left(x_{2}\right)
$$

$$
\begin{aligned}
1= & \sum_{x_{1}} \sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{5}} P\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \\
& \sum_{x_{1}} \sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{5}} p\left(x_{1} \mid x_{2}\right) P\left(x_{5} \mid x_{2}\right) P\left(x_{3} \mid x_{1}\right) P\left(x_{4} \mid x_{1}\right) P\left(x_{2}\right) \\
& \sum_{x_{2}} P\left(x_{2}\right) \sum_{x_{1}} P\left(x_{1} \mid x_{2}\right) \sum_{x_{5}} P\left(x_{5} \mid x_{2}\right) \sum_{x_{4}} P\left(x_{4} \mid x_{1}\right) \sum_{x_{3}} P\left(x_{3} \mid x_{1}\right) \\
= & 1
\end{aligned}
$$

Precedence Function

\mathbf{i}	$\mathbf{j}(\mathbf{i})$
1	2
5	2
3	1
4	1

$[N]=\{1, \ldots, N\}$
$M \subset[N] \quad j: M \rightarrow N$
$G=([N], E)$
$E=\{j(m), m\} \mid m \in M\}$
$P\left(x_{1}, \ldots, x_{N}\right)=P\left(x_{m}: m \in[N]-M\right) \prod_{m \in M} P\left(x_{m} \mid x_{j(m)}\right)$

The Optimal Dependence Tree

Of all possible dependence trees, is there an optimal one?

- The probabilities we are interested in are all conditional on class
- To save writing longer expression, we omit the class
- The probabilities in our dependence tree are order $2 P\left(x_{a}, x_{b}\right)$
- The joint probability formed from the dependence tree product must be an extension of the marginal forming it
- The probability we want the product form to approximate is unknown
- The dependence tree product we seek must be as close to it as possible
- Given the complete set of the order 2 marginals,
- The closest dependence tree product we can construct must use the marginals with largest entropy
- But finding that out is a combinatorial problem

Dependence Tree Optimization

There are two papers In 1968 Chow and Liu published a major paper Approximating Discrete Probability Distributions with Dependence Trees in the IEEE Transactions on Information Theory.
The Lewis paper, published in Information And Control, appeared in 1959 and had the title Approximating Probability Distributions to Reduce Storage Requirements proved that

- If we are just given low order marginals
- Whose product is a probability and extension of the marginals
- And we are approximating an unknown joint distribution
- Then the best we can do is a minimum information extension

Dependence Tree Optimization

In 1968 Chow and Liu published a major paper Approximating Discrete Probability Distributions with Dependence Trees in the IEEE Transactions on Information Theory. The paper gave the algorithm for forming the maximum mutual information extension.

- For every order two marginal, compute its Mutual Information
- The Mutual Information between to variables x and y is defined by

$$
I(x, y)=\sum_{x, y} P(x, y) \log \frac{P(x, y)}{P(x) P(y)}
$$

- Make a graph whose nodes are labeled by the variable name
- Connect every pair of nodes, say node x with node y, with an edge
- Weight the edge by $I(x, y)$
- Use Kruskal's algorithm to find the maximum weighted

Kruskal's Maximal Spanning Tree Algorithm

- Sort the edges by decreasing weight
- Select the first edge as having the largest Mutual Information
- Select the next largest successive edge, that does not form a loop with the edges that have been previously chosen
- Stop when there are $N-1$ edges where N is the number of nodes
Kruskal proved that when the algorithm stopped, the result was a spanning tree. Further the spanning tree was maximal.

Conditional Probability Products

$$
P\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{4} \mid x_{2}, x_{5}, x_{6}\right) P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{6} \mid x_{3}\right) P\left(x_{3}\right)
$$

- Does this product make a probability function?
- If it does, is the probability function an extension of these conditional probabilities?

Summing

Define,

$$
\begin{aligned}
Q\left(x_{1}, \ldots, x_{6}\right)= & P\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{4} \mid x_{2}, x_{5}, x_{6}\right) P\left(x_{5} \mid x_{6}\right) \\
& P\left(x_{2}, x_{6} \mid x_{3}\right) P\left(x_{3}\right) \\
Q\left(x_{2}, \ldots, x_{6}\right)= & \sum_{x_{1}} Q\left(x_{1}, \ldots, x_{6}\right) \\
= & \sum_{x_{1}} P\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{4} \mid x_{2}, x_{5}, x_{6}\right) \\
& P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{6} \mid x_{3}\right) P\left(x_{3}\right) \\
= & P\left(x_{4} \mid x_{2}, x_{5}, x_{6}\right) P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{6} \mid x_{3}\right) P\left(x_{3}\right)
\end{aligned}
$$

Summing

$$
\begin{aligned}
Q\left(x_{2}, x_{3}, x_{5}, x_{6}\right) & =\sum_{x_{4}} Q\left(x_{2}, \ldots, x_{6}\right) \\
& =\sum_{x_{4}} P\left(x_{4} \mid x_{2}, x_{5}, x_{6}\right) P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{6} \mid x_{3}\right) P\left(x_{3}\right) \\
& =P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{6} \mid x_{3}\right) P\left(x_{3}\right)
\end{aligned}
$$

Summing

$$
\begin{aligned}
Q\left(x_{2}, x_{3}, x_{6}\right) & ==\sum_{x_{5}} Q\left(x_{2}, x_{3}, x_{5}, x_{6}\right) \\
& =\sum_{x_{5}} P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{6} \mid x_{3}\right) P\left(x_{3}\right) \\
& =P\left(x_{2}, x_{6} \mid x_{3}\right) P\left(x_{3}\right) \\
& =P\left(x_{2}, x_{3}, x_{6}\right) \\
\sum_{x_{2}, x_{3}, x_{6}} Q\left(x_{2}, x_{3}, x_{6}\right) & =\sum_{x_{2}, x_{3}, x_{6}} P\left(x_{2}, x_{3}, x_{6}\right) \\
& =1
\end{aligned}
$$

Define,

$$
\begin{aligned}
Q\left(x_{1}, \ldots, x_{6}\right)= & P\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{4} \mid x_{2}, x_{5}, x_{6}\right) P\left(x_{5} \mid x_{6}\right) \\
& P\left(x_{2}, x_{6} \mid x_{3}\right) P\left(x_{3}\right)
\end{aligned}
$$

Is,

$$
\begin{aligned}
Q\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right) & =P\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right) \\
Q\left(x_{4} \mid x_{2}, x_{5}, x_{6}\right) & =P\left(x_{4} \mid x_{2}, x_{5}, x_{6}\right) \\
Q\left(x_{5} \mid x_{6}\right) & =P\left(x_{5} \mid x_{6}\right) \\
Q\left(x_{2}, x_{6} \mid x_{3}\right) & =P\left(x_{2}, x_{6} \mid x_{3}\right) \\
Q\left(x_{3}\right) & =P\left(x_{3}\right)
\end{aligned}
$$

