Graphical Models

Robert M. Haralick

Computer Science, Graduate Center
City University of New York

Graphical Models

Graphical Models associates a graph, called the conditional independence graph, from which the all the conditional independencies can be easily seen.

When the conditional independence graph is triangulated, then the joint probability function can be expressed with a probability product form.

- The product form can be read off the graph
- The product form is a strong extension of the marginal terms of the product

Graphs

Definition

A graph $G=(N, E)$ where N is an index set and E, the edge set, is a collection of subsets of N where each subset has exactly 2 elements of N.

Graphs

Here, $G=(N, E)$ where

$$
\begin{aligned}
N & =\{1,2,3,4\} \\
E & =\{\{1,2\},\{2,4\},\{3,4\},\{3,1\}\}
\end{aligned}
$$

Boundary

Definition

Let $G=(N, E)$ be a graph and $i \in N$. The boundary of i is defined by

$$
\text { bndry }(i)=\{j \in N \mid\{i, j\} \in E\}
$$

- $\operatorname{bndry}(1)=\{2,3\}$
- bndry $(2)=\{1,4\}$
- bndry $(3)=\{1,4\}$
- bndry $(4)=\{2,3\}$

Conditional Independence Graph: Definition

Definition

A graph (N, E) is called a Conditional Independence Graph of a random variable set $X=\left\{X_{1}, \ldots, X_{M}\right\}$ if and only if $N=\{1, \ldots, M\}$, the index set for the variables in X, and

$$
E^{c}=\left\{\{i, j\}\left|X_{i} \Perp X_{j}\right| X-\left\{X_{i}, X_{j}\right\}\right\}
$$

Conditional Independence Graph

Nodes correspond to indexes of variables in the variable set $X=\left\{X_{1}, \ldots, X_{6}\right\}$
$\{i, j\}$ not in the edge set means $X_{i} \Perp X_{j} \mid X-\left\{X_{i}, X_{j}\right\}$

Conditional Independence Graph

$\left\{Y, Z_{1}\right\}$ and $\left\{Y, Z_{2}\right\}$ not in edge set means

$$
\begin{array}{l|l}
Y \Perp Z_{1} & \left\{X, Y, Z_{1}, Z_{2}\right\}-\left\{Y, Z_{1}\right\} \\
Y \Perp Z_{2} & \left\{X, Y, Z_{1}, Z_{2}\right\}-\left\{Y, Z_{2}\right\} \\
Y \Perp Z_{1} & \left\{X, Z_{2}\right\} \\
Y \Perp Z_{2} & \left\{X, Z_{1}\right\}
\end{array}
$$

Block Independence Theorem

Y is conditionally independent of the block $\left\{Z_{1}, Z_{2}\right\}$ given X

Theorem

Suppose that for any values for any group of joint variables, the joint probability is greater than zero. $Y \Perp Z_{1}, Z_{2} \mid X$ if and only if $Y \Perp Z_{1} \mid X, Z_{2}$ and $Y \Perp Z_{2} \mid X, Z_{1}$.

Reduction Theorem

Theorem

Suppose that for any values for any group of joint variables, the joint probability is greater than zero.

- $Y \Perp Z_{1}, Z_{2} \mid X$ if and only if $Y \Perp Z_{1} \mid X, Z_{2}$ and $Y \Perp Z_{2} \mid X, Z_{1}$.
- $Y \Perp Z_{1}, Z_{2} \mid X$ implies $Y \Perp Z_{1} \mid X$ and $Y \Perp Z_{2} \mid X$.

- $Y_{1} \Perp Z_{1}\left|X, Y_{1} \Perp Z_{2}\right| X, Y_{2} \Perp Z_{1}\left|X, Y_{2} \Perp Z_{2}\right| X$
- $Y_{1}, Y_{2} \Perp Z_{1}\left|X, Y_{1}, Y_{2} \Perp Z_{2}\right| X, Y_{1}, Y_{2} \Perp Z_{1}, Z_{2} \mid X$
- $Z_{1}, Z_{2} \Perp Y_{1}\left|X, Z_{1}, Z_{2} \Perp Y_{2}\right| X$

Paths

Definition

Let (G, E) be a graph and $g_{1}, \ldots, g_{N} \in G .<g_{1}, \ldots, g_{N}>$ is a path in (G, E) if and only if $\left\{g_{n}, g_{n+1}\right\} \in E$ for every $n \in\{1, \ldots, N-1\}$.

Connectedness

Definition

Let (G, E) be a graph and A, B be subsets of G. A and B are said to be connected if and only if for some $a \in A$ and $b \in B$, there is a path $<a, g_{1}, \ldots, g_{N}, b>$ in G.

Separation

Definition

Let (G, E) be a graph and A, B, S be non-empty subsets of G. S separates A from B if and only if for every $a \in A$ and $b \in B$, every path in G that begins with a and ends with b has at least one node in S.

Separation Theorem

A separates $B \cup\{i\}$ from $C \cup\{j\}$

$$
N=A \cup B \cup C \cup\{i, j\}
$$

Then $i \Perp j \mid A$

Separation Theorem

Theorem

Let $G=(N, E)$ be a connected conditional independence graph for a set of random variables whose joint probability is positive. If $A \subset N$ is any node set that separates two nodes i and j, then $i \Perp j \mid A$.

Proof.

