Final Project

- Implement the Mahalanobis Subspace Classifier
- Use Three Different Real Data Sets
- Values of Features are Real Numbers
- Dimension of the tuples should be between 10 and 20
- Number of Classes should be between 4 and 10
- Number of Tuples Per Class in Training Set should be greater than 10 times the number of parameters per class needed by the classifier
- Test Set and Training Set should be about the same size

Use Only Essential Features For Each Class

- Let there be N features and C be the set of K classes
- Let L_{n} be the range set for the n feature
- Let $\mathcal{M}=X_{n=1}^{N} L_{n}$ be the measurement space.
- Shuffle the class tagged data sequence
- Split the shuffled class tagged data sequence into a Training Set and Test Set
- Using the Training set, take the features one by one and build a Mahalanobis Subspace classifier using the Training Set
- Use the Test Set to determine how well the classifier does with each measurement space component

Indexed Relation List Notation

- I $=\{1, \ldots, N\}$ is the index set for the features
- $R=\left\langle x_{1}, \ldots, x_{Z}\right\rangle$ is the training measurement sequence
- (I, R) is the indexed relation list for the training measurement space sequence
- Let $J \subset I,|J|=T$
- Then $\pi_{l}(I, R)=(J, S)$ where
- $S=\left\langle y_{1}, \ldots, y_{z} \mid y_{z}=\left(y_{z 1}, \ldots, y_{z T}\right)=\left(x_{z t}: t \in J\right)\right\rangle$

Projecting

- Suppose there are 6 features
- We wish to project to features 1,4 , and $5 ; Q=\{1,4,5\}$
- The relative coordinate projection of tuple

$$
x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \text { is }\left(x_{1}, x_{4}, x_{5}\right)
$$

- We can write the projection in a general way
- Let Q be the index list of essential features
- In the example above $Q=\{1,4,5\}$
- The indices are ordered in ascending order
- The relative coordinate projection of tuple $\left(x_{1}, \ldots, x_{N}\right)$ onto the essential features specified in Q is given by
- $\pi_{Q}\left(I,\left(x_{1}, \ldots, x_{N}\right)\right)=\left(Q,\left(x_{i}: i \in Q\right)\right)$

Use Only Essential Features For Each Class

- Let $I=\{1, \ldots, N\}$ be the index set for the features
- Let $d: I \times(I \times \mathcal{M}) \rightarrow C$ be the class that the classifier assigns to $x \in \mathcal{M}$ when only using feature i
- Let $d\left(i, \pi_{\{i\}}(I, x)\right)$ be the class that the classifier assigns to x when only using feature $i \in I$
- Let $\left\{\left\langle x_{1}, \ldots x_{z}\right\rangle,\left\langle c_{1}, \ldots, c_{z}\right\rangle\right\}$ be the Test Set

Using the test set calculate an N row by K column table $A: I \times C \rightarrow \mathbb{R}$ defined by

$$
A(i \mid c)=\frac{\mid\left\{z \in[1, Z] \mid d\left(i, \pi_{\{i\}}\left(x_{z}\right)\right)=c=c_{z} \text { when feature } i \text { is used }\right\} \mid}{\left\{z \in[1, Z] \mid c_{z}=c\right\} \mid}
$$

Given class $c, A(i \mid c)$ is the estimated probability of correct identification when using feature i

Project To Essential Features

- Suppose there are 6 features
- Features 1,4 , and 5 are essential; $Q=\{1,4,5\}$
- Relative Coordinate Project to components 1,4 and 5
- The relative coordinate projection of tuple

$$
x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \text { is }\left(x_{1}, x_{4}, x_{5}\right)
$$

- We can write the projection in a general way
- Let Q be the index list of essential features
- In the example above $Q=\{1,4,5\}$
- The indices are ordered in ascending order
- The relative coordinate projection of tuple $\left(x_{1}, \ldots, x_{N}\right)$ onto the essential features specified in Q is given by
- $\pi_{Q}\left(I,\left(x_{1}, \ldots, x_{N}\right)\right)=\left(Q, x_{i}: i \in Q\right)$

