Decision Trees

Robert M. Haralick

Computer Science, Graduate Center
City University of New York

Making a Distinction

- Probability
- Bayes: Discrete P(c,d)
- Subspace Methods
- Logistic Regression: P(c|d)
- Arbitrary Function
- Linear
- Class Conditional Gaussian: P(d | c)
- Quadratic
- Equal Class Covariance Matrices: Linear
- Boundary Modeling
- Decision Tree
- Fisher Linear Rule
- Support Vector Machine

Decision Trees: Binary Recursive Partitioning

Definition

A Decision Tree is a classifier whose structural form is a tree.

- Each node of the tree at the same tree level corresponds to a mutually exclusive subset of measurement space
- The nodes of the tree are either decision nodes or leaf nodes
- At each decision node of the tree a distinction is made that partitions its subset of measurement space
- Each leaf node is associated with an assigned class

Advantages

- Understandable rules
- Quick On-line computation
- Continuous or categorical variables.
- Provide a clear indication of which dimensions are most relevant for accurate classification

Disjunction of Conjunctions

- On any branch down the tree, the decision region is specified by the conjunction of the constraints of the nodes in the branch
- There are many branches, each of which represents a disjunction of these conjunctions

Measurement Space Partitioning

Decision Tree

Decision Tree Leaf Nodes

Measurement Space Partitioning

Decision Tree Node Makes A Distinction

Each x is an N -tuple

Decision Node Issues

- What to Distinguish
- How to Distinguish
- How to evaluate the goodness of a Distinguishment

What to Distinguish

- One subset of classes from another
- One class from the others
- c_{2} from $c_{1}, c_{3}, \ldots, c_{K}$
- Two or more classes from the others
- c_{2}, c_{4} from $c_{1}, c_{3}, c_{5}, \ldots, c_{K}$

How to Distinguish

- The tuple $x=\left(x_{1}, \ldots, x_{N}\right)$
- A threshold t
- By component of the tuple
- Decide using x_{n}
- If $x_{n}<t$, go left; else go right
- By Linear Decision Rule Distinguish one group of classes from its complement
- Decide using $r=\sum_{n=1}^{N} w_{n} x_{n}$
- if $r<t$, go left; else go right
- By Quantizing and Using Table-Lookup
- $M \leq N$
- $\left\{i_{1}, \ldots, i_{M}\right\} \subseteq\{1, \ldots, N\}$
- $a=\operatorname{address}\left(q_{1}\left(x_{i_{1}}\right), \ldots, q_{M}\left(x_{i_{M}}\right)\right)$
- $T(a)<0$, go left; else go right
- Distance to a point q
- If $\|x-q\|<t$ go left; else go right

Where Did the Olives Come From?

- Classes
- Northern Italy
- Southern Italy
- Sardinia
- Fatty Acid Measurements
- Eicosenoic: x_{1}
- Linoleic: x_{2}

Olives

Eicosenoic

Olives

Eicosenoic

Decision Tree

Constructing The Tree

- Suppose we are constructing the tree
- We are at one node
- Coming into the node is the training set for the node
- The sequence of tuples and their classes
- The node will make a distinction solely based on the tuples
- The classes of the tuples will be used for evaluation
- After making a distinction, the training set is partitioned into two cells
- One cell of tuples and their classes on the left
- The other cell of tuples and their classes on the right

Constructing The Tree

- For each class c on the left, there is a probability that it occurs there: $P_{L}(c)$
- For each class c on the right, there is a probability that it occurs there: $P_{R}(c)$
- The purpose of making the distinction is to separate one class from another
- If there are two classes the best that can happen is to
- Have all of one class on the left
- Have all of the other class on the right
- The worst thing to happen is to have an equal mixture of the classes
- Each class having probability $1 / 2$ on the left and on the right
- There needs to be an evaluation of a distinction
- So that a distinction could be chosen that does the best job of separating the classes

Impurity Function

Definition

Let C be an index set for K classes. The probability of class k occurring is p_{k}. A function ϕ is an Impurity Function for K classes if and only if