Let B be the set of nodes that either connect to i directly or through A. Let C be the set of nodes that either connect to j directly or through A. Hence, $\{A, B, C,\{i, j\}\}$ form a partition of N. By construction of the conditional independence graph, $i \Perp j \mid N-\{i, j\}$ and $i \Perp p \mid N-\{i, p\}$. Application of the block independence theorem yields $i \Perp j, p \mid N-\{i, j, p\}$. Application of the reduction theorem yields $i \Perp j \mid N-\{i, j, p\}$. Repeated application using the remaining nodes of C yields $i \Perp j \mid N-\{i, j\}-C$. Similarly for using q. Repeated application yields $i \Perp j \mid N-\{i, j\}-B-C$. But $N-\{i, j\}-B-C=A$. Therefore $i \Perp j \mid A$.

Local Markov Property

All conditional independences can be read off the Conditional Independence Graph.

Corollary

Let $G=(N, E)$ be a conditional independence graph and $n \in N$. Define $B=N-\{n\}-\operatorname{bndry}(n)$. Then $n \Perp B \mid$ bndry (n).

Proof.

The set bndry (n) separates n from B.

Definition

Let $G=(N, E)$ be a conditional independence graph and $n \in N$. The Markov Blanket of node n is bndry (n).

Complete Graphs

Definition

A graph $G=(N, E)$ is complete if and only if

$$
E=\{\{i, j\} \mid i, j \in N, i \neq j\}
$$

Figure: The Complete Graph on 4 Nodes

Graph Restriction

Definition

Let $G=(N, E)$ be a graph and $A \subset N$. The graph of G restricted to $A,\left.G\right|_{A}$, is defined by

$$
\left.G\right|_{A}=\left(A,\left.E\right|_{A}\right)
$$

where

$$
\left.E\right|_{A}=\{\{i, j\} \in E \mid i, j \in A\}
$$

Completeness

Definition

Let $G=(N, E)$ be a graph. Let a subset of nodes $A \subset N$ be given. We say A is complete if and only if $\left.G\right|_{A}$ is a complete graph.

Maximally Complete

Definition

A subset of nodes $A \subset N$ is maximally complete if and only if

- $\left.G\right|_{A}$ is complete
- $B \supset A$ and $\left.G\right|_{B}$ complete implies $B=A$

Clique

Definition

Let $G=(N, E)$ be a graph. A maximally complete subset $A \subset N$ is called a clique of G.

Chordal Graphs

Definition

A graph is chordal (triangulated, decomposable) if and only if every cycle of length 4 or more has a chord.

Figure: Non-chordal

Chordal Graphs

Definition

A graph is chordal (triangulated, decomposable) if and only if every cycle of length 4 or more has a chord.

Figure: Non-chordal

Decomposable Graphs

Definition

A Graph $G=(N, E)$ is Decomposable if and only if

- G is chordal
- The cliques of G can be put in running intersection order C_{1}, \ldots, C_{K} with separators $S_{2}, \ldots S_{K}$ where

$$
S_{k}=C_{k} \bigcap\left(\bigcup_{i=1}^{k-1} C_{i}\right), k=2, \ldots, K-1
$$

such that S_{k} is complete.

Example

$$
\begin{array}{|rrr|rrrrrr}
\hline C_{1} & = & \{a, b, c, d, g\} & & & & & \\
C_{2} & = & \{c, d, f, g\} & S_{2} & & & C_{2} \cap C_{1} & = & \{c, d, g\} \\
C_{3} & = & \{f, g, h, i\} & S_{3} & = & C_{3} \cap\left(C_{1} \cup C_{2}\right) & = & \{f, g\} \\
C_{4} & = & \{d, e, f, j\} & S_{4} & = & C_{4} \cap\left(C_{1} \cup C_{2} \cup C_{3}\right) & = & \{d, f\} \\
\hline
\end{array}
$$

Decomposable Graph

\[

\]

$$
\begin{aligned}
P\left(x_{i}: i \in I\right) & =\frac{P\left(x_{i}: i \in C_{1}\right) P\left(x_{i}: i \in C_{2}\right) P\left(x_{i}: i \in C_{3}\right)}{P\left(x_{i}: i \in S_{2}\right) P\left(x_{i}: i \in S_{3}\right)} \\
& =P\left(x_{i}: i \in C_{1}\right) P\left(x_{i}: i \in C_{2}-S_{2} \mid S_{2}\right) P\left(x_{i}: i \in C_{3}-S_{3} \mid S_{3}\right)
\end{aligned}
$$

Notation

Let I be an index subset. If $I=\{1,3,7\}$, then

$$
P\left(x_{i}: i \in I\right)=P\left(x_{1}, x_{3}, x_{7}\right)
$$

Decomposable Graphs

Theorem

If G is a decomposable graph with cliques in running intersection order C_{1}, \ldots, C_{K} and separators S_{2}, \ldots, S_{K} then

$$
\begin{aligned}
P\left(x_{1}, \ldots, x_{N}\right) & =\frac{\prod_{k=1}^{K} P\left(x_{i}: i \in C_{k}\right)}{\prod_{m=2}^{K} P\left(x_{j}: j \in S_{m}\right)} \\
& =P\left(x_{i}: i \in C_{1}\right) \prod_{k=2}^{K} P\left(x_{i}: i \in C_{k}-S_{k} \mid S_{k}\right)
\end{aligned}
$$

Example

Cliques in running intersection order: $\{1,2,3,4\},\{2,3,4,5\},\{5,6\}$ Separators:
$\{2,3,4\}$,
\{5\}

$$
P\left(x_{1}, \ldots, x_{6}\right)=P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) P\left(x_{5} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{6} \mid x_{5}\right)
$$

Product Form

The product form

$$
Q\left(x_{1}, \ldots, x_{6}\right)=P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) P\left(x_{5} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{6} \mid x_{5}\right)
$$

is an extension of the marginals

- $P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$
- $P\left(x_{2}, x_{3}, x_{4}, x_{5}\right)$
- $P\left(x_{5}, x_{6}\right)$

