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The Class Conditional Independence Assumption

Measurement tuple d = (d1, . . . ,dN)

Class c
Then the class conditional independence assumption is

P(d | c) = P(d1, . . . ,dN | c) =
N∏

n=1

P(dn | c)

It is this assumption that is used in the Naive Bayes
Classifier.
There are many other kinds of conditional independence
assumptions.
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Markov Class Conditional Independence Assumption

P(xn | xn+1 . . . xN) = P(xn | xn+1), n = 1, . . .N − 1

Conditioned by class

P(x1 . . . xN | c) =

[
N−1∏
n=1

P(xn |xn+1 . . . xN | c)

]
P(xN | c)

=

[
N−1∏
n=1

P(xn |xn+1 | c)

]
P(xN | c)

Assign (x1, . . . xN) to class c∗ when

P(x1 . . . xN | c∗) > P(x1 . . . xN | c), c 6= c∗[
N−1∏
n=1

P(xn |xn+1, c∗)

]
P(xN |c∗) >

[
N−1∏
n=1

P(xn |xn+1, c)

]
P(xN |c)

for all other c
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Markov Dependence Tree

P(x1, . . . , x7 | c) = P(x1 | x2, c)P(x2 | x3, c)P(x3 | x4, c)P(x4 | x5, c)P(x5 | x6, c)P(x6 | x7, c)P(x7 | c)
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Dependence Trees

P(x1, x2, x3, x4, x5 | c) = P(x1 | x2, c)P(x5 | x2, c)P(x3 | x1, c)P(x4 | x1, c)P(x2 | c)
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P(x1 | x2, c)P(x5 | x2, c)P(x3 | x1, c)P(x4 | x1, c)P(x2 | c) = 1
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Product Probability Expansion

If Q(x |c) is a probability function and
If {J1, . . . , JK} is a partition of [1,N] then

Q(x | c) =
K∏

k=1

Qk
(
πJk (x) | c

)
(1)

Is an example of a more general conditional independence
assumption
It is one of many kinds of conditional probability
assumptions
We can say that Q(x | c) has a product probability
expansion
If it is not known that Q(x | c) has product probability
expansion (1), we may invoke the product probability
expansion as an approximation
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Product Probability Approximations

Definition
A Product Probability Approximation to a unknown joint
distribution Q of N variables has the form

Q(x | c) =
K∏

k=1

Qk
(
πJk (x) | c

)
where

{J1, . . . , JK} is a cover of [1,N]

Qk are arbitrary functions Qk > 0∑
x Q(x | c) = 1
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Inverse Projection

Definition
Let I = [1,N] be the index set for the full space S
Let the respective range sets for the N dimensions be
Li , i ∈ I
Then S = "i∈ILi , or in the indexed notation (I,S), is the full
space
Let J ⊂ I
Let y be a tuple in the subspace indexed by J so that
y ∈ "j∈JLj ; (J, y) is an indexed tuple

Then the Inverse Projection of (J, y) from the subspace
indexed by J ⊂ I is defined by

π−1
J (J, y) = {(I, x) ∈ (I,S) | πJ(I, x) = (J, y)}
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Extension

Definition

Let there be N variables whose index set I = {1, . . . ,N}

Let the range set for a variable whose index is j be Lj

Let P be a probability distribution defined on the space "i∈ILi

Let Jk ⊂ I

Define to PJk be the marginal distribution of P defined on the
subspace indexed by Jk

PJk : "j∈Jk Lj → [0,1]
PJk (Jk , y) =

∑
(I,x)∈π−1

Jk
(Jk ,y)

P(I, x)

Then a probability distribution P defined on the subspace indexed by
I is said to be an Extension of the given functions
QJk : "j∈Jk Lj → [0,1], k = 1, . . . ,K if and only if

PJk = QJk , k = 1, . . . ,K
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Maximum Entropy

Lewis proved that of all distributions that are extensions of
the given marginals
The Product Approximation