Strong Extension

Define,

$$
\begin{aligned}
Q\left(x_{1}, \ldots, x_{6}\right)= & P\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{4} \mid x_{2}, x_{5}, x_{6}\right) P\left(x_{5} \mid x_{6}\right) \\
& P\left(x_{2}, x_{6} \mid x_{3}\right) P\left(x_{3}\right)
\end{aligned}
$$

Is,

$$
\begin{aligned}
Q\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
Q\left(x_{4}, x_{2}, x_{5}, x_{6}\right) & =P\left(x_{4}, x_{2}, x_{5}, x_{6}\right) \\
Q\left(x_{5}, x_{6}\right) & =P\left(x_{5}, x_{6}\right) \\
Q\left(x_{2}, x_{3}, x_{6}\right) & =P\left(x_{2}, x_{3}, x_{6}\right) \\
Q\left(x_{3}\right) & =P\left(x_{3}\right)
\end{aligned}
$$

Extension

Define,

$$
\begin{array}{r}
Q\left(x_{1}, \ldots, x_{6}\right)=P\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{4} \mid x_{2}, x_{5}, x_{6}\right) \\
P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{6} \mid x_{3}\right) P\left(x_{3}\right)
\end{array}
$$

Is

$$
Q\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right)=\frac{Q\left(x_{1}, x_{2}, x_{3}, x_{4}\right)}{Q\left(x_{2}, x_{3}, x_{4}\right)}
$$

Find expressions for $Q\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and $Q\left(x_{2}, x_{3}, x_{4}\right)$

$$
\begin{aligned}
Q\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= & \sum_{x_{5}} \sum_{x_{6}} Q\left(x_{1}, \ldots, x_{6}\right) \\
= & \sum_{x_{5}} \sum_{x_{6}} P\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{4} \mid x_{2}, x_{5}, x_{6}\right) \\
& P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{6} \mid x_{3}\right) P\left(x_{3}\right) \\
= & P\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right) \sum_{x_{5}} \sum_{x_{6}} P\left(x_{4} \mid x_{2}, x_{5}, x_{6}\right) \\
& P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{6} \mid x_{3}\right) P\left(x_{3}\right)
\end{aligned}
$$

Extension

$$
\begin{aligned}
Q\left(x_{2}, x_{3}, x_{4}\right)= & \sum_{x_{1}} Q\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
= & \sum_{x_{1}} P\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right) \sum_{x_{5}} \sum_{x_{6}} P\left(x_{4} \mid x_{2}, x_{5}, x_{6}\right) \\
= & P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{6} \mid x_{3}\right) P\left(x_{3}\right) \\
= & \sum_{x_{5}} \sum_{x_{6}} P\left(x_{4} \mid x_{2}, x_{5}, x_{6}\right) \\
& P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{6} \mid x_{3}\right) P\left(x_{3}\right)
\end{aligned}
$$

$$
\begin{gathered}
Q\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right)=\frac{Q\left(x_{1}, x_{2}, x_{3}, x_{4}\right)}{Q\left(x_{2}, x_{3}, x_{4}\right)} \\
=\frac{P\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right) \sum_{x_{5}} \sum_{x_{6}} P\left(x_{4} \mid x_{2}, x_{5}, x_{6}\right) P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{3}, x_{6}\right)}{\sum_{x_{5}} \sum_{x_{6}} P\left(x_{4} \mid x_{2}, x_{5}, x_{6}\right) P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{3}, x_{6}\right)} \\
=P\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right)
\end{gathered}
$$

So we have shown a weak extension for one conditional probability.

Conditional Independence

Definition

Random variables X and Y are conditionally independent given random variable Z if and only if for all values x, y, z in the domain of the respective variables X, Y, Z

$$
P(X=x, Y=y \mid Z=z)=P(X=x \mid Z=z) P(Y=y \mid Z=z)
$$

For the sake of compactness, we write

- $P(x, y \mid z)$ for $P(X=x, Y=y \mid Z=z)$

Conditional Independence Notation

If random variables X and Y are conditionally independent of random variable Z we write

- $X \Perp Y \mid Z$

Let $\left\{X_{1}, \ldots, X_{N}\right\}$ be a set of random variables.
If X_{i} is conditionally independent of X_{j} given X_{k} we write

- $i \Perp j \mid k$

Let $A, B, C \subset\{1, \ldots, N\}$ with

- $A \cap B=\emptyset$
- $A \cap C=\emptyset$
- $B \cap C=\emptyset$

If $\left\{X_{i}: i \in A\right\}$ is conditionally independent of $\left\{X_{j}: j \in B\right\}$ given $\left\{X_{k}: k \in C\right\}$, then we write

- $A \Perp B \mid C$

Conditional Independence Characterization Theorem

Theorem
$P(x, y \mid z)=P(x \mid z) P(y \mid z)$ if and only if $P(x \mid y, z)=P(x \mid z)$
Proof.
Suppose $P(x, y \mid z)=P(x \mid z) P(y \mid z)$. Consider $P(x \mid y, z)$

$$
\begin{aligned}
P(x \mid y, z) & =\frac{P(x, y, z)}{P(y, z)}=\frac{P(x, y \mid z) P(z)}{P(y, z)} \\
& =\frac{P(x \mid z) P(y \mid z) P(z)}{P(y, z)}=P(x \mid z)
\end{aligned}
$$

Suppose $P(x \mid y, z)=P(x \mid z)$. Consider $P(x, y \mid z)$.

$$
\begin{aligned}
P(x, y \mid z) & =\frac{P(x, y, z)}{P(z)}=\frac{P(x \mid y, z) P(y, z)}{P(z)} \\
& =\frac{P(x \mid z) P(y, z)}{P(z)}=P(x \mid z) P(y \mid z)
\end{aligned}
$$

Conditional Independence

Can we see if x_{5} is conditionally independent of x_{2} given x_{6}. Is $P\left(x_{5} \mid x_{2}, x_{6}\right)=P\left(x_{5} \mid x_{6}\right)$?

$$
\begin{aligned}
Q\left(x_{2}, x_{4}, x_{5}, x_{6}\right)= & \sum_{x_{1}} \sum_{x_{3}} Q\left(x_{1}, \ldots, x_{6}\right) \\
= & \sum_{x_{1}} \sum_{x_{3}} P\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{4} \mid x_{2}, x_{5}, x_{6}\right) \\
& P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{6} \mid x_{3}\right) P\left(x_{3}\right) \\
= & P\left(x_{4} \mid x_{2}, x_{5}, x_{6}\right) P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{6}\right)
\end{aligned}
$$

Extension

$$
\begin{aligned}
Q\left(x_{2}, x_{5}, x_{6}\right) & =\sum_{x_{4}} Q\left(x_{2}, x_{4}, x_{5}, x_{6}\right) \\
& =\sum_{x_{4}} P\left(x_{4} \mid x_{2}, x_{5}, x_{6}\right) P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{6}\right) \\
& =P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{6}\right)
\end{aligned}
$$

$$
\begin{aligned}
Q\left(x_{5}, x_{6}\right)= & \sum_{x_{1}} \sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} Q\left(x_{1}, \ldots, x_{6}\right) \\
= & \sum_{x_{1}} \sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} P\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{4} \mid x_{2}, x_{5}, x_{6}\right) \\
& P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{6} \mid x_{3}\right) P\left(x_{3}\right) \\
= & \sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} P\left(x_{4} \mid x_{2}, x_{5}, x_{6}\right) P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{3}, x_{6}\right) \\
= & \sum_{x_{2}} \sum_{x_{3}} P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{3}, x_{6}\right) \\
= & P\left(x_{5} \mid x_{6}\right) P\left(x_{6}\right)=P\left(x_{5}, x_{6}\right)
\end{aligned}
$$