Project To Subspace

- Let $0<\theta \ll 1$ be the threshold that determines when classification accuracy is large enough
- If for any class c and feature index $i, A(i \mid c)>\theta$, then feature i can be used in playing a role in the classification for class c
- $J_{c}=\{i \in I \mid A(i \mid c)>\theta\}$
- The subspace for class c is then indexed by J_{c}
- The new training set is then

$$
\left\{\left\langle\pi_{J_{c}}\left(I, x_{1}\right), \pi_{J_{c}\left(I, x_{2}\right)}, \ldots \pi_{J_{c}\left(I, x_{z}\right)}\right\rangle,\left\langle c_{1}, \ldots, c_{z}\right\rangle\right\}
$$

Class Mean and Covariance

- Organize the Training set by class
- After omitting the non-essential features, the number of dimensions for y from class k is N_{k}
- $R_{k}=\left\langle y_{k 1}, \ldots y_{k z_{k}}\right\rangle$ training set for class $k ; y_{k z}^{N_{k} \times 1}$

$$
\begin{aligned}
\mu_{k} & =\frac{1}{Z_{k}} \sum_{z=1}^{z_{k}} y_{k z} \\
\Sigma_{k} & =\frac{1}{Z_{k}-1} \sum_{z=1}^{Z_{k}}\left(y_{k z}-\mu\right)^{N_{k} \times 1}\left(y_{k z}-\mu\right)^{\prime 1 \times N_{k}}
\end{aligned}
$$

Finding Subspaces

- For each class c
- Use the relative coordinate projection of the training set to determine the class covariance matrix Σ_{c}
- Use Σ_{c} to do a Principle Components
- E_{c} is selected so that the eigenvalue fraction

$$
\frac{\sum_{n=1}^{E_{c}} \sigma_{n}}{\sum_{n=1}^{N} \sigma_{n}}
$$

is just greater than the user specified fraction f

- Define the class subspace to be the span of the first E_{c} eigenvectors of Σ_{c}

Covariance Matrix of $y^{E_{c} \times 1}$

- $y^{E_{c} \times 1}=S_{c}^{\prime} x$
- We need its covariance matrix so that we can use its inverse in the Mahalanobis distance calculation

$$
\begin{aligned}
\Sigma_{y} & =S_{c}^{\prime} \Sigma S_{c} \\
& =S_{c}^{\prime}\left(T_{c} \wedge T_{c}^{\prime}\right) S_{c} \\
& =\left(S_{c}^{\prime} T_{c}\right) \wedge\left(T_{c}^{\prime} S_{c}\right) \\
& =\left(\begin{array}{ll}
I_{c} \times E_{c} & \left.0^{E_{c} \times N-E_{c}}\right) \Lambda^{N \times N}\binom{I_{c} \times E_{c}}{0^{N-E_{c} \times E_{c}}} \\
& =\text { Diagonal }\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{E_{c}}\right)
\end{array}\right.
\end{aligned}
$$

The inverse covariance matrix Σ_{y}^{-1}

$$
\Sigma_{y}^{-1}=\operatorname{Diagonal}\left(\lambda_{1}^{-1}, \lambda_{2}^{-1}, \ldots, \lambda_{E_{c}}^{-1}\right)
$$

Class c Mahalanobis Distance and P-value for y

$$
d_{c}^{2}(y)=y^{\prime} \operatorname{Diagonal}\left(\lambda_{1}^{-1}, \lambda_{2}^{-1}, \ldots, \lambda_{E_{c}}^{-1}\right) y
$$

- $\left\langle y_{c 1}, \ldots, y_{c z_{c}}\right\rangle$ Projected Training Measurement Sequence
- $\left\langle d_{c}^{2}\left(y_{c 1}\right), \ldots d_{c}^{2}\left(y_{c z_{c}}\right)\right\rangle$ The Mahalanobis distances
- Sort in Ascending order $\left\langle d_{(1)}^{2}, \ldots d_{\left(Z_{c}\right)}^{2}\right\rangle$
- Test Set y
- Mahalanobis distance to mean of class $c d_{c}^{2}(y)$
- If $d_{c}^{2}(y)<d_{(1)}^{2} p$-value $p_{c}(y)=\frac{1}{z_{c}}$
- If $d_{c}^{2}(y)>d_{\left(z_{c}\right)}^{2} p$-value $p_{c}(y)=1$
- If $d_{(z-1)}^{2} \leqslant d_{c}^{2}(y)<d_{(z)}^{2}$, p-value $p_{c}(y)=\frac{z-.5}{z_{c}}$

Class Assignment

- Select a p-value $.5<p_{0}$
- If $p_{c}(y)>p_{0}, y$ cannot be assigned to class c
- Assign y to allowable class c for which $p_{c}(y)$ is minimal