Product Form

$$
Q\left(x_{1}, \ldots, x_{6}\right)=P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) P\left(x_{5} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{6} \mid x_{5}\right)
$$

$$
\begin{aligned}
Q\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =\sum_{x_{5}} \sum_{x_{6}} Q\left(x_{1}, \ldots, x_{6}\right) \\
& =\sum_{x_{5}} \sum_{x_{6}} P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) P\left(x_{5} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{6} \mid x_{5}\right) \\
& =P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \sum_{x_{5}} P\left(x_{5} \mid x_{2}, x_{3}, x_{4}\right) \sum_{x_{6}} P\left(x_{6} \mid x_{5}\right) \\
& =P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \sum_{x_{5}} P\left(x_{5} \mid x_{2}, x_{3}, x_{4}\right) \\
& =P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{aligned}
$$

Product Form

$$
Q\left(x_{1}, \ldots, x_{6}\right)=P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) P\left(x_{5} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{6} \mid x_{5}\right)
$$

$$
\begin{aligned}
Q\left(x_{2}, x_{3}, x_{4}, x_{5}\right) & =\sum_{x_{1}} \sum_{x_{6}} P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) P\left(x_{5} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{6} \mid x_{5}\right) \\
& =P\left(x_{5} \mid x_{2}, x_{3}, x_{4}\right) \sum_{x_{1}} P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \sum_{x_{6}} P\left(x_{6} \mid x_{5}\right) \\
& =P\left(x_{5} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{2}, x_{3}, x_{4}\right)=P\left(x_{2}, x_{3}, x_{4}, x_{5}\right)
\end{aligned}
$$

$$
\begin{aligned}
Q\left(x_{1}, \ldots, x_{6}\right)= & P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) P\left(x_{5} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{6} \mid x_{5}\right) \\
Q\left(x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) & =\sum_{x_{1}} Q\left(x_{1}, \ldots, x_{6}\right) \\
& =\sum_{x_{1}} P\left(x_{1}, x_{2}, x_{3}, x_{4}\right) P\left(x_{5} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{6} \mid x_{5}\right) \\
& =P\left(x_{2}, x_{3}, x_{4}\right) P\left(x_{5} \mid x_{2}, x_{3}, x_{4}\right) P\left(x_{6} \mid x_{5}\right) \\
& =P\left(x_{2}, x_{3}, x_{4}, x_{5}\right) P\left(x_{6} \mid x_{5}\right) \\
Q\left(x_{5}, x_{6}\right) & =\sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} P\left(x_{2}, x_{3}, x_{4}, x_{5}\right) P\left(x_{6} \mid x_{5}\right) \\
& =P\left(x_{5}\right) P\left(x_{6} \mid x_{5}\right)=P\left(x_{5}, x_{6}\right)
\end{aligned}
$$

Decomposable Graphs

$$
\begin{gathered}
S_{k}=C_{k} \bigcap\left(\bigcup_{i=1}^{k-1} C_{i}\right), k=2, \ldots, K \\
P\left(x_{1}, \ldots, x_{N}\right)=P\left(x_{i}: i \in C_{1}\right) \prod_{k=2}^{K} P\left(x_{i}: i \in C_{k}-S_{k} \mid S_{k}\right)
\end{gathered}
$$

Proposition

$\left(C_{k}-S_{k}\right) \cap\left(\bigcup_{i=1}^{k-1} C_{i}\right)=\emptyset$
Proof.

$$
\begin{aligned}
\left(C_{k}-S_{k}\right) \cap\left(\cup_{i=1}^{k-1} C_{i}\right) & =\left(C_{k}-\left(C_{k} \cap\left(\cup_{i=1}^{k-1} C_{i}\right)\right) \cap\left(\cup_{i=1}^{k-1} C_{i}\right)\right. \\
& =\left(C_{k}-\left(\cup_{i=1}^{k-1} C_{i}\right)\right) \cap\left(\cup_{i=1}^{k-1} C_{i}\right) \\
& =\emptyset
\end{aligned}
$$

Decomposable Graphs: Summability

$$
\begin{aligned}
S_{k} & =C_{k} \cap\left(\cup_{i=1}^{k-1} C_{i}\right), k=2, \ldots, K \\
P\left(x_{1}, \ldots, x_{N}\right) & =P\left(x_{i}: i \in C_{1}\right) \prod_{k=2}^{K} P\left(x_{i}: i \in C_{k}-S_{k} \mid S_{k}\right) \\
\left(C_{k}-S_{k}\right) \cap\left(\cup_{i=1}^{k-1} C_{i}\right) & =\emptyset
\end{aligned}
$$

Proposition

$$
\sum_{x_{1}} \sum_{x_{2}} \cdots \sum_{x_{N}} P\left(x_{i}: i \in C_{1}\right) \prod_{k=2}^{K} P\left(x_{i}: i \in C_{k}-S_{k} \mid S_{k}\right)=1
$$

Proof.

$$
\begin{aligned}
S & =\sum_{x_{1}} \sum_{x_{2}} \cdots \sum_{x_{N}} P\left(x_{i}: i \in C_{1}\right) \prod_{k=2}^{K} P\left(x_{i}: i \in C_{k}-S_{k} \mid S_{k}\right) \\
& =\sum_{C_{1}} \sum_{C_{2}-S_{2}} \cdots \sum_{C_{K}-S_{K}} P\left(x_{i}: i \in C_{1}\right) \prod_{k=2}^{K} P\left(x_{i}: i \in C_{k}-S_{k} \mid S_{k}\right) \\
& =\sum_{C_{1}} P\left(x_{i}: i \in C_{1}\right) \sum_{C_{2}-S_{2}} P\left(x_{i}: i \in C_{2}-S_{2} \mid S_{2}\right) \cdots \sum_{C_{K}-S_{K}} P\left(x_{i}: i \in C_{K}-S_{K} \mid S_{K}\right) \\
& =1
\end{aligned}
$$