Conditional Independences

$$
\begin{aligned}
Q\left(x_{2}, x_{5}, x_{6}\right) & =P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{6}\right) \\
Q\left(x_{2}, x_{6}\right) & =\sum_{x_{5}} Q\left(x_{2}, x_{5}, x_{6}\right) \\
& =\sum_{x_{5}} P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{6}\right) \\
& =P\left(x_{2}, x_{6}\right) \\
Q\left(x_{5} \mid x_{2}, x_{6}\right) & =\frac{Q\left(x_{2}, x_{5}, x_{6}\right)}{Q\left(x_{2}, x_{6}\right)} \\
& =\frac{P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{6}\right)}{P\left(x_{2}, x_{6}\right)}=P\left(x_{5} \mid x_{6}\right)
\end{aligned}
$$

Conditional Independence

Now,

$$
Q\left(x_{5} \mid x_{2}, x_{6}\right)=P\left(x_{5} \mid x_{6}\right)
$$

But,

$$
Q\left(x_{5}, x_{6}\right)=P\left(x_{5}, x_{6}\right)
$$

Hence,

$$
Q\left(x_{5} \mid x_{6}\right)=P\left(x_{5} \mid x_{6}\right)
$$

Therefore,

$$
\begin{gathered}
Q\left(x_{5} \mid x_{2}, x_{6}\right)=Q\left(x_{5} \mid x_{6}\right) \\
x_{5} \Perp x_{2} \mid x_{6}
\end{gathered}
$$

Conditional Independence

Suppose, $x_{5} \Perp x_{2} \mid x_{6}$

$$
Q\left(x_{5} \mid x_{2}, x_{6}\right)=Q\left(x_{5} \mid x_{6}\right)
$$

Then,

$$
\begin{aligned}
Q\left(x_{5}, x_{2} \mid x_{6}\right) & =Q\left(x_{5} \mid x_{6}\right) Q\left(x_{2} \mid x_{6}\right) \\
Q\left(x_{5}, x_{2} \mid x_{6}\right) & =\frac{Q\left(x_{2}, x_{5}, x_{6}\right)}{Q\left(x_{6}\right)} \\
& =\frac{Q\left(x_{5} \mid x_{2}, x_{6}\right) Q\left(x_{2}, x_{6}\right)}{Q\left(x_{6}\right)} \\
& =\frac{Q\left(x_{5} \mid x_{6}\right) Q\left(x_{2}, x_{6}\right)}{Q\left(x_{6}\right)} \\
& =Q\left(x_{5} \mid x_{6}\right) Q\left(x_{2} \mid x_{6}\right)
\end{aligned}
$$

Additional Relationships You Work Out

$$
\begin{aligned}
Q\left(x_{4} \mid x_{2}, x_{5}, x_{6}\right) & =\frac{Q\left(x_{2}, x_{4}, x_{5}, x_{6}\right)}{Q\left(x_{2}, x_{5}, x_{6}\right)} \\
& =\frac{P\left(x_{4} \mid x_{2}, x_{5}, x_{6}\right) P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{6}\right)}{P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{6}\right)} \\
& =P\left(x_{4} \mid x_{2}, x_{5}, x_{6}\right)
\end{aligned}
$$

Additional Relationships You Work Out

$$
\begin{aligned}
Q\left(x_{2}, x_{3}, x_{6}\right)= & \sum_{x_{1}} \sum_{x_{4}} \sum_{x_{5}} Q\left(x_{1}, \ldots, x_{6}\right) \\
= & \sum_{x_{1}} \sum_{x_{4}} \sum_{x_{5}} P\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{4} \mid x_{2}, x_{5}, x_{6}\right) \\
& P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{6} \mid x_{3}\right) P\left(x_{3}\right) \\
= & \sum_{x_{4}} \sum_{x_{5}} P\left(x_{4} \mid x_{2}, x_{5}, x_{6}\right) P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{3}, x_{6}\right) \\
= & \sum_{x_{5}} P\left(x_{5} \mid x_{6}\right) P\left(x_{2}, x_{3}, x_{6}\right) \\
= & P\left(x_{2}, x_{3}, x_{6}\right)
\end{aligned}
$$

Graphical Models

Graphical Models associates a graph, called the conditional independence graph, from which the all the conditional independencies can be easily seen.

When the conditional independence graph is triangulated, then the joint probability function can be expressed with a probability product form.

- The product form can be read off the graph
- The product form is a strong extension of the marginal terms of the product

Graphs

Definition

A graph $G=(N, E)$ where N is an index set and E, the edge set, is a collection of subsets of N where each subset has exactly 2 elements of N.

Graphs

Here, $G=(N, E)$ where

$$
\begin{aligned}
N & =\{1,2,3,4\} \\
E & =\{\{1,2\},\{2,4\},\{3,4\},\{3,1\}\}
\end{aligned}
$$

Boundary

Definition

Let $G=(N, E)$ be a graph and $i \in N$. The boundary of i is defined by

$$
\text { bndry }(i)=\{j \in N \mid\{i, j\} \in E\}
$$

- $\operatorname{bndry}(1)=\{2,3\}$
- bndry $(2)=\{1,4\}$
- bndry $(3)=\{1,4\}$
- bndry $(4)=\{2,3\}$

Conditional Independence Graph: Definition

Definition

A graph (N, E) is called a Conditional Independence Graph of a random variable set $\mathcal{X}=\left\{X_{1}, \ldots, X_{M}\right\}$ if and only if $N=\{1, \ldots, M\}$, the index set for the variables in X, and

$$
E^{c}=\left\{\{i, j\}\left|X_{i} \Perp X_{j}\right| X-\left\{X_{i}, X_{j}\right\}\right\}
$$

All graphs we discuss will be conditional independence graphs.

Conditional Independence Graph

Nodes correspond to indexes of variables in the variable set $X=\left\{X_{1}, \ldots, X_{6}\right\}$
$\{i, j\}$ not in the edge set means $X_{i} \Perp X_{j} \mid X-\left\{X_{i}, X_{j}\right\}$

Conditional Independence Graph

$\left\{Y, Z_{1}\right\}$ and $\left\{Y, Z_{2}\right\}$ not in edge set means

$$
\begin{array}{l|l}
Y \Perp Z_{1} & \left\{X, Y, Z_{1}, Z_{2}\right\}-\left\{Y, Z_{1}\right\} \\
Y \Perp Z_{2} & \left\{X, Y, Z_{1}, Z_{2}\right\}-\left\{Y, Z_{2}\right\} \\
Y \Perp Z_{1} & \left\{X, Z_{2}\right\} \\
Y \Perp Z_{2} & \left\{X, Z_{1}\right\}
\end{array}
$$

Block Independence Theorem

Y is conditionally independent of the block $\left\{Z_{1}, Z_{2}\right\}$ given X

Theorem

Suppose that for any values for any group of joint variables, the joint probability is greater than zero. $Y \Perp Z_{1}, Z_{2} \mid X$ if and only if $Y \Perp Z_{1} \mid X, Z_{2}$ and $Y \Perp Z_{2} \mid X, Z_{1}$.

