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Solving Complex Computational Problems

Break global problem into smaller subproblems
Each of which can be solved independently
Optimally solve the subproblems
Combine the solutions to the subproblems to obtain the
solution to the global problem
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Decompositions

Maximize the Dependencies within each of the smaller
problems
Maximize the Independence between each of the smaller
problems
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Decompositions

Recursive Decomposition
Data Decomposition
Functional Decompositions
Search Space Decompositions
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Decompositions and Optimality

Sometimes the Solution to the decomposed problem is
optimal
Sometimes the Solution to the decomposed problem is
sub-optimal
The Solution obtained by decomposition can be close to
optimal
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The Subspace Classifier

Definition
A Subspace Classifier is one that projects the measurement
vector to one or more subspaces where the projected vector is
processed and then the processed projected vectors are
combined in a way to form an assigned classification.

It is typical for the projection operators to be orthogonal
projection operators. It is not unusual for the projection
operators to be axis aligned.

6 / 53



N-Tuple Method - Bledsoe and Browning -

(a) Bledsoe (b) Browning

Developed For Printed Character Recognition
Each character is contained in an image of I × J pixels
Each pixel is a binary 1 or a binary 0
Designed for table lookup hardware

W.W. Bledsoe and I. Browning, Pattern Recognition and Reading by Machine, Proceeding Eastern Joint
Computer Conference, Boston, 1959, 232-255.
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Climate and the Affairs of Men
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N-Tuple Method

Bledsoe and Browning had an array of 10 × 15 pixels
In general, N Randomly Chosen Pixel Positions
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N-Tuple Method

A small number of pixel positions are randomly selected for each
subspace

Bledsoe and Browning selected 2 pixels at a time

Have multiple sets of such randomly selected pixel positions

Bledsoe and Browning selected 75 sets of randomly
selected mutually exclusive pixel pairs
Each subspace was two dimensions, there were 4 possible
values in each subspace dimension

Each of the pixel positions had been thresholded (quantized)
and contained a binary 0 or a binary 1
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N-Tuple Method

Concatenate all the binary values to form a binary number
as an address for the subspace
The memory required for each subspace for each class
was 2 dimensions × 4 possible values per subspace

Number of classes: 26 letters, 10 digits make up 36 classes
For each of 36 classes
Bledsoe and Browning implementation needed 8 locations
for each of the 75 two dimensional subspaces for each
class
The number of memory locations was 600 for each of 36
classes

Use the 4 bit numbers to access an address in memory
For each subspace
For each character class
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N-Tuple Method

M pattern sets of N randomly selected pixel positions
A printed character produces M N-digit binary numbers
b1, . . . ,bM

K character classes
Tmk lookup table for pattern set m and class k
Tmk (bm) holds the fraction of times a character in the
training set of class k has the binary number bm for the mth

pattern set
Compute

fk =
∏M

m=1 Tmk (bm)

fk =
∑M

m=1 Tmk (bm)

Assign the character to unique class k , if there is one, for
which fk > 0 is highest
Otherwise reserve decision
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An Alternate N-Tuple Method

M pattern sets of N randomly selected pixel positions
A printed character produces M binary numbers b1, . . . ,bM

K character classes
Tm lookup table for pattern set m
Tm(bm) holds the subset of classes most associated with
the binary number bm for the mth pattern set
Compute

f = ∩M
m=1Tm(bm)

Assign the character to unique class k , if there is one,
where k ∈ f and |f | = 1
Otherwise reserve decision
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The N-tuple Calculation for Class k
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The N-tuple Class Index Generator

Y1

Y2

Y3

YK

Class Scores

Argmax k

Class Index

if Yk > Yi , i , k , k = Argmax{Y1,Y2, . . . ,YK }

else k = reserved decision

15 / 53



The Need For The Indexed Tuple

Consider the five dimensional measurement vector (a,b, c,d ,e)
where

a is the value produced by feature f1
b is the value produced by feature f2
...

e is the value produced by feature f5
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The Need For the Indexed Tuple

Project the measurement vector (a,b, c,d ,e) to the third
and fifth feature
The resulting tuple is (c,e).
But now we have lost from which features c and e came.