Is the closest by the Kullback Liebler Divergence
And has the maximum entropy

P.M. Lewis, Approximating Probability Distributions to Reduce Storage Requirements,
Information and Control Vol 2, 1959, pp. 214-225.
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Kullback Liebler Divergence

Definition
The Kullback-Liebler Divergence (relative entropy) of a
distribution P ′ to a reference distribution P is given by

DKL(P||P ′) =
∑

x

P(x)log
P(x)
P ′(x)

Although it is not a distance, it is said to be a measure of
closeness of P ′ to the reference distribution P
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Mutual Information

The largest entropy Product Probability Approximation problem
was solved by Chow and Liu in 1968 for second order marginal
probabilities using the optimal Kruskal’s spanning tree
algorithm. He used mutual information.

Definition
The Mutual Information between a random variable x and a
random variable y is given by

I(x , y) =
∑

x

∑
y

P(x , y) log
P(x , y)

P(x)P(y)

When P(x , y) = P(x)P(y) the mutual information will be zero.
C.K. Chow and C.N. Liu, Approximating Discrete Probability Distributions with
Dependence Trees, IEEE Transactions on Information Theory, Vol IT-14, No. 3, 1968
pp. 462-467.
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Chow and Liu’s Algorithm

Chow and Liu 1968

Construct a weighted graph
If there are N variables, make an N-node graph
Label the nodes with the index of its variable
On the edge connecting node i and node j put the mutual
information weight I(xi , xj)

Use Kruskal’s maximum spanning tree algorithm to find the
spanning tree having maximum sum of weights
The result will be a dependence tree
With the precedence function of the tree, the joint
probability will be the product of the conditional
probabilities Pi|j where j precedes i on the tree times the
probability of the variable of the root
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Another Generalization

It is also possible to generalize the class conditional
independence assumption in a principled way and allow for
overlapping index sets. We will illustrate with a small concrete
example.

P134(x1, x3, x4)P352(x3, x5, x2)

P3(x3)
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Notice that this form does define a probability distribution. Since
each of the terms are positive, the fraction is non-negative. And
the sum over all values for x1, x2, x3, x4, x5 equals 1. To see how
this works, sum on x1, x4 and discover that the total is 1.

∑
x3,x5,x2

∑
x1,x4

P134(x1, x3, x4)P352(x3, x5, x2)

P3(x3)

=
∑

x3,x5,x2

P3(x3)P352(x3, x5, x2)

P3(x3)

=
∑

x3,x5,x2

P352(x3, x5, x2) = 1
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Successive Marginals Overlap with One Variable

Let J1, . . . , JM be the index sets defining the subspaces.

Ja ∩ Jb = ∅ if b > a + 1 (2)
|Ja ∩ Ja+1| ≤ 1, a ∈ [1,M − 1] (3)

If Ja ∩ Ja+1 6= ∅,

Ja ∩ Ja+1 6= Jb ∩ Jb+1, a,b ∈ [1,M − 1], a 6= b (4)

Constraint (2) requires that non-successive index sets in
the ordering 〈1,2, . . . ,M〉 have no elements in common
Constraint (3) requires that successive index sets have
only one element in common
Constraint (4) implies that the at most one element in
common of successive index sets is unique
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Successive Marginals Overlap with One Variable

If constraints (2), (3) and (4) are satisfied and
{jm} = Jm − Jm+1,m = 1, . . . ,M − 1 then

P(I, x) =
∏M

m=1 PJm (πJm(I, x))∏M−1
m=1 Pjm

(
πjm(I, x)

)
=

(
M−1∏
m=1

PJm(πJm(I, x))
Pjm(πjm(I, x))

)
PπJM

(πJM (I, x))

=

(
M−1∏
m=1

PJm

(
πJm−{jm}(I, x) | πjm(I, x)

))
PJM

(
πJM (I, x)

)
is the largest entropy extension of the marginals PJ1 , . . . ,PJM
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Dependence Tree Fourth Order