Summability Example

$$
\begin{array}{ll}
C_{1}=\{1,2,3,5\} \\
C_{2}=\{2,3,4,5\} & S_{2}=\{2,3,5\} \\
C_{3}=\{1,5,6\} & S_{3}=\{1,5\} \\
C_{4}=\{5,6,7\} & S_{4}=\{5,6\} \\
C_{5}=\{6,7,8,9\} & S_{5}=\{6,7\}
\end{array}
$$

$$
\begin{aligned}
S & =\sum_{x_{1}} \cdots \sum_{x_{9}} P\left(x_{1} x_{2} x_{3} x_{5}\right) P\left(x_{4} \mid x_{2} x_{3} x_{5}\right) P\left(x_{6} \mid x_{1} x_{5}\right) P\left(x_{7} \mid x_{5} x_{6}\right) P\left(x_{9} \mid x_{6} x_{7}\right) \\
& =\sum_{x_{1} x_{2} x_{3} x_{5}} P\left(x_{1} x_{2} x_{3} x_{5}\right) \sum_{x_{4}} P\left(x_{4} \mid x_{2} x_{3} x_{5}\right) \sum_{x_{6}} P\left(x_{6} \mid x_{1} x_{5}\right) \sum_{x_{7}} P\left(x_{7} \mid x_{5} x_{6}\right) \sum_{x_{8} x_{9}} P\left(x_{8} x_{9} \mid x_{6} x_{7}\right) \\
& =1
\end{aligned}
$$

Separators

Definition

Let $G=(V, E)$ be a connected graph. A non-empty subset $S \subset V$ is called a Separator of G if and only if $G\left(V-S,\left.E\right|_{V-S}\right)$ is not connected. Let A, B, and S be disjoint non-empty subsets of V. S is a Separator of A from B in graph G if and only if in the restricted graph G_{V-s}, there exists no $a \in A$ and $b \in B$ such that $\left.\{a, b\} \in E\right|_{V-s}$.
A separator S is called a Minimal Separator if and only if T a separator with $T \subset S$ implies $T=S$.

Theorem

A graph is triangulated if and only if each minimal separator is maximally complete.

Triangulated Graphs

Theorem

G is a triangulated graph if and only if the vertices of G can be partitioned into three nonempty subsets A, S, and B, such that

- $\left.G\right|_{A \cup S}$ and $\left.G\right|_{B \cup S}$ are triangulated subgraphs of G
- S separates A from B

This is one of the reasons that triangulated graphs are called decomposable graphs.

Triangulated Graphs

Definition

Let $G(V, E)$ be a graph and $\{A, B, S\}$ be a non-trivial partition of V. (A, B, S) is called a Decomposition of G into $G_{\text {AuS }}$ and $G_{B \cup S}$ if and only if

- S separates A from B in G
- G_{S} is a complete graph
- $G_{A \cup S}$ and $G_{B \cup S}$ are each triangulated

Decomposable Graphs

Theorem

A graph is decomposable if and only if either G is complete or there exists a decomposition (A, B, S) of G into $G_{A \cup S}$ and $G_{B \cup S}$.

Triangulated Graphs

Definition

A Perfect Elimination Ordering in a graph is an ordering of the vertices of the graph such that, for each vertex v, v and the neighbors of v that occur after v in the ordering form a maximally complete graph.

Theorem

A graph is triangulated if and only if it has a perfect elimination ordering.

Theorem

A graph is triangulated if and only if its cliques can be put in running intersection order.

Triangulated Graphs and Clique Finding

A triangulated graph can have only linearly many cliques, while non-chordal graphs may have exponentially many. Therefore clique finding in triangulated graphs can be done in polynomial time.

Triangulated Graphs

Theorem

If a graph G is triangulated graph and C_{1}, \ldots, C_{K} are the cliques of G put in running intersection order with separators S_{2}, \ldots, S_{K},

$$
S_{k}=C_{k} \bigcap\left(\bigcup_{i=1}^{k-1} c_{i}\right), k=2, \ldots, K
$$

then

$$
P\left(x_{1}, \ldots, x_{N}\right)=\frac{\prod_{k=1}^{K} P\left(x_{i}: i \in C_{k}\right)}{\prod_{k=2}^{K} P\left(x_{i}: i \in S_{k}\right)}
$$

Conditional Independence Graphs

Theorem

Let $P\left(x_{1}, \ldots, x_{N}\right)>0$ and G be the conditional independence graph of P. If $\{A, B, S\}$ is a non-trivial partition of $\{1, \ldots, N\}$ and S is a separator of A from B in G, then $A \Perp B \mid S$

$$
P\left(x_{i}: i \in A \cup B \mid x_{j}: j \in S\right)=P\left(x_{i}: i \in A \mid x_{j}: j \in S\right) P\left(x_{i}: i \in B \mid x_{j}: j \in S\right)
$$

Decomposable Graph

C_{1}	$=$	$\{1,2,5\}$	$1 \Perp 4$
C_{2}	$=$	$\{2,3,5\}$	$1 \Perp 3$
C_{3}	$=$	$\{3,4,5\}$	$2 \Perp 4$
S_{2}	$=$	$22,5\}$	$1 \Perp 4$
S_{3}	$=$	3,5	
$\left.S_{2}, 5\right\}$	$1 \Perp 4$	2,5	

$$
\begin{aligned}
P\left(x_{i}: i \in I\right) & =\frac{P\left(x_{i}: i \in C_{1}\right) P\left(x_{i}: i \in C_{2}\right) P\left(x_{i}: i \in C_{3}\right)}{P\left(x_{i}: i \in S_{2}\right) P\left(x_{i}: i \in S_{3}\right)} \\
& =P\left(x_{i}: i \in C_{1}\right) P\left(x_{i}: i \in C_{2}-S_{2} \mid S_{2}\right) P\left(x_{i}: i \in C_{3}-S_{3} \mid S_{3}\right)
\end{aligned}
$$