In the database world, every value comes from a field and the
connection between field and value is never lost.
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The Indexed Tuple

Index Sets serve as Field Names
The tuple (a,b, c,d ,e) is written as
({1,2,3,4,5}, (a,b, c,d ,e))

(c,d) is written as ({3,4}, (c,d))

(a,b,e) is written as ({1,2,5}, (a,b,e))

A tuple list R = 〈(a,b,e), (q, r , s), (t , x , z)〉 is written as
({1,2,5},R)

First component is an index set for the features
Second component is a set of tuples
Each component of a tuple is the value for the
corresponding indexed features
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The Tuple Projection Operator

Suppose that S is a tuple list with respect to the index set I
(I,S)

Let J ⊂ I.
The projection of (I,S) from the space indexed by I to the
subspace indexed by J

πJ(I,S) = (J ,R)

19 / 53



Projection

X1

X2

R

π{1}({1,2},R)

π{2}({1,2},R)
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N-tuple Method Using Index Sets and Projections

Index Set I = {1, . . . ,V }
X1, . . . ,XV are the V quantized features
L1, . . . ,LV are the corresponding range sets

Xv ∈ Lv , v = 1, . . . ,V
Measurement SpaceM =

�
i∈I Li

〈(I, x1), . . . , (I, xZ ) | xz ∈ M〉 Measurement Sequence
〈c1, . . . , cz〉 corresponding sequence of class tags
{〈(I, x1), . . . , (I, xZ ) | xz ∈ M〉, 〈c1, . . . , cz〉} Training Set
J1, . . . , JM ⊂ I are the M index sets specifying subspaces
πJm (I, xz) = (Jm,uz), uz ∈

�
j∈Jm Lj Projection of I onto Jm
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N-tuple Method

Tables For Each Index Set and Class
Z1 = |{z ∈ [1,Z ] | cz = 1}|
Z2 = |{z ∈ [1,Z ] | cz = 2}|
Tm1(Jm,u) = |{z ∈ [1,Z ] | (Jm,u) = πJm (I, xz), cz = 1}|/Z1
Tm2(Jm,u) = |{z ∈ [1,Z ] | (Jm,u) = πJm (I, xz), cz = 2}|/Z2

Scores For Each Class
Sk (I, x) =

∑M
m=1 Tmk (πJm (I, x))

Identification
Assign class k if Sk (I, x) > Sj (I, x) + ε, j , k
Otherwise Assign reserve decision
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Scanning N-tuple Classifier

0 1 2 3 4 5 6 7 8 9

S.M. Lucas and A. Amiri, Recognition of Chain-coded Handwritten Characters With the Scanning N-Tuple Method,
Electronics Letters, vol. 31, no. 24, 1995, pp. 2088-2089.
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Scanning N-tuple Classifier Index Sets

J0 = {0,1,2}
J1 = {1,2,3}
...

J9 = {7,8,9}
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Universal Approximator Conjecture

The N-tuple Subspace Classifier is a kind of universal
approximator.

Conjecture

LetM =
�D

d=1 Ld be the D-dimensional measurement space.
Let f :M→ {0,1} be a given function associating every
measurement tuple with a 0 or a 1. Let P be a probability
distribution onM. Let T be the tables and T be the function
that the n-tuple method produces to assign a class. If f is ‘zzz’
simple, then for every ε > 0, there exists K << D and

M <

(
D
K

)
and a two class N-tuple subspace classifier

C = (M,J ,T ,K ,M) such that

P({x ∈ M | f (x) , T (x)} < ε
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Where Did the Olives Come From?

Classes
Northern Italy
Southern Italy
Sardinia

Fatty Acid Measurements
Eicosenoic: x1
Linoleic: x2
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Olives

Eicosenoic

Linoleic
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Olives

Eicosenoic

Linoleic
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Decision Tree

SardiniaN. Italy

S. Italy

x1 ≥ 0.07

YN

x2 ≥ 10.5

YN

SardiniaN. Italy

S. Italy

29 / 53



Binary Quantization
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Olives
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The N-tuple Calculation for Class k
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Non-uniform Quantization

Q1

Q2
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The N-tuple Calculation for Class k
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The N-tuple Class Index Generator