Reduction Theorem

Theorem

Suppose that for any values for any group of joint variables, the joint probability is greater than zero.

- $Y \Perp Z_{1}, Z_{2} \mid X$ if and only if $Y \Perp Z_{1} \mid X, Z_{2}$ and $Y \Perp Z_{2} \mid X, Z_{1}$.
- $Y \Perp Z_{1}, Z_{2} \mid X$ implies $Y \Perp Z_{1} \mid X$ and $Y \Perp Z_{2} \mid X$.

- $Y_{1} \Perp Z_{1}\left|X, Y_{1} \Perp Z_{2}\right| X, Y_{2} \Perp Z_{1}\left|X, Y_{2} \Perp Z_{2}\right| X$
- $Y_{1}, Y_{2} \Perp Z_{1}\left|X, Y_{1}, Y_{2} \Perp Z_{2}\right| X, Y_{1}, Y_{2} \Perp Z_{1}, Z_{2} \mid X$
- $Z_{1}, Z_{2} \Perp Y_{1}\left|X, Z_{1}, Z_{2} \Perp Y_{2}\right| X$

Paths

Definition

Let (G, E) be a graph and $g_{1}, \ldots, g_{N} \in G .<g_{1}, \ldots, g_{N}>$ is a path in (G, E) if and only if $\left\{g_{n}, g_{n+1}\right\} \in E$ for every $n \in\{1, \ldots, N-1\}$.

Connectedness

Definition

Let (G, E) be a graph and A, B be subsets of G. A and B are said to be connected if and only if for some $a \in A$ and $b \in B$, there is a path $<a, g_{1}, \ldots, g_{N}, b>$ in G.

Separation

Definition

Let (G, E) be a graph and A, B, S be non-empty subsets of G. S separates A from B if and only if for every $a \in A$ and $b \in B$, every path in G that begins with a and ends with b has at least one node in S.

Separation Theorem

A separates $B \cup\{i\}$ from $C \cup\{j\}$

$$
N=A \cup B \cup C \cup\{i, j\}
$$

Then $i \Perp j \mid A$

Separation Theorem

Theorem

Let $G=(N, E)$ be a connected conditional independence graph for a set of random variables whose joint probability is positive. If $A \subset N$ is any node set that separates two nodes i and j, then $i \Perp j \mid A$.

Proof.

Let B be the set of nodes that either connect to i directly or through A. Let C be the set of nodes that either connect to j directly or through A. Hence, $\{A, B, C,\{i, j\}\}$ form a partition of N. By construction of the conditional independence graph, $i \Perp j \mid N-\{i, j\}$ and $i \Perp p \mid N-\{i, p\}$. Application of the block independence theorem yields $i \Perp j, p \mid N-\{i, j, p\}$. Application of the reduction theorem yields $i \Perp j \mid N-\{i, j, p\}$. Repeated application using the remaining nodes of C yields $i \Perp j \mid N-\{i, j\}-C$. Similarly for using q. Repeated application yields $i \Perp j \mid N-\{i, j\}-B-C$. But $N-\{i, j\}-B-C=A$. Therefore $i \Perp j \mid A$.

Local Markov Property

All conditional independences can be read off the Conditional Independence Graph.

Corollary

Let $G=(N, E)$ be a conditional independence graph and $n \in N$. Define $B=N-\{n\}-\operatorname{bndry}(n)$. Then $n \Perp B \mid$ bndry (n).

Proof.

The set bndry (n) separates n from B.

Definition

Let $G=(N, E)$ be a conditional independence graph and $n \in N$. The Markov Blanket of node n is bndry (n).

Complete Graphs

Definition

A graph $G=(N, E)$ is complete if and only if

$$
E=\{\{i, j\} \mid i, j \in N, i \neq j\}
$$

Figure: The Complete Graph on 4 Nodes

Graph Restriction

Definition

Let $G=(N, E)$ be a graph and $A \subset N$. The graph of G restricted to $A,\left.G\right|_{A}$, is defined by

$$
\left.G\right|_{A}=\left(A,\left.E\right|_{A}\right)
$$

where

$$
\left.E\right|_{A}=\{\{i, j\} \in E \mid i, j \in A\}
$$

Completeness

Definition

Let $G=(N, E)$ be a graph. Let a subset of nodes $A \subset N$ be given. We say A is complete if and only if $\left.G\right|_{A}$ is a complete graph.

Maximally Complete

Definition

A subset of nodes $A \subset N$ is maximally complete if and only if

- $\left.G\right|_{A}$ is complete
- $B \supset A$ and $\left.G\right|_{B}$ complete implies $B=A$

Clique

Definition

Let $G=(N, E)$ be a graph. A maximally complete subset $A \subset N$ is called a clique of G.

Chordal Graphs

Definition

A graph is chordal (triangulated, decomposable) if and only if every cycle of length 4 or more has a chord.

Figure: Non-chordal

Non-Chordal Graphs

Definition

A graph is chordal (triangulated, decomposable) if and only if every cycle of length 4 or more has a chord.

Figure: Non-chordal

Decomposable Graphs

Definition

A Graph $G=(N, E)$ is Decomposable if and only if

- G is chordal
- The cliques of G can be put in running intersection order C_{1}, \ldots, C_{K} with separators $S_{2}, \ldots S_{K}$ where

$$
S_{k}=C_{k} \bigcap\left(\bigcup_{i=1}^{k-1} C_{i}\right), k=2, \ldots, K-1
$$

such that S_{k} is complete.

Example

$$
\begin{array}{|rrr|rrrrrr}
\hline C_{1} & = & \{a, b, c, d, g\} & & & & & \\
C_{2} & = & \{c, d, f, g\} & S_{2} & & & C_{2} \cap C_{1} & = & \{c, d, g\} \\
C_{3} & = & \{f, g, h, i\} & S_{3} & = & C_{3} \cap\left(C_{1} \cup C_{2}\right) & = & \{f, g\} \\
C_{4} & = & \{d, e, f, j\} & S_{4} & = & C_{4} \cap\left(C_{1} \cup C_{2} \cup C_{3}\right) & = & \{d, f\} \\
\hline
\end{array}
$$

Notation

Let I be an index subset. If $I=\{1,3,7\}$, then

$$
P\left(x_{i}: i \in I\right)=P\left(x_{1}, x_{3}, x_{7}\right)
$$

Decomposable Graph

\[

\]

$$
\begin{aligned}
P\left(x_{i}: i \in I\right) & =\frac{P\left(x_{i}: i \in C_{1}\right) P\left(x_{i}: i \in C_{2}\right) P\left(x_{i}: i \in C_{3}\right)}{P\left(x_{i}: i \in S_{2}\right) P\left(x_{i}: i \in S_{3}\right)} \\
& =P\left(x_{i}: i \in C_{1}\right) P\left(x_{i}: i \in C_{2}-S_{2} \mid S_{2}\right) P\left(x_{i}: i \in C_{3}-S_{3} \mid S_{3}\right)
\end{aligned}
$$