- It is defined on the K-dimensional simplex

$$
\left\{\left(p_{1}, \ldots, p_{K}\right) \mid p_{k} \geq 0, k=1, \ldots, K ; \sum_{k=1}^{K} p_{k}=1\right\}
$$

- Maximum only at $\left(\frac{1}{K}, \frac{1}{K}, \ldots, \frac{1}{K}\right)$
- Minimum only at the points

$$
(1,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots,(0,0, \ldots, 0,1)
$$

- Symmetric function: for any permutation π_{1}, \ldots, π_{K} of

$$
1, \ldots, K, \phi\left(p_{1}, \ldots, p_{K}\right)=\phi\left(p_{\pi_{1}}, \ldots, p_{\pi_{K}}\right)
$$

The smaller the value the Impurity Function has the better.

Purity Function

Definition

Let C be an index set for K classes. The probability of class k occurring is p_{k}. A function ϕ is an Purity Function for K classes if and only if

- It is defined on the K-dimensional simplex

$$
\left\{\left(p_{1}, \ldots, p_{K}\right) \mid p_{k} \geq 0, k=1, \ldots, K ; \sum_{k=1}^{K} p_{k}=1\right\}
$$

- Minimum only at $\left(\frac{1}{K}, \frac{1}{K}, \ldots, \frac{1}{K}\right)$
- Maximum only at the points $(1,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots,(0,0, \ldots, 0,1)$
- Symmetric function: for any permutation π_{1}, \ldots, π_{K} of $1, \ldots, K, \phi\left(p_{1}, \ldots, p_{K}\right)=\phi\left(p_{\pi_{1}}, \ldots, p_{\pi_{K}}\right)$

The larger the value a Purity Function has the better.

Evaluation of Distinction Choice

- Impurity Function of node class probabilities
- Entropy of the class probabilities
- $E_{L}=-\sum_{c} P_{L}(c) \log P_{L}(c)$
- $E_{R}=-\sum_{c} P_{R}(c) \log P_{R}(c)$
- $E=E_{L} P_{L}+E_{R} P_{R}$
- Gini Index of Diversity
- $G=\sum_{c \in C} \sum_{\left\{c^{\prime} \in C \mid c \neq c^{\prime}\right\}} P_{L}(c) P_{R}\left(c^{\prime}\right)=1-\sum_{c \in C} P_{L}(c) P_{R}(c)$
- Misclassification
- $M_{L}=1-\max _{c} P_{L}(c)$
- $M_{R}=1-\max _{c} P_{L}(c)$
- $M=P_{L} M_{L}+P_{R} M_{R}$
- Purity Function of node class probabilities
- Purity Index $=1$-Gini Index $=\sum_{c \in C} P_{L}(c) P_{R}(c)$
- Twoing Criterion
- $\left|\frac{P_{L} P_{B}}{4}\left(\sum_{c}\left|P_{L}(c)-P_{R}(c)\right|\right)^{2}\right|$

Algorithm

- Go through all possible distinctions that have been chosen to be used
- For each distinction, evaluate the result
- Select the best distinction
- Repeat Until Node Training Set is too small
- Make node leaf node
- Assign majority class

Decision Tree Node

Entropy After Distinction

- C^{L} Subset of Left Classes
- C^{R} Subset of Right Classes
- $C^{*}=C^{L} \cup C^{R}$
- $\left\langle\left(x_{L_{1}}, c_{L_{1}}\right),\left(x_{L_{2}}, c_{L_{2}}\right), \ldots\left(x_{L_{N_{L}}}, c_{L_{N_{L}}}\right)\right\rangle$ Left Child Data
- $\left\langle\left(x_{R_{1}}, c_{R_{1}}\right),\left(x_{R_{2}}, c_{R_{2}}\right), \ldots\left(x_{R_{N_{R}}}, c_{R_{N_{R}}}\right)\right\rangle$ Right Child Data
- $P_{L}(c)=\frac{\#\left\{n \mid c_{L_{n}}=c\right\}}{N_{L}}, c \in C^{*}$
- $P_{R}(c)=\frac{\#\left\{\eta \mid c_{R_{n}}=c\right\}}{N_{R}}, c \in C^{*}$
- $E_{L}=-\sum_{c \in C_{*}} P_{L}(c) \log \left(P_{L}(c)\right)$
- $E_{R}=-\sum_{c \in C_{*}} P_{R}(c) \log \left(P_{R}(c)\right)$
- $P_{L}=\frac{N_{L}}{N_{L}+N_{R}}, P_{R}=\frac{N_{R}}{N_{L}+N_{R}}$
- $E=P_{L} E_{L}+P_{R} E_{R}$
- The Smaller the Entropy the Better