Y1

Y2

Y3

YK

Class Scores

Argmax k

Class Index

if Yk > Yi , i , K , k = Argmax{Y1,Y2, . . . ,YK }

else reserved decision
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Optimizing the N-tuple Classifier

Quantization
Optimize the number of quantized levels for each feature
Find the Optimal Quantizer boundaries

Projections
Find the Optimal Index Sets

Tables
Find the Optimal Values for all Table Entries

Combiner
Find the Optimal way to Combine Scores

Class Index
Optimize the way the Class Index is Determined
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N-tuple Method Using Measurement Conditional
Probabilities
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Conditional Probability of Class Given Projected Tuple

Tmk (Jm,u) = P̂rob((Jm,u) | k)

P̂rob(Jm,u) =

K∑
k ′=1

P̂rob((Jm,u) | k ′)P(k ′)

P̂rob(k | (Jm,u)) =
P̂rob((Jm,u) | k)P(k)∑K

k ′=1 P̂rob((Jm,u) | k ′)P(k ′)

Tmk (πJm (I, x)) = P̂rob(πJm (I, x) | k)

P̂rob(k | πJm (I, x)) =
P̂rob(πJm (I, x) | k)P(k)∑K

k ′=1 P̂rob(πJm (I, x) | k ′)P(k ′)
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Conditional Probability Converter

P(1)P(2) P(K )

P̂rob(πJm (I, x) | 1)
Tm1

P̂rob(πJm (I, x) | 2)
Tm2

P̂rob(πJm (I, x) | K )
TmK

P̂rob(1 | πJm (I, x))

P̂rob(2 | πJm (I, x))

P̂rob(K | πJm (I, x))

Conditional
Probability
Converter

Tmk (πJm (I, x)) = P̂rob(k | πJm (I, x)) =
P̂rob(πJm (I,x) | k)P(k)∑K

k′=1 P̂rob(πJm (I,x) | k ′)P(k ′)
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Score Generator

P̂rob(k | πJ1 (I, x))

P̂rob(k | πJ2 (I, x))

P̂rob(k | πJ3 (I, x))

P̂rob(k | πJM (I, x))

Conditional Probabilities
Class Given Projected Measurement

Score Generator

Σ
Sk

Class Score

Sk =
∑M

m=1 P̂(k | πJm (I, x))
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Maximizing Expected Economic Gain: Bayes Case

A Bayes rule can always be implemented as a deterministic
decision rule

ASSIGNED CLASS
1 2 K

T 1 PT (1,d) e(1,1) e(1,2) e(1,K )
R 2 PT (2,d) e(2,1) e(2,2) e(2,K )
U . . .

E
...

K PT (K ,d) e(K ,1) e(K ,2) e(K ,K )

K∑
j=1

e(j , k)PT (j ,d)

PT (j ,d) is the fraction of instances that a d from the training set has
true class j

Assign any class k to d such that
∑K

j=1 e(j , k)PT (j ,d) is maximal
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Maximizing Expected Economic Gain: Subspace Case

Training Set: {〈x1, . . . , xz〉, 〈c1, . . . , cZ 〉}

Tuple xz produces K scores S1(xz), . . . ,SK (xz)

The scores are quantized
qk : R → Lk = {0,1, . . . ,Pk }, k = 1, . . . ,K
q1(S1(xz)), . . . ,qK (SK (xz))

The quantized score produces an address
a(q1(S1(xz)), . . . ,qK (SK (xz)))

The address enables us to define the table T
T (k ,b) =

|{z∈[1,Z ] | b=a(q1(S1(xz)),...,qK (SK (xz))),cz=k }|
Z

T (k ,b) is the fraction of instances that an xz from the
training sequence has address b and class k
(T (1,b),T (2,b) . . .T (K ,b)) are the probabilities that an x
that produces address b will have true classes (1,2, . . . ,K )

Assign any class k to an x that produces address b such
that

∑K
j=1 e(j , k)T (j ,b) is maximal
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Economic Gain Matrix Is the Identity

S1

S2

S3

SK

Class Scores

T (class,address)Address k

q1

q2

q3

qK

Class Index

Tuple x produces address b

if T (k ,b) > T (i ,b), i , k assign class k to x

else assign reserved decision
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Group Theory and Decision Problems

Dehn in 1911 articulated the following fundamental group
Decision Problems

Word Problem
Conjugacy Problem
Isomorphism Problem

Haralick et. al. describes a successful machine learning
approach related to Whitehead minimal words in free groups.