Decomposable Graph

In the conditional independence graph, there is an edge between node i and j if and only if X_{i} and X_{j} are conditionally independent given the rest of the variables.

$$
\begin{aligned}
P_{12345}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) & =\frac{P_{125}\left(x_{1}, x_{2}, x_{5}\right) P_{235}\left(x_{2}, x_{3}, x_{5}\right) P_{345}\left(x_{3}, x_{4}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} \\
& =P_{15}\left(x_{1}, x_{5}\right) P_{2 \mid 15}\left(x_{2} \mid x_{1}, x_{5}\right) P_{3 \mid 25}\left(x_{3} \mid x_{2}, x_{5}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right)
\end{aligned}
$$

System Diagram 1

$\{235: 25\},\{345: 35\}$

$$
\begin{aligned}
P_{12345}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) & =\frac{P_{125}\left(x_{1}, x_{2}, x_{5}\right) P_{235}\left(x_{2}, x_{3}, x_{5}\right) P_{345}\left(x_{3}, x_{4}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} \\
& =P_{15}\left(x_{1}, x_{5}\right) P_{2 \mid 15}\left(x_{2} \mid x_{1}, x_{5}\right) P_{3 \mid 25}\left(x_{3} \mid x_{2}, x_{5}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right)
\end{aligned}
$$

Figure: 1:System H

System Diagram 2

\{235:25\}, \{345:35\}

$$
\begin{aligned}
P_{12345}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) & =\frac{P_{125}\left(x_{1}, x_{2}, x_{5}\right) P_{235}\left(x_{2}, x_{3}, x_{5}\right) P_{345}\left(x_{3}, x_{4}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} \\
& =P_{25}\left(x_{2}, x_{5}\right) P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right) P_{3 \mid 25}\left(x_{3} \mid x_{2}, x_{5}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right)
\end{aligned}
$$

Figure: 1:System G

System Diagram 3

$\{235: 25\},\{345: 35\}$

$$
\begin{aligned}
P_{12345}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) & =\frac{P_{125}\left(x_{1}, x_{2}, x_{5}\right) P_{235}\left(x_{2}, x_{3}, x_{5}\right) P_{345}\left(x_{3}, x_{4}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} \\
& =P_{12}\left(x_{1}, x_{2}\right) P_{5 \mid 12}\left(x_{5} \mid x_{1}, x_{2}\right) P_{3 \mid 25}\left(x_{3} \mid x_{2}, x_{5}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right)
\end{aligned}
$$

Figure: 1:System I

System Diagram 4

$\{125: 25\},\{235: 35\}$

$$
\begin{aligned}
P_{12345}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) & =\frac{P_{125}\left(x_{1}, x_{2}, x_{5}\right) P_{235}\left(x_{2}, x_{3}, x_{5}\right) P_{345}\left(x_{3}, x_{4}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} \\
& =P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right) P_{2 \mid 35}\left(x_{2} \mid x_{3}, x_{5}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)
\end{aligned}
$$

Figure: 2: System E

System Diagram 5

$$
\begin{aligned}
&\{125: 25\},\{235: 35\} \\
& P_{12345}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)= \frac{P_{125}\left(x_{1}, x_{2}, x_{5}\right) P_{235}\left(x_{2}, x_{3}, x_{5}\right) P_{345}\left(x_{3}, x_{4}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} \\
&= P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right) P_{2 \mid 35}\left(x_{2} \mid x_{3}, x_{5}\right) P_{3 \mid 45}\left(x_{3} \mid x_{4}, x_{5}\right) P_{45}\left(x_{4}, x_{5}\right)
\end{aligned}
$$

Figure: 2:System L

System Diagram 6

$$
\begin{aligned}
&\{125: 25\},\{235: 35\} \\
& P_{12345}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)= \frac{P_{125}\left(x_{1}, x_{2}, x_{5}\right) P_{235}\left(x_{2}, x_{3}, x_{5}\right) P_{345}\left(x_{3}, x_{4}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} \\
&= P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right) P_{2 \mid 35}\left(x_{2} \mid x_{3}, x_{5}\right) P_{5 \mid 34}\left(x_{5} \mid x_{3}, x_{4}\right) P_{34}\left(x_{3}, x_{4}\right)
\end{aligned}
$$

System Diagram 7

$\{125: 25\},\{345: 35\}$

$$
\begin{aligned}
P_{12345}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) & =\frac{P_{125}\left(x_{1}, x_{2}, x_{5}\right) P_{235}\left(x_{2}, x_{3}, x_{5}\right) P_{345}\left(x_{3}, x_{4}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} \\
& =P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right) P_{2 \mid 35}\left(x_{2} \mid x_{3}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)
\end{aligned}
$$

Figure: 3:System E

System Diagram 8

$\{125: 25\},\{345: 35\}$

$$
\begin{aligned}
P_{12345}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) & =\frac{P_{125}\left(x_{1}, x_{2}, x_{5}\right) P_{235}\left(x_{2}, x_{3}, x_{5}\right) P_{345}\left(x_{3}, x_{4}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} \\
& =P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right) P_{3 \mid 25}\left(x_{3} \mid x_{2}, x_{5}\right) P_{25}\left(x_{2}, x_{5}\right)
\end{aligned}
$$