Review 1

- For class c
- Leave out components of x whose associated classification accuracy is too low
- The covariance matrix of the reduced x is Σ_{c}
- Eigenvector Eigenvalue decomposition $\Sigma_{c}=T_{c} \Lambda_{c} T_{c}^{\prime}$
- Choose a fraction f of the variance to be preserved
- E_{C} is the smallest number satisfying $\frac{\sum_{n=1}^{E_{c}} \lambda_{c n}}{\sum_{n=1}^{N} \lambda_{c n}} \geqslant f$
- Define S_{c} to be the first E_{c} columns of T_{c}
- $y=S_{c}^{\prime} x$
- y has covariance matrix $S_{c}^{\prime} \Sigma_{c} S_{c}=\operatorname{Diagonal}\left(\lambda_{c 1}, \ldots \lambda_{c E_{c}}\right)$
- The inverse covariance matrix is Diagonal $\left(\lambda_{c 1}^{-1}, \ldots, \lambda_{c E_{c}}^{-1}\right)$

Review 2

- Squared Mahalanobis distance
- $d_{c}^{2}(y)=y^{\prime} \operatorname{Diagonal}\left(\lambda_{c 1}^{-1}, \ldots, \lambda_{c E_{c}}^{-1}\right) y$
- Training sequence for class $c,\left\langle x_{c 1}, \ldots x_{c z_{c}}\right\rangle$
- $y=S_{c}^{\prime} x$ Take the projection of x to the relative coordinates of S_{c}
- Compute Squared Mahalanobis $d_{c}^{2}\left(y_{c 1}\right), \ldots d_{c}^{2}\left(y_{c z_{c}}\right)$
- Ascending order $\left\langle d_{(1)}^{2}, \ldots d_{\left(Z_{c}\right)}^{2}\right\rangle$
- Select $p_{0}=\frac{z}{Z_{c}}, z>Z_{c} / 2$
- $s_{\text {critical }, c}\left(p_{0}\right)=d_{\left(Z_{c}-z\right)}^{2}$
- New $x, y=S_{c}^{\prime} x$
- If $d_{c}^{2}(y)>s_{c r i t i c a l, c}$ class c is not allowable for x
- Assign x to allowable class c for which $p_{c}(y)$ is minimal
- If there is no allowable class, assign x to reserve class

Experimental Protocol

- There are parameters
- θ threshold for classification accuracy of single feature
- Fraction f for eigenvalue ratio
- p_{0} threshold probability for disallowing a class
- For each class of each data set plot the identification accuracy and the fraction of reserve decisions as a function of the parameters
- Fix a value for two of them and then plot accuracy versus the third parameter value
- Change the value for two of them and then plot accuracy versus the third parameter value
- Write out the confusion matrix (with a reserved decision column)

Confusion Matrix With Reserved Decision

		ASSIGNED						
		1	2	\cdots	k	\cdots	K	r
	1			\cdots		\cdots		
	\vdots							
\mathbf{T}								
\mathbf{R}								
\mathbf{U}	j			\cdots	$P_{T A}(j, k)$	\cdots		$P_{T R}(j, r)$
\mathbf{E}								
	\vdots			\vdots		\vdots		
	K			\cdots		\cdots		

Reject Rate: $P($ Reject $)=\sum_{c \in C} P_{T R}(c, r) \quad P($ Correct \mid Read $)=\frac{\sum_{c \in C} P_{T A}(c, c)}{1-P_{R}(r)}$
Read Rate: $P($ Read $)=1-P_{R}(r)$

$$
P_{R \mid T}(r \mid c)=\frac{P_{T R}(c, r)}{P(c)}
$$

Experimental Protocol

- For each data set decide what the best parameters are
- Report the confusion matrix (with a reserved decision column)
- For each class c, report the class conditional identification accuracy $P_{A \mid T}(c \mid c)=\frac{P_{A T}(c, c)}{P(c)-P(r \mid c)}$
- Report the overall identification accuracy: $P($ Correct $)$
- The class conditional reserve decision rate $P_{R T}(r \mid c)$
- The Reject Rate: $\sum_{c \in C} P_{R T}(r, c)$
- For each data set, plot the accuracy as a function of Read Rate (parameter p_{0} controls this)
- In the narrative of the report tell the story of your findings