Robert M. Haralick, Alex D. Miasnikov, and Alexei G. Myasnikov, Pattern Recognition and Minimal Words In Free
Groups of Rank 2, Journal of Group Theory, Vol. 8, 2005, 523-538.
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Conjugacy Problem

Definition
Given a group G and elements u and v ∈ G, Determine if there
is an element a ∈ G such that

u = ava−1
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Non-Abelian Infinite Groups Tested

Three Non-virtually Nilpotent Polycyclic Groups
O o U14 determined by x9

− 7x3
− 1

O o U16 determined by x11
− x3

− 1
O o U34 determined by x23

− x3
− 1

Two Non-polycyclic Metabelian Groups
Baumslag-Solitar Group BS(1,2)
Generalized Metabelian Baumslag-Solitar group
GMBS(2,3)

A Non-Solvable Linear Group
SL(2,Z)

In these infinite groups the conjugacy problem is undecidable.

Jonathan Gryak, Robert Haralick, and Delaram Kahrobaei, Solving the Conjugacy Decision Problem Via Machine
Learning, Experimental Mathematics, Vol 29, Number 1, 2020, pp. 66-78
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Undecidability

Definition
A family of problems with Yes/No answers is Undecidable if and
only if there is no algorithm that terminates with the correct
answer for every problem in the family.

Definition
The Halting Problem is to determine whether there exists an
algorithm that takes a computer program and the computer
program’s input and decides whether it eventually halts instead
of entering an infinite loop.

The halting problem is undecidable.
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Protocols

Machine Learning Techniques
Decision Trees: Scikit-learn DecisionTreeClassifier
Random Forests: Scikit-learn Random ForestClassifier
N-Tuple Neural Network: Our own Python Implementation

Data Generation
Three Independent Data Sets For Each Group

Training
Optimization
Verification

20,000 Geodesic word pairs
10,000 conjugate pairs
10,000 non conjugate pairs
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Best Performing Decision Tree Classifiers

Group Split Criterion Depth Accuracy
BS(1,2) Entropy Depth Limit 92.00%
O o U14 Entropy Depth Limit 98.49%
O o U16 Entropy No Depth Limit 97.23%
O o U34 Entropy Depth Limit 98.47%

GMBS(2,3) Gini Impurity Depth Limit 95.43%
SL(2,Z) Entropy No Depth Limit 96.26%
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Best Performing Random Forest Classifiers for All
Groups

Group Split Criterion Depth Accuracy
BS(1,2) Entropy No Depth Limit 93.64%
O o U14 Entropy No Depth Limit 98.69%
O o U16 Entropy Depth Limit 98.19%
O o U34 Entropy No Depth Limit 98.89%

GMBS(2,3) Entropy No Depth Limit 96.49%
SL(2,Z) Entropy No Depth Limit 97.47%
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Best Performing N-Tuple Classifiers for All Groups

Group Number of Size of Accuracy
Subspaces Subspaces

BS(1,2) 30 4 92.41% (log)
O o U14 20 3 98.77% (log)
O o U16 20 5 98.46% (Σ)
O o U34 100 3 99.50% (log)

GMBS(2,3) 30 4 96.13% (Σ)
SL(2,Z) 50 4 99.81% (log)
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Comparison

Group Decision Tree Random Forest N-tuple
BS(1,2) 92.00% 93.64% 92.41%
O o U14 98.49% 98.69% 98.77%
O o U16 97.23% 98.19% 98.46%
O o U34 98.47% 98.89% 99.50%

GMBS(2,3) 95.43% 96.49% 96.13%
SL(2,Z) 96.26% 97.47% 99.81%
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N-Tuple: Accuracy by Class for Tested Groups

Accuracy by Class
Group Conjugate Non-Conjugate

BS(1,2) 88.17% 96.64%
O o U14 99.95% 97.58%
O o U16 99.50% 97.41%
O o U34 99.14% 99.86%

GMBS(2,3) 97.37% 94.88%
SL(2,Z) 99.87% 99.75%
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