Misclassification Rate After Distinction

- C^{L} Subset of Left Classes
- C^{R} Subset of Right Classes
- $C^{*}=C^{L} \cup C^{R}$
- $\left\langle\left(x_{L_{1}}, c_{L_{1}}\right),\left(x_{L_{2}}, c_{L_{2}}\right), \ldots,\left(x_{L_{N_{L}}}, c_{L_{N_{L}}}\right)\right\rangle$ Left Child Data
- $\left\langle\left(x_{R_{1}}, c_{R_{1}}\right),\left(x_{R_{2}}, c_{R_{2}}\right), \ldots,\left(x_{R_{N_{R}}}, c_{R_{N_{R}}}\right)\right\rangle$ Right Child Data
- $P_{L}(c)=\frac{\#\left\{n \mid c_{L n}=c\right\}}{N_{L}}, c \in C^{*}$
- $P_{R}(c)=\frac{\#\left\{n \mid c_{R n}=c\right\}}{N_{R}}, c \in C^{*}$
- $M_{L}=1-\max _{c \in C_{*}} P_{L}(c)$
- $M_{R}=1-\max _{c \in C_{*}} P_{R}(c)$
- $P_{L}=\frac{N_{L}}{N_{L}+N_{R}}, P_{R}=\frac{N_{P}}{N_{L}+N_{R}}$
- $M=P_{L} M_{L}+P_{R} M_{R}$
- The Lower the Misclassification The Better
- C^{L} Subset of Left Classes
- C^{R} Subset of Right Classes
- $C^{*}=C^{L} \cup C^{R}$
- $\left\langle\left(x_{L_{1}}, c_{L_{1}}\right),\left(x_{L_{2}}, c_{L_{2}}\right), \ldots\left(x_{L_{N_{L}}}, c_{L_{N_{L}}}\right)\right\rangle$ Left Child Data
- $\left\langle\left(x_{R_{1}}, c_{R_{1}}\right),\left(x_{R_{2}}, c_{R_{2}}\right), \ldots\left(x_{R_{N_{R}}}, c_{R_{N_{R}}}\right)\right\rangle$ Right Child Data
- $P_{L}(c)=\frac{\#\left\{n \in\left[1, L_{N_{l}}\right] \mid c_{L_{n}}=c\right\}}{N_{L}}, c \in C^{*}$
- $P_{R}(c)=\frac{\#\left\{n \in\left[1, N_{R}\right] \mid c_{R_{n}}=c\right\}}{N_{R}}, c \in C^{*}$
- $I_{L}=\sum_{c \in C_{*}} P_{L}(c)^{2}$
- $I_{R}=\sum_{c \in C_{*}} P_{R}(c)^{2}$
- $P_{L}=\frac{N_{L}}{N_{L}+N_{R}}, P_{R}=\frac{N_{R}}{N_{L}+N_{R}}$
- $I=P_{L} I_{L}+P_{R} I_{R}$
- The Larger the Purity the Better