Figure: 3:System G

System Diagram 9

$\{125: 25\},\{345: 35\}$

$$
\begin{aligned}
P_{12345}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) & =\frac{P_{125}\left(x_{1}, x_{2}, x_{5}\right) P_{235}\left(x_{2}, x_{3}, x_{5}\right) P_{345}\left(x_{3}, x_{4}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} \\
& =P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right) P_{5 \mid 23}\left(x_{5} \mid x_{2}, x_{3}\right) P_{23}\left(x_{2}, x_{3}\right)
\end{aligned}
$$

Figure: 3:System J

Feed Forward System Conditional Independences

$$
\begin{aligned}
& P_{12345}^{A}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=P_{45}\left(x_{4}, x_{5}\right) P_{3 \mid 45}\left(x_{3} \mid x_{4}, x_{5}\right) P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right) P_{2 \mid 35}\left(x_{2} \mid x_{3}, x_{5}\right) \\
& P_{12345}^{E}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=P_{35}\left(x_{3}, x_{5}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right) P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right) P_{2 \mid 35}\left(x_{2} \mid x_{3}, x_{5}\right) \\
& P_{12345}^{G}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=P_{25}\left(x_{2}, x_{5}\right) P_{3 \mid 25}\left(x_{3} \mid x_{2}, x_{5}\right) P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right) \\
& P_{12345}^{H}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=P_{15}\left(x_{1}, x_{5}\right) P_{2 \mid 15}\left(x_{2} \mid x_{1}, x_{5}\right) P_{3 \mid 25}\left(x_{3} \mid x_{2}, x_{5}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right) \\
& P_{12345}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=P_{12}\left(x_{1}, x_{2}\right) P_{5 \mid 12}\left(x_{5} \mid x_{1}, x_{2}\right) P_{3 \mid 25}\left(x_{3} \mid x_{2}, x_{5}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right) \\
& P_{12345}^{J}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=P_{23}\left(x_{2}, x_{3}\right) P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right) P_{5 \mid 23}\left(x_{5} \mid x_{2}, x_{3}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right) \\
& P_{12345}^{L}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=P_{34}\left(x_{3}, x_{4}\right) P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right) P_{2 \mid 35}\left(x_{2} \mid x_{3}, x_{5}\right) P_{5 \mid 34}\left(x_{5} \mid x_{3}, x_{4}\right)
\end{aligned}
$$

These decompositions correspond to the same Decomposable Graphical Model

$$
P_{12345}\left(x_{1}, x_{2}, x_{4}, x_{4}, x_{5}\right)=\frac{P_{345}\left(x_{3}, x_{4}, x_{5}\right) P_{125}\left(x_{1}, x_{2}, x_{5}\right) P_{235}\left(x_{2}, x_{3}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)}
$$

Feedforward Systems: Bayesian Networks

System A

Associated Bayesian Network

System A
Bayesian Network

$$
\begin{aligned}
& P\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \quad=\quad P_{45}\left(x_{4}, x_{5}\right) P_{3 \mid 45}\left(x_{3} \mid x_{4}, x_{5}\right) P_{2 \mid 35}\left(x_{2} \mid x_{3}, x_{5}\right) P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right) \\
& P\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=P_{4}\left(x_{4}\right) P_{5}\left(x_{5}\right) P_{3 \mid 45}\left(x_{3} \mid x_{4}, x_{5}\right) P_{2 \mid 35}\left(x_{2} \mid x_{3}, x_{5}\right) P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right)
\end{aligned}
$$

System Structure and Decompositions

- $J=\{1, \ldots, N\}$
- Input set of subsystem k is I_{k}
- Output set of subsystem k is O_{k}
- $I_{k} \cup O_{k}=J_{k}$
- $I_{k} \cap O_{k}=\emptyset$
- $O_{m} \cap O_{n}=\emptyset, m \neq n$

The system structure is defined by $\left\{\left(I_{k}, O_{k}, P_{k}\right)\right\}_{k=1}^{K}$

- Input Set I_{k}
- Output Set O_{k}
- Behavior P_{k}

$$
P\left(x_{j}: j \in J\right)=P\left(x_{m}: m \in J-\cup_{k=1}^{K} O_{k}\right) \prod_{k=1}^{K} P_{k}\left(x_{0}: 0 \in O_{k} \mid x_{i}: i \in I_{k}\right)
$$

The System Structure is Causal Structure

Causal Structure

4,5 are the direct cause of 3
2,5 are the direct cause of 1
3,5 are the direct cause of 2

$$
\begin{aligned}
J_{1} & =\{3,4,5\} \\
I_{1} & =\{4,5\} \\
O_{1} & =\{3\} \\
J_{2} & =\{1,2,5\} \\
I_{2} & =\{2,5\} \\
O_{2} & =\{1\} \\
J_{3} & =\{2,3,5\} \\
I_{3} & =\{3,5\} \\
O_{3} & =\{2\}
\end{aligned}
$$

Causal Structure

4,5 are the direct cause of 3
2,5 are the direct cause of 1
3,5 are the direct cause of 2

$$
\begin{aligned}
J_{1} & =\{3,4,5\} \\
I_{1} & =\{4,5\} \\
O_{1} & =\{3\} \\
J_{2} & =\{1,2,5\} \\
I_{2} & =\{2,5\} \\
O_{2} & =\{1\} \\
J_{3} & =\{2,3,5\} \\
I_{3} & =\{3,5\} \\
O_{3} & =\{2\}
\end{aligned}
$$