Decomposable Graphs

Theorem

If G is a decomposable graph with cliques in running intersection order C_{1}, \ldots, C_{K} and separators S_{2}, \ldots, S_{K} then

$$
\begin{aligned}
P\left(x_{1}, \ldots, x_{N}\right) & =\frac{\prod_{k=1}^{K} P\left(x_{i}: i \in C_{k}\right)}{\prod_{m=2}^{K} P\left(x_{j}: j \in S_{m}\right)} \\
& =P\left(x_{i}: i \in C_{1}\right) \prod_{k=2}^{K} P\left(x_{i}: i \in C_{k}-S_{k} \mid S_{k}\right)
\end{aligned}
$$

Example

Cliques in running intersection order: $\{1,2,3,4\},\{2,3,4,5\},\{5,6\}$ Separators:
$\{2,3,4\}$,
\{5\}

$$
\begin{aligned}
P\left(x_{1}, \ldots, x_{6}\right) & =\frac{P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) P\left(x_{2}, x_{3}, x_{4}, x_{5}\right) P\left(x_{5}, x_{6}\right)}{P\left(x_{2}, x_{3}, x_{4}\right) P\left(x_{5}\right)} \\
& =P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) P\left(x_{5} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{6} \mid x_{5}\right) \\
& =P\left(x_{2}, x_{3}, x_{4}, x_{5}\right) P\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{6} \mid x_{5}\right)
\end{aligned}
$$

Product Form

The product form

$$
Q\left(x_{1}, \ldots, x_{6}\right)=P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) P\left(x_{5} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{6} \mid x_{5}\right)
$$

is an extension of the marginals

- $P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$
- $P\left(x_{2}, x_{3}, x_{4}, x_{5}\right)$
- $P\left(x_{5}, x_{6}\right)$

Product Form

$$
Q\left(x_{1}, \ldots, x_{6}\right)=P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) P\left(x_{5} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{6} \mid x_{5}\right)
$$

$$
\begin{aligned}
Q\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =\sum_{x_{5}} \sum_{x_{6}} Q\left(x_{1}, \ldots, x_{6}\right) \\
& =\sum_{x_{5}} \sum_{x_{6}} P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) P\left(x_{5} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{6} \mid x_{5}\right) \\
& =P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \sum_{x_{5}} P\left(x_{5} \mid x_{2}, x_{3}, x_{4}\right) \sum_{x_{6}} P\left(x_{6} \mid x_{5}\right) \\
& =P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \sum_{x_{5}} P\left(x_{5} \mid x_{2}, x_{3}, x_{4}\right) \\
& =P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{aligned}
$$

Product Form

$$
Q\left(x_{1}, \ldots, x_{6}\right)=P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) P\left(x_{5} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{6} \mid x_{5}\right)
$$

$$
\begin{aligned}
Q\left(x_{2}, x_{3}, x_{4}, x_{5}\right) & =\sum_{x_{1}} \sum_{x_{6}} P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) P\left(x_{5} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{6} \mid x_{5}\right) \\
& =P\left(x_{5} \mid x_{2}, x_{3}, x_{4}\right) \sum_{x_{1}} P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \sum_{x_{6}} P\left(x_{6} \mid x_{5}\right) \\
& =P\left(x_{5} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{2}, x_{3}, x_{4}\right)=P\left(x_{2}, x_{3}, x_{4}, x_{5}\right)
\end{aligned}
$$

$$
\begin{aligned}
Q\left(x_{1}, \ldots, x_{6}\right)= & P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) P\left(x_{5} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{6} \mid x_{5}\right) \\
Q\left(x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) & =\sum_{x_{1}} Q\left(x_{1}, \ldots, x_{6}\right) \\
& =\sum_{x_{1}} P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) P\left(x_{5} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{6} \mid x_{5}\right) \\
& =P\left(x_{2}, x_{3}, x_{4}\right) P\left(x_{5} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{6} \mid x_{5}\right) \\
& =P\left(x_{2}, x_{3}, x_{4}, x_{5}\right) P\left(x_{6} \mid x_{5}\right) \\
Q\left(x_{5}, x_{6}\right) & =\sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} P\left(x_{2}, x_{3}, x_{4}, x_{5}\right) P\left(x_{6} \mid x_{5}\right) \\
& =P\left(x_{5}\right) P\left(x_{6} \mid x_{5}\right)=P\left(x_{5}, x_{6}\right)
\end{aligned}
$$

Decomposable Graphs

$$
\begin{gathered}
S_{k}=C_{k} \bigcap\left(\bigcup_{i=1}^{k-1} C_{i}\right), k=2, \ldots, K \\
P\left(x_{1}, \ldots, x_{N}\right)=P\left(x_{i}: i \in C_{1}\right) \prod_{k=2}^{K} P\left(x_{i}: i \in C_{k}-S_{k} \mid S_{k}\right)
\end{gathered}
$$

Proposition

$\left(C_{k}-S_{k}\right) \cap\left(\bigcup_{i=1}^{k-1} C_{i}\right)=\emptyset$
Proof.

$$
\begin{aligned}
\left(C_{k}-S_{k}\right) \cap\left(\cup_{i=1}^{k-1} C_{i}\right) & =\left(C_{k}-\left(C_{k} \cap\left(\cup_{i=1}^{k-1} C_{i}\right)\right) \cap\left(\cup_{i=1}^{k-1} C_{i}\right)\right. \\
& =\left(C_{k}-\left(\cup_{i=1}^{k-1} C_{i}\right)\right) \cap\left(\cup_{i=1}^{k-1} C_{i}\right) \\
& =\emptyset
\end{aligned}
$$

Decomposable Graphs: Summability

$$
\begin{aligned}
S_{k} & =C_{k} \cap\left(\cup_{i=1}^{k-1} C_{i}\right), k=2, \ldots, K \\
P\left(x_{1}, \ldots, x_{N}\right) & =P\left(x_{i}: i \in C_{1}\right) \prod_{k=2}^{K} P\left(x_{i}: i \in C_{k}-S_{k} \mid S_{k}\right) \\
\left(C_{k}-S_{k}\right) \cap\left(\cup_{i=1}^{k-1} C_{i}\right) & =\emptyset
\end{aligned}
$$

Proposition

$$
\sum_{x_{1}} \sum_{x_{2}} \cdots \sum_{x_{N}} P\left(x_{i}: i \in C_{1}\right) \prod_{k=2}^{K} P\left(x_{i}: i \in C_{k}-S_{k} \mid S_{k}\right)=1
$$

Proof.