Twoing Criterion After Distinction

- C^{L} Subset of Left Classes
- C^{R} Subset of Right Classes
- $C^{*}=C^{L} \cup C^{R}$
- $\left\langle\left(x_{L_{1}}, c_{L_{1}}\right),\left(x_{L_{2}}, c_{L_{2}}\right), \ldots,\left(x_{L_{N_{L}}}, c_{L_{N_{L}}}\right)\right\rangle$ Left Child Data
- $\left\langle\left(x_{R_{1}}, c_{R_{1}}\right),\left(x_{R_{2}}, c_{R_{2}}\right), \ldots,\left(x_{R_{N_{R}}}, c_{R_{N_{R}}}\right)\right\rangle$ Right Child Data
- $P_{L}(c)=\frac{\#\left\{n \in\left[1, N_{L}\right] \mid c_{L_{n}}=c\right\}}{N_{L}}, c \in C^{*}$
- $P_{R}(c)=\frac{\#\left\{n \in\left[1, N_{R}\right] \mid c_{R_{n}}=c\right\}}{N_{R}}, c \in C^{*}$
- $P_{L}=\frac{N_{L}}{N_{L}+N_{R}}, P_{R}=\frac{N_{R}}{N_{L}+N_{R}}$
- $\left|\frac{P_{L} P_{B}}{4}\left(\sum_{c \in C^{*}}\left|P_{L}(c)-P_{R}(c)\right|\right)^{2}\right|$
- The Larger the Twoing Criterion the Better

Distinction By Feature

Consider the training tuple sequence. $\left\langle x_{1}, x_{2}, \ldots, x_{z}\right\rangle$. Arrange a matrix with x_{n} as the $n^{\text {th }}$ row.

$$
\left(\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 N} \\
x_{21} & x_{22} & \ldots & x_{2 N} \\
\vdots & \vdots & \vdots & \vdots \\
x_{z 1} & x_{z 2} & \vdots & x_{Z N} \\
\vdots & \vdots & \vdots & \vdots \\
x_{Z 1} & x_{Z 2} & \ldots & x_{Z N}
\end{array}\right)
$$

Distinction By Feature

- Node Data: $\left(x_{1}, c_{1}\right),\left(x_{2}, c_{2}\right), \ldots\left(x_{N}, c_{N}\right)$
- $x_{n}=\left(x_{n 1}, x_{n 2}, \ldots, x_{n K}\right)$
- For each component k sort in ascending order:

$$
x_{(1) k} \leq x_{(2) k} \leq \ldots \leq x_{(N) k}
$$

- For each $(n, k) \in\{1, \ldots, N\} \times\{1, \ldots, K\}$
- n defines the threshold
- k defines the component
- Define $f_{n k}\left(z_{1}, \ldots, z_{K}\right)=z_{k}-\left(x_{(n) k}+x_{(n+1) k}\right) / 2$
- If $f_{n k}\left(z_{1}, \ldots, z_{K}\right)<0$ go left; else go right
- Let $\left(n^{*}, k^{*}\right)$ maximize the criterion
- Use $f_{n^{*} k^{*}}$ to make the distinction

Algorithm

- Go through all possible partitions of the classes present at the node
- For each class partition go through all possible distinctions
- For each class partition and each way of distinction, evaluate the result
- Select the best partition and the best way of distinction

All Possible Class Partitions

- $\left\{\left\{c_{1}\right\},\left\{c_{2}, c_{3}, c_{4}\right\}\right\}$
- $\left\{\left\{c_{2}\right\},\left\{c_{1}, c_{3}, c_{4}\right\}\right\}$
- $\left\{\left\{c_{3}\right\},\left\{c_{1}, c_{2}, c_{4}\right\}\right\}$
- $\left\{\left\{c_{4}\right\},\left\{c_{1}, c_{2}, c_{3}\right\}\right\}$
- $\left\{\left\{c_{1}, c_{2}\right\},\left\{c_{3}, c_{4}\right\}\right\}$
- $\left\{\left\{c_{1}, c_{3}\right\},\left\{c_{2}, c_{4}\right\}\right\}$
- $\left\{\left\{c_{1}, c_{4}\right\},\left\{c_{2}, c_{3}\right\}\right\}$
- $\left\{C_{L}, C_{R}\right\}$