Causal Structure

X_{4}, X_{5} is the direct cause of X_{3}
X_{2}, X_{5} is the direct cause of X_{1}
X_{3}, X_{5} is the direct cause of X_{2}
X_{4} is an indirect cause of X_{1}
X_{1} has no causal influence on $X_{3}: X_{1} \rightarrow X_{3}$
X_{3} has causal influence on $X_{1}: X_{3} \rightarrow X_{1}$
Given X_{2}, X_{5}, X_{3} has no causal influence on $X_{1}: X_{3} \rightarrow X_{1} \mid X_{2}, X_{5}$ Given X_{2}, X_{5}, X_{3} is conditionally independent of $X_{1}: X_{3} \Perp X_{1} \mid X_{2}, X_{5}$

Conditional Independence Structure

X_{4}, X_{5} is the direct cause of X_{3}
X_{2}, X_{5} is the direct cause of X_{1}
X_{3}, X_{5} is the direct cause of X_{2}
X_{4} is an indirect cause of X_{1}
Given its parents, each variable is conditionally independent of its non-descendants
Given X_{3} and X_{5}, X_{2} is conditionally independent $X_{4}: X_{2}, \Perp X_{4} \mid X_{3}, X_{5}$

Conditional Independence Structure

$$
\begin{aligned}
& P_{12345}\left(x_{1}, x_{2}, x_{4}, x_{4}, x_{5}\right)=\frac{P_{345}\left(x_{3}, x_{4}, x_{5}\right) P_{125}\left(x_{1}, x_{2}, x_{5}\right) P_{235}\left(x_{2}, x_{3}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} \\
& \begin{aligned}
P_{24 \mid 35}\left(x_{2}, x_{4} \mid x_{3}, x_{5}\right) & =\sum_{x_{1}} \frac{P_{125}\left(x_{1}, x_{2}, x_{5}\right) P_{235}\left(x_{2}, x_{3}, x_{5}\right) P_{345}\left(x_{3}, x_{4}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} \\
& =\frac{P_{235}\left(x_{2}, x_{3}, x_{5}\right) P_{345}\left(x_{3}, x_{4}, x_{5}\right)}{P_{25}\left(x_{2}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} P_{25}\left(x_{2}, x_{5}\right) \\
& =\frac{P_{235}\left(x_{2}, x_{3}, x_{5}\right) P_{345}\left(x_{3}, x_{4}, x_{5}\right)}{P_{35}\left(x_{3}, x_{5}\right) P_{35}\left(x_{3}, x_{5}\right)} \\
& =P_{2 \mid 35}\left(x_{2} \mid x_{3}, x_{5}\right) P_{4 \mid 35}\left(x_{4} \mid x_{3}, x_{5}\right)
\end{aligned}
\end{aligned}
$$

Digraphs, Feedforward, Feedback Systems

Let $\left\{\left(I_{k}, O_{k}, R_{k}\right)\right\}_{k=1}^{K}$ be a system.

- Input Set I_{k}
- Output Set O_{k}
- Behavior P_{k}

Define the associated system digraph (J, E) by

$$
\begin{aligned}
J & =\cup_{k=1}^{K} I_{k} \cup O_{k} \\
E & =\cup_{k=1}^{K} I_{k} \times O_{k}
\end{aligned}
$$

Definition

A system $\left\{\left(I_{k}, O_{k}, R_{k}\right)\right\}$ is called a feedforward system if and only if the digraph (J, E) is acyclic. A system that is not feedforward is called a feedback system.

Possible Causal System Structure

Let us consider all the possibilities where each subsystem has exactly one output variable and no two different subsystems produce the same output variables.

System	subsystem	output	subsystem	output	subsystem	output
A	345	3	235	2	125	1
B	345	3	235	2	125	5
C	345	3	235	5	125	1
D	345	3	235	5	125	2
E	345	4	235	2	125	1
F	345	4	235	2	125	5
G	345	4	235	3	125	1
H	345	4	235	3	125	2
I	345	4	235	3	125	5
J	345	4	235	5	125	1
K	345	4	235	5	125	2
L	345	5	235	2	125	1
M	345	5	235	3	125	1
N	345	5	235	3	125	2

System Diagrams

System Diagrams

System Diagrams

System Diagrams

(m) System M: Feedback

(n) System N: Feedfoward

Analysing Feedback Systems

- Remove any subsystem not part of the feedback loop
- Break the feedback loop
- This prevents the output variable y of the feedback loop to connect to a prior subsystem input variable x.
- This makes the system a feedforward system
- Calculate the feedforward system behavior
- Add the equation $x=y$
- Calculate the new results

System C

System C with subsystem 125 removed and feedback loop broken output variable 3 renamed to 6

- Variable x_{k} has N_{k} possible values
- Fix variables $x_{2}=a_{2}$ and $x_{4}=a_{4}$
- Use a matrix notation

Matrix Notation Conventions

$\left.P_{6}\right\|_{\substack{N_{6} \times 1 \\ N_{2}=a_{2} \\ x_{4}=a_{4}}}$	is the vector of probabilities for variable x_{6} over its N_{6} values with x_{2} fixed at the value a_{2} and x_{4} fixed at the value a_{4}
$\left.P_{5 \mid 23}\right\|_{x_{2}=a_{2}} ^{N_{5} \times N_{3}}$	is the matrix of conditional probabilities of variable x_{5} given x_{3} with variable x_{2} fixed at the value a_{2}
$\left.P_{6\|45\|}\right\|_{x_{4}=a_{4}} ^{N_{6} \times N_{5}}$	is the matrix of conditional probabilities of variable x_{6} given x_{5} with variable x_{4} fixed at the value a_{4}
$\left.P_{3}\right\|_{\substack{N_{3} \times 1 \\ x_{2}=a_{2} \\ x_{4}=a_{4}}}$	is the vector of probabilities for variable x_{3} over its N_{3} values with x_{2} fixed at the value a_{2} and x_{4} fixed at the value a_{4}