$$
\begin{aligned}
S & =\sum_{x_{1}} \sum_{x_{2}} \cdots \sum_{x_{N}} P\left(x_{i}: i \in C_{1}\right) \prod_{k=2}^{K} P\left(x_{i}: i \in C_{k}-S_{k} \mid S_{k}\right) \\
& =\sum_{C_{1}} \sum_{C_{2}-S_{2}} \cdots \sum_{C_{K}-S_{K}} P\left(x_{i}: i \in C_{1}\right) \prod_{k=2}^{K} P\left(x_{i}: i \in C_{k}-S_{k} \mid S_{k}\right) \\
& =\sum_{C_{1}} P\left(x_{i}: i \in C_{1}\right) \sum_{C_{2}-S_{2}} P\left(x_{i}: i \in C_{2}-S_{2} \mid S_{2}\right) \cdots \sum_{C_{K}-S_{K}} P\left(x_{i}: i \in C_{K}-S_{K} \mid S_{K}\right) \\
& =1
\end{aligned}
$$

Summability Example

$$
\begin{array}{ll}
C_{1}=\{1,2,3,5\} \\
C_{2}=\{2,3,4,5\} & S_{2}=\{2,3,5\} \\
C_{3}=\{1,5,6\} & S_{3}=\{1,5\} \\
C_{4}=\{5,6,7\} & S_{4}=\{5,6\} \\
C_{5}=\{6,7,8,9\} & S_{5}=\{6,7\}
\end{array}
$$

$$
\begin{aligned}
S & =\sum_{x_{1}} \cdots \sum_{x_{9}} P\left(x_{1} x_{2} x_{3} x_{5}\right) P\left(x_{4} \mid x_{2} x_{3} x_{5}\right) P\left(x_{6} \mid x_{1} x_{5}\right) P\left(x_{7} \mid x_{5} x_{6}\right) P\left(x_{9} \mid x_{6} x_{7}\right) \\
& =\sum_{x_{1} x_{2} x_{3} x_{5}} P\left(x_{1} x_{2} x_{3} x_{5}\right) \sum_{x_{4}} P\left(x_{4} \mid x_{2} x_{3} x_{5}\right) \sum_{x_{6}} P\left(x_{6} \mid x_{1} x_{5}\right) \sum_{x_{7}} P\left(x_{7} \mid x_{5} x_{6}\right) \sum_{x_{8} x_{9}} P\left(x_{8} x_{9} \mid x_{6} x_{7}\right) \\
& =1
\end{aligned}
$$

Separators

Definition

Let $G=(V, E)$ be a connected graph. A non-empty subset $S \subset V$ is called a Separator of G if and only if $G\left(V-S,\left.E\right|_{V-S}\right)$ is not connected. Let A, B, and S be disjoint non-empty subsets of V. S is a Separator of A from B in graph G if and only if in the restricted graph G_{V-s}, there exists no $a \in A$ and $b \in B$ such that $\left.\{a, b\} \in E\right|_{V-s}$.
A separator S is called a Minimal Separator if and only if T a separator with $T \subset S$ implies $T=S$.

Theorem

A graph is triangulated if and only if each minimal separator is maximally complete.

Triangulated Graphs

Theorem

G is a triangulated graph if and only if the vertices of G can be partitioned into three nonempty subsets A, S, and B, such that

- $\left.G\right|_{A \cup S}$ and $\left.G\right|_{B \cup S}$ are triangulated subgraphs of G
- S separates A from B

This is one of the reasons that triangulated graphs are called decomposable graphs.

Triangulated Graphs

Definition

Let $G(V, E)$ be a graph and $\{A, B, S\}$ be a non-trivial partition of V. (A, B, S) is called a Decomposition of G into $G_{\text {AuS }}$ and $G_{B \cup S}$ if and only if

- S separates A from B in G
- G_{S} is a complete graph
- $G_{A \cup S}$ and $G_{B \cup S}$ are each triangulated

Decomposable Graphs

Theorem

A graph is decomposable if and only if either G is complete or there exists a decomposition (A, B, S) of G into $G_{A \cup S}$ and $G_{B \cup S}$.

Triangulated Graphs

Definition

A Perfect Elimination Ordering in a graph is an ordering of the vertices of the graph such that, for each vertex v, v and the neighbors of v that occur after v in the ordering form a maximally complete graph.

Theorem

A graph is triangulated if and only if it has a perfect elimination ordering.

Theorem

A graph is triangulated if and only if its cliques can be put in running intersection order.

Triangulated Graphs and Clique Finding

A triangulated graph can have only linearly many cliques, while non-chordal graphs may have exponentially many. Therefore clique finding in triangulated graphs can be done in polynomial time.

Triangulated Graphs

Theorem

If a graph G is triangulated graph and C_{1}, \ldots, C_{K} are the cliques of G put in running intersection order with separators S_{2}, \ldots, S_{K},

$$
S_{k}=C_{k} \bigcap\left(\bigcup_{i=1}^{k-1} c_{i}\right), k=2, \ldots, K
$$

then

$$
P\left(x_{1}, \ldots, x_{N}\right)=\frac{\prod_{k=1}^{K} P\left(x_{i}: i \in C_{k}\right)}{\prod_{k=2}^{K} P\left(x_{i}: i \in S_{k}\right)}
$$

Conditional Independence Graphs

Theorem

Let $P\left(x_{1}, \ldots, x_{N}\right)>0$ and G be the conditional independence graph of P. If $\{A, B, S\}$ is a non-trivial partition of $\{1, \ldots, N\}$ and S is a separator of A from B in G, then $A \Perp B \mid S$

$$
P\left(x_{i}: i \in A \cup B \mid x_{j}: j \in S\right)=P\left(x_{i}: i \in A \mid x_{j}: j \in S\right) P\left(x_{i}: i \in B \mid x_{j}: j \in S\right)
$$

Generalized Products

What happens if the conditional independence graph is not triangulated? Can the joint probability distribution be written in a product form?

Generalized Products

Theorem

Let f be a probability distribution. Then X is Conditionally Independent of Y given Z if and only if

$$
f(x, y, z)=g(x, z) h(y, z)
$$

Proof.

By definition of conditional independence, X is conditionally independent of Y given Z if and only if

$$
f(x, y \mid z)=f(x \mid z) f(y \mid z)
$$

Hence X is conditionally independent of Y given Z if and only if

$$
\begin{aligned}
f(x, y, z) & =f(x \mid z) f(y \mid z) f(z) \\
& =[f(x \mid z)][f(y \mid z) f(z)] \\
& =[f(x \mid z)][f(y, z)]
\end{aligned}
$$

Take $g(x, z)=f(x \mid z)$ and $h(y, z)=f(y, z)$

Generalized Products

Definition

Let B_{1}, \ldots, B_{K} be index subsets of $\{1, \ldots, \mathrm{~N}\}$. The product form $\prod_{k=1}^{K} a_{k}\left(x_{i}: i \in B_{k}\right)$ is called a generalized product form if and only if for some probability function $P\left(x_{1}, \ldots, x_{N}\right)$

- $P\left(x_{1}, \ldots, x_{N}\right)=\prod_{k=1}^{K} a_{k}\left(x_{i}: i \in B_{k}\right)$
- $P\left(x_{1}, \ldots, x_{N}\right)$ is an extension of $P\left(x_{i}: i \in B_{k}\right), k=1, \ldots, K$