Best Distinction: Fisher Linear Discriminant

- $\left\{C_{L}, C_{R}\right\}$ Desired partition
- Node Data $\left(x_{1}, c_{1}\right),\left(x_{2}, c_{2}\right), \ldots\left(x_{N}, c_{N}\right)$
- Desired Left Child
- $X_{L}=\left\{x_{n} \mid c_{n} \in C_{L}\right\}$
- Mean $\mu_{L}=\frac{1}{N_{L}} \sum_{x \in X_{L}} x$
- Scatter $S_{L}=\sum_{x \in X_{L}}\left(x-\mu_{L}\right)\left(x-\mu_{L}\right)^{\prime}$
- Desired Right Child
- $X_{R}=\left\{x_{n} \mid c_{n} \in C_{R}\right\}$
- Mean $\mu_{R}=\frac{1}{N_{R}} \sum_{x \in X_{R}} x$
- Scatter $S_{R}=\sum_{x \in X_{R}}\left(x-\mu_{R}\right)\left(x-\mu_{R}\right)^{\prime}$
- Within Group Scatter $S_{W}=S_{L}+S_{R}$
- Between Group Scatter $S_{B}=\left(\mu_{L}-\mu_{R}\right)\left(\mu_{L}-\mu_{r}\right)^{\prime}$
- Find w to maximize $J(w)=\frac{w^{\prime} S_{B} w}{w^{\prime} S_{w} w}$

All Possible Distinctions

- Find w to maximize $J(w)=\frac{w^{\prime} S_{B} w}{w^{\prime} S_{w} w}$
- $w=S_{W}^{-1}\left(\mu_{L}-\mu_{R}\right)$
- Node Data $\left(x_{1}, c_{1}\right),\left(x_{2}, c_{2}\right), \ldots\left(x_{N}, c_{N}\right)$
- $y_{n}=w^{\prime} x_{n}$
- Sort $y_{(1)}, \ldots, y_{(N)}$
- $\theta_{n}=\left(y_{(n)}+y_{(n+1)}\right) / 2$
- Distinction Functions $f(x)=w^{\prime} x-\theta_{k}, k=1, \ldots, N-1$

Algorithm

- Go through all possible partitions of the classes present at the node
- For each class partition go through all possible distinctions
- For each class partition and each way of distinction, evaluate the result
- Select the best partition and the best way of distinction

Stopping Criterion

- Data in node is all of same class
- Node is at maximum tree depth
- Number of instances in node is too small
- Best splitting criteria is smaller than a threshold
- Cross Validation
- Divide Training set into Q parts, L_{1}, \ldots, L_{Q}
- Use L_{1}, \ldots, L_{Q-2} to develop tree
- Use L_{Q-1} to determine if a node lives
- The incoming data to a node has an error rate
- The children nodes have an error rate
- If the children nodes have an error rate signicantly smaller than the parent node keep the children nodes
- Else make the parent node a leaf node
- Use L_{Q} to estimate the error rate of the tree
- Then go round robin using $L_{2}, \ldots L_{Q-1}$ to develop the tree
- Use L_{Q} to determine if a node lives
- Use L_{1} to estimate the error rate of the tree

Quality of Training Data

- Poor Training Data gives Poor Results
- Insufficient Data Sample
- Does not Capture Distribution
- Does not Reflect the Real World Distribution
- Number of Observations in Each Class
- Does not reflect the class prior probabilities

Decision Forests

- Construct multiple decision trees
- Classify new tuple x by maximum a posterior probability

Multiple Decision Trees

- Setup
- Training Sample of size N
- Dimensionality M
- Select $n<N$
- Select $m<M$
- Repeat many times
- From the training sample, randomly sample of size n
- Randomly select m features
- Construct Decision Tree using sample

A Posteriori Probability

- T Trees
- For new tuple x and tree t,
- The leaf node for x has $N(t ; x)$ tuples from the training set landing there
- The number of tuples landing there whose true class is c is $n(c, t ; x)$
- Posterior probability for class c is $P(c \mid t)=\frac{n(c, t ; x)