The feedforward matrix equation relating the output variable x_{6} to the input variable x_{3} when input variable x_{2} is fixed to value a_{2} and input variable x_{4} is fixed to value a_{4} is then

$$
\left.P_{6}\right|_{\substack{x_{2}=a_{2} \\ x_{4}=a_{4}}} ^{N_{N_{2}}}=\left.\left.\left.P_{6 \mid 45}\right|_{x_{4}=a_{4}} ^{N_{6} \times N_{5}} \quad P_{5 \mid 23}\right|_{x_{2}=a_{2}} ^{N_{5} \times N_{3}} P_{3}\right|_{\substack{x_{2}=a_{2} \\ x_{4}=a_{4}}} ^{N_{3} \times 1}
$$

Connecting The Feedback Loop

Set variable $x_{6}=x_{3}$, noting that $N_{6}=N_{3}$ and that variable x_{6} and x_{3} have the same range sets. The resulting matrix equation is

This equation can be easily solved for P_{3} since it is the eigenvector corresponding to eigenvalue of 1 of the matrix

$$
\left.\left.P_{3 \mid 451}\right|_{x_{4}=a_{4}} ^{N_{3} \times N_{5}} P_{5 \mid 23}\right|_{x_{2}=a_{2}} ^{N_{5} \times N_{3}}
$$

Computing Joint Probability

Thus for each different value of the externally set input variables x_{2} and x_{4}, there will be different distribution for x_{3}. Once, the distribution of x_{3} is known, the joint distribution of all variables, can be calculated by means of the corresponding conditional probabilities.
$\left.P_{3}\right|_{\substack{N_{3} \times 1 \\ x_{2}=a_{2} \\ X_{4}=a_{4}}} ^{\substack{x_{2}}}$ is really the conditional probability $P_{324}\left(X_{3} \mid a_{2}, a_{4}\right)$.
$P_{12345}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=P_{1 \mid 25}\left(x_{1} \mid x_{2}, x_{5}\right) P_{3 \mid 24}\left(x_{3}, \mid x_{2}, x_{4}\right) P_{5 \mid 23}\left(x_{5} \mid x_{2}, x_{3}\right) P_{24}\left(x_{2}, x_{4}\right)$

Multiple Connected Feedback Loops

- Fix the external variables $x_{1}=a_{1}$ and $x_{4}=a_{4}$
- Take the combined variable $\left(x_{2}, x_{3}\right)$ as the feedback variable
- The conditional probability matrix for $\left(x_{2}, x_{3}\right)$ given x_{5} is $N_{2} N_{3} \times N_{5}$.

$$
\left.P_{23 \mid 5}\right|_{\substack{x_{1}=a_{1} \\ x_{4}=a_{4}}} ^{N_{2} N_{3} \times N_{5}}=\left.P_{2 \mid 15}\right|_{x_{1}=a_{1}} ^{N_{2} \times N_{5}} \otimes P_{3|45|^{N_{3}} a_{4}}^{N_{3} \times N_{5}}
$$

where \otimes is the kronecker matrix product and simply allows us to denote a conditional probability matrix where one of the variables is the joint variable $\left(x_{2}, x_{3}\right)$.

Multiple Connected Feedback Loops

First we break the feedback loops and rename the output variable x_{5} to x_{6}. Now we can write

Now we connect the feedback loop. We set variable $x_{6}=x_{5}$, noting that $N_{6}=N_{5}$ and that variable x_{6} and x_{5} have the same range sets. The resulting matrix equation is

$$
\left.P_{5}\right|_{\substack{x_{1}=a_{1} \\ x_{4}=a_{4}}} ^{N_{5} \times 1}=\left.\left.\left.P_{5|23|}\right|_{\substack{x_{1}=a_{1} \\ x_{4}=a_{4}}} ^{N_{5} \times N_{2} N_{3}} P_{23 \mid 5}\right|_{\substack{x_{1}=a_{1} \\ x_{4}=a_{4}}} ^{N_{2} N_{3} \times N_{5}} P_{5}\right|_{\substack{x_{1}=a_{1} \\ x_{4}=a_{4}}} ^{N_{5 \times 1}}
$$

Multiple Connected Feedback Loops

As before, this equation is easily solved as $\left.P_{5}\right|_{x_{1}=a_{1}} ^{N_{5} \times 1}$ is just the eigenvector having eigenvalue 1 of the matrix

$$
P_{5 \mid 23} \left\lvert\, \begin{aligned}
& x_{1}=a_{1} \\
& x_{4}=a_{4}
\end{aligned} N_{5} \times N_{2} N_{3} P_{23|5|} \begin{aligned}
& N_{2} N_{3} \times N_{5} \\
& x_{1}=a_{1} \\
& x_{4}=a_{4}
\end{aligned}\right.
$$

Multiple Connected Feedback Loops: Joint Probability

$\left.P_{5}\right|_{\substack{N_{1}=a_{1} \\ x_{4}=a_{4}}} ^{\substack{N_{4} \times 1 \\ x_{1}}}$ is the conditional probability $P_{5 \mid 14}\left(x_{5} \mid a_{1}, a_{4}\right)$

$$
P_{12345}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=P_{5 \mid 14}\left(x_{5} \mid x_{1}, x_{4}\right) P_{14}\left(x_{1}, x_{4}\right) P_{2 \mid 15}\left(x_{2} \mid x_{1}, x_{5}\right) P_{3 \mid 45}\left(x_{3} \mid x_{4}, x_{5}\right)
$$