Generalized Products

Let B_{1}, \ldots, B_{K} be index subsets of $\{1, \ldots, \mathrm{~N}\}$. Given marginal probability functions $P\left(x_{i}: i \in B_{k}\right), k=1, \ldots, K$ find functions $a_{k}\left(x_{i}: i \in B_{k}\right)$ such that

- $P\left(x_{1}, \ldots, x_{N}\right)=\prod_{k=1}^{K} a_{k}\left(x_{i}: i \in B_{k}\right)$
- $P\left(x_{1}, \ldots, x_{N}\right)$ is an extension of $P\left(x_{i}: i \in B_{k}\right), k=1, \ldots, K$

Decomposable Graph

C_{1}	$=$	$\{1,2,5\}$	$1 \Perp 4$
C_{2}	$=$	$\{2,3,5\}$	$1 \Perp 3$
C_{3}	$=$	$\{3,4,5\}$	$2 \Perp 4$
S_{2}	$=$	$22,5\}$	$1 \Perp 4$
S_{3}	$=$	3,5	
$\left.S_{2}, 5\right\}$	$1 \Perp 4$	2,5	

$$
\begin{aligned}
P\left(x_{i}: i \in I\right) & =\frac{P\left(x_{i}: i \in C_{1}\right) P\left(x_{i}: i \in C_{2}\right) P\left(x_{i}: i \in C_{3}\right)}{P\left(x_{i}: i \in S_{2}\right) P\left(x_{i}: i \in S_{3}\right)} \\
& =P\left(x_{i}: i \in C_{1}\right) P\left(x_{i}: i \in C_{2}-S_{2} \mid S_{2}\right) P\left(x_{i}: i \in C_{3}-S_{3} \mid S_{3}\right)
\end{aligned}
$$

Decomposable Graph

In the conditional independence graph, there is no edge between node i and j if and only if X_{i} and X_{j} are conditionally independent given the rest of the variables.

$$
\begin{aligned}
P_{12345}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) & =\frac{P_{125}\left(x_{1}, x_{2}, x_{5}\right) P_{235}\left(x_{2}, x_{3}, x_{5}\right) P_{345}\left(x_{3}, x_{4}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} \\
& =P_{15}\left(x_{1}, x_{5}\right) P_{2 \mid 15}\left(x_{2} \mid x_{1}, x_{5}\right) P_{3 \mid 25}\left(x_{3} \mid x_{2}, x_{5}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right)
\end{aligned}
$$

System Diagram 1

$\{235: 25\},\{345: 35\}$

$$
\begin{aligned}
P_{12345}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) & =\frac{P_{125}\left(x_{1}, x_{2}, x_{5}\right) P_{235}\left(x_{2}, x_{3}, x_{5}\right) P_{345}\left(x_{3}, x_{4}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} \\
& =P_{15}\left(x_{1}, x_{5}\right) P_{2 \mid 15}\left(x_{2} \mid x_{1}, x_{5}\right) P_{3 \mid 25}\left(x_{3} \mid x_{2}, x_{5}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right)
\end{aligned}
$$

Figure: 1:System H

System Diagram 2

\{235:25\}, \{345:35\}

$$
\begin{aligned}
P_{12345}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) & =\frac{P_{125}\left(x_{1}, x_{2}, x_{5}\right) P_{235}\left(x_{2}, x_{3}, x_{5}\right) P_{345}\left(x_{3}, x_{4}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} \\
& =P_{25}\left(x_{2}, x_{5}\right) P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right) P_{3 \mid 25}\left(x_{3} \mid x_{2}, x_{5}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right)
\end{aligned}
$$

Figure: 1:System G

System Diagram 3

$\{235: 25\},\{345: 35\}$

$$
\begin{aligned}
P_{12345}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) & =\frac{P_{125}\left(x_{1}, x_{2}, x_{5}\right) P_{235}\left(x_{2}, x_{3}, x_{5}\right) P_{345}\left(x_{3}, x_{4}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} \\
& =P_{12}\left(x_{1}, x_{2}\right) P_{5 \mid 12}\left(x_{5} \mid x_{1}, x_{2}\right) P_{3 \mid 25}\left(x_{3} \mid x_{2}, x_{5}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right)
\end{aligned}
$$

Figure: 1:System I

System Diagram 4

$\{125: 25\},\{235: 35\}$

$$
\begin{aligned}
P_{12345}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) & =\frac{P_{125}\left(x_{1}, x_{2}, x_{5}\right) P_{235}\left(x_{2}, x_{3}, x_{5}\right) P_{345}\left(x_{3}, x_{4}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} \\
& =P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right) P_{2 \mid 35}\left(x_{2} \mid x_{3}, x_{5}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)
\end{aligned}
$$

Figure: 2: System E

System Diagram 5

$$
\begin{aligned}
&\{125: 25\},\{235: 35\} \\
& P_{12345}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)= \frac{P_{125}\left(x_{1}, x_{2}, x_{5}\right) P_{235}\left(x_{2}, x_{3}, x_{5}\right) P_{345}\left(x_{3}, x_{4}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} \\
&= P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right) P_{2 \mid 35}\left(x_{2} \mid x_{3}, x_{5}\right) P_{3 \mid 45}\left(x_{3} \mid x_{4}, x_{5}\right) P_{45}\left(x_{4}, x_{5}\right)
\end{aligned}
$$

Figure: 2:System L

System Diagram 6

$$
\begin{aligned}
&\{125: 25\},\{235: 35\} \\
& P_{12345}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)= \frac{P_{125}\left(x_{1}, x_{2}, x_{5}\right) P_{235}\left(x_{2}, x_{3}, x_{5}\right) P_{345}\left(x_{3}, x_{4}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} \\
&= P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right) P_{2 \mid 35}\left(x_{2} \mid x_{3}, x_{5}\right) P_{5 \mid 34}\left(x_{5} \mid x_{3}, x_{4}\right) P_{34}\left(x_{3}, x_{4}\right)
\end{aligned}
$$

System Diagram 7

$\{125: 25\},\{345: 35\}$

$$
\begin{aligned}
P_{12345}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) & =\frac{P_{125}\left(x_{1}, x_{2}, x_{5}\right) P_{235}\left(x_{2}, x_{3}, x_{5}\right) P_{345}\left(x_{3}, x_{4}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} \\
& =P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right) P_{2 \mid 35}\left(x_{2} \mid x_{3}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)
\end{aligned}
$$

Figure: 3:System E

System Diagram 8

$\{125: 25\},\{345: 35\}$

$$
\begin{aligned}
P_{12345}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) & =\frac{P_{125}\left(x_{1}, x_{2}, x_{5}\right) P_{235}\left(x_{2}, x_{3}, x_{5}\right) P_{345}\left(x_{3}, x_{4}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} \\
& =P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right) P_{3 \mid 25}\left(x_{3} \mid x_{2}, x_{5}\right) P_{25}\left(x_{2}, x_{5}\right)
\end{aligned}
$$

Figure: 3:System G

System Diagram 9

$\{125: 25\},\{345: 35\}$

$$
\begin{aligned}
P_{12345}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) & =\frac{P_{125}\left(x_{1}, x_{2}, x_{5}\right) P_{235}\left(x_{2}, x_{3}, x_{5}\right) P_{345}\left(x_{3}, x_{4}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} \\
& =P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right) P_{5 \mid 23}\left(x_{5} \mid x_{2}, x_{3}\right) P_{23}\left(x_{2}, x_{3}\right)
\end{aligned}
$$

Figure: 3:System J

Feed Forward System Conditional Independences

$$
\begin{aligned}
& P_{12345}^{A}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=P_{45}\left(x_{4}, x_{5}\right) P_{3 \mid 45}\left(x_{3} \mid x_{4}, x_{5}\right) P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right) P_{2 \mid 35}\left(x_{2} \mid x_{3}, x_{5}\right) \\
& P_{12345}^{E}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=P_{35}\left(x_{3}, x_{5}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right) P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right) P_{2 \mid 35}\left(x_{2} \mid x_{3}, x_{5}\right) \\
& P_{12345}^{G}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=P_{25}\left(x_{2}, x_{5}\right) P_{3 \mid 25}\left(x_{3} \mid x_{2}, x_{5}\right) P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right) \\
& P_{12345}^{H}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=P_{15}\left(x_{1}, x_{5}\right) P_{2 \mid 15}\left(x_{2} \mid x_{1}, x_{5}\right) P_{3 \mid 25}\left(x_{3} \mid x_{2}, x_{5}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right) \\
& P_{12345}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=P_{12}\left(x_{1}, x_{2}\right) P_{5 \mid 12}\left(x_{5} \mid x_{1}, x_{2}\right) P_{3 \mid 25}\left(x_{3} \mid x_{2}, x_{5}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right) \\
& P_{12345}^{J}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=P_{23}\left(x_{2}, x_{3}\right) P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right) P_{5 \mid 23}\left(x_{5} \mid x_{2}, x_{3}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right) \\
& P_{12345}^{L}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=P_{34}\left(x_{3}, x_{4}\right) P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right) P_{2 \mid 35}\left(x_{2} \mid x_{3}, x_{5}\right) P_{5 \mid 34}\left(x_{5} \mid x_{3}, x_{4}\right)
\end{aligned}
$$

These decompositions correspond to the same Decomposable Graphical Model

$$
P_{12345}\left(x_{1}, x_{2}, x_{4}, x_{4}, x_{5}\right)=\frac{P_{345}\left(x_{3}, x_{4}, x_{5}\right) P_{125}\left(x_{1}, x_{2}, x_{5}\right) P_{235}\left(x_{2}, x_{3}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)}
$$

Feedforward Systems: Bayesian Networks

System A

Associated Bayesian Network

System A
Bayesian Network

$$
\begin{aligned}
& P\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \quad=\quad P_{45}\left(x_{4}, x_{5}\right) P_{3 \mid 45}\left(x_{3} \mid x_{4}, x_{5}\right) P_{2 \mid 35}\left(x_{2} \mid x_{3}, x_{5}\right) P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right) \\
& P\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=P_{4}\left(x_{4}\right) P_{5}\left(x_{5}\right) P_{3 \mid 45}\left(x_{3} \mid x_{4}, x_{5}\right) P_{2 \mid 35}\left(x_{2} \mid x_{3}, x_{5}\right) P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right)
\end{aligned}
$$

Causal Structure

4,5 are the direct cause of 3
2,5 are the direct cause of 1
3,5 are the direct cause of 2

$$
\begin{aligned}
J_{1} & =\{3,4,5\} \\
I_{1} & =\{4,5\} \\
O_{1} & =\{3\} \\
J_{2} & =\{1,2,5\} \\
I_{2} & =\{2,5\} \\
O_{2} & =\{1\} \\
J_{3} & =\{2,3,5\} \\
I_{3} & =\{3,5\} \\
O_{3} & =\{2\}
\end{aligned}
$$

Causal Structure

X_{4}, X_{5} is the direct cause of X_{3}
X_{2}, X_{5} is the direct cause of X_{1}
X_{3}, X_{5} is the direct cause of X_{2}
X_{4} is an indirect cause of X_{1}
X_{1} has no causal influence on $X_{3}: X_{1} \rightarrow X_{3}$
X_{3} has causal influence on $X_{1}: X_{3} \rightarrow X_{1}$
Given X_{2}, X_{5}, X_{3} has no causal influence on $X_{1}: X_{3} \rightarrow X_{1} \mid X_{2}, X_{5}$ Given X_{2}, X_{5}, X_{3} is conditionally independent of $X_{1}: X_{3} \Perp X_{1} \mid X_{2}, X_{5}$

Conditional Independence Structure

X_{4}, X_{5} is the direct cause of X_{3}
X_{2}, X_{5} is the direct cause of X_{1}
X_{3}, X_{5} is the direct cause of X_{2}
X_{4} is an indirect cause of X_{1}
Given its parents, each variable is conditionally independent of its non-descendants
Given X_{3} and X_{5}, X_{2} is conditionally independent $X_{4}: X_{2}, \Perp X_{4} \mid X_{3}, X_{5}$

Conditional Independence Structure

$$
\begin{aligned}
& P_{12345}\left(x_{1}, x_{2}, x_{4}, x_{4}, x_{5}\right)=\frac{P_{345}\left(x_{3}, x_{4}, x_{5}\right) P_{125}\left(x_{1}, x_{2}, x_{5}\right) P_{235}\left(x_{2}, x_{3}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} \\
& \begin{aligned}
P_{24 \mid 35}\left(x_{2}, x_{4} \mid x_{3}, x_{5}\right) & =\sum_{x_{1}} \frac{P_{125}\left(x_{1}, x_{2}, x_{5}\right) P_{235}\left(x_{2}, x_{3}, x_{5}\right) P_{345}\left(x_{3}, x_{4}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} \\
& =\frac{P_{235}\left(x_{2}, x_{3}, x_{5}\right) P_{345}\left(x_{3}, x_{4}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} P_{25}\left(x_{2}, x_{5}\right) \\
& =\frac{P_{235}\left(x_{2}, x_{3}, x_{5}\right) P_{345}\left(x_{3}, x_{4}, x_{5}\right)}{P_{35}\left(x_{3}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} \\
& =P_{2 \mid 35}\left(x_{2} \mid x_{3}, x_{5}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right)
\end{aligned}
\end{aligned}
$$

Possible Causal System Structure

Let us consider all the possibilities where each subsystem has exactly one output variable and no two different subsystems produce the same output variables.

System	subsystem	output	subsystem	output	subsystem	output
A	345	3	235	2	125	1
B	345	3	235	2	125	5
C	345	3	235	5	125	1
D	345	3	235	5	125	2
E	345	4	235	2	125	1
F	345	4	235	2	125	5
G	345	4	235	3	125	1
H	345	4	235	3	125	2
I	345	4	235	3	125	5
J	345	4	235	5	125	1
K	345	4	235	5	125	2
L	345	5	235	2	125	1
M	345	5	235	3	125	1
N	345	5	235	3	125	2

System Diagrams

System Diagrams

System Diagrams