I = {1, . . . ,N}
N is dividable by 2
There are Q = N(N − 1)/2 size 2 subsets of I
Call the subsets W1, . . . ,WQ

Form a graph of Q nodes
Connect node Wa with node Wb if and only if Wa ∩Wb = ∅
On the edge between node Wa and Wb put mutual
information weight I(Wa,Wb) defined by

I(Wa,Wb) =
∑

x

PWa∪Wb

(
πWa∪Wb(x)

)
log

PWa∪Wb

(
πWa∪Wb(x)

)
PWa (πWa(x))PWb

(
πWb(x)

)
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Greedy Algorithm

We construct a dependence tree with N/2 nodes and N/2− 1
edges

Choose the pair of nodes whose edge has the highest
mutual information
Successively connect a node to the tree being constructed
having no overlap with those already selected and not
forming a loop and having highest mutual information
Continue until the tree has N/2 nodes whose associated
index subsets form a partition of I
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Dependence Tree Example

P(x1, . . . , x10 |c) = P(x2, x4 | x1, x6, c)P(x5, x7 | x2, x4, c) ×
P(x3, x10 | x2, x4, c)P(x8, x9 | x1, x6, c)

P((I, x) | c) = P{24|16}
(
π{24}(I, x) | π{16}(I, x), c

)
P{57|24}

(
π{57}(I, x) | π{24}(I, x), c

)
×

P{3,10|24}
(
π{3,10}(I, x) | π{24}(I, x), c

)
P{89|16}

(
π{89}(I, x) | π{16}(I, x), c

)
1,6

2,4 8,9

5,7 3,10

Shows a dependence tree example for a measurement tuple with 10
components. Since each node has 2 indexes, the tree has five nodes. Each
edge is associated with the pair of indexes in the upper node combined with
the pair of indexes in the lower node thus forming a size 4 index set,
indicating an explicit dependence among the index sets.

20 / 23



Graphical Models

All the examples we have shown are specializations

Let I be the index set for the random variables; I = {1, . . . ,N}

Let 〈J1, . . . JM〉 be ordered index sets

Require Jm ∩ Jm+1 = Sm 6= ∅, m = 1, . . . ,M − 1
Require Jm ∩ Jn = ∅, n > m + 1
Construct a graph. Make J1, . . . , JM be complete subgraphs
Verify that J1, . . . , JM are cliques of the graph
The graph will be chordal

Sm, m = 1, . . . ,M − 1 are the separators

Then

PI(I, x) =
∏M

m=1 PJm (πJm(I, x))∏M−1
m=1 PSm (πSm(I, x))

is the largest entropy distribution that is an extension of
PJm ,m = 1, . . . ,M
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The Graph

P(I, x) =
PJ1

(
πJ1(I, x)

)
PJ2

(
πJ2(I, x)

)
PJ3

(
πJ3(I, x)

)
PS1

(
πS1(I, x)

)
PS2

(
πS2(I, x)

)

J1 J2 J3S1 S2

S1 is called a separator of the nodes in J1 and the nodes in J2
because if the nodes in S1 are deleted, what remains of J1 and
J2 are separated. In fact, if the nodes in S1 are deleted, J1 − S1
and (J2 − S2) ∪ J3 are separated.
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Impact on the N-tuple Subspace Classifier

The Bledsoe and Browning N-tuple subspace classifier breaks
the full space into mutually exclusive subspaces and for each
subspace, estimates the class conditional probabilities.

Suppose {H1,H2, . . .HY} and {J1, J2, . . . JZ} are each covers of
I, the index set for the full space, satisfying the conditions of the
previous slides. Then for any class c, we can obtain two class
conditional probabilities PH and PJ . How can we utilize these
two class Conditional Probability Functions? There are two
natural possibilities:

S((I, x)|c) = PH((I, x)|c)PJ((I, x)|c)
S((I, x)|c) = PH((I, x)|c) + PJ((I, x)|c)

Then assign (I, x) to class c satisfying

S((I, x)|c) > S((I, x)|c′), c′ 6= c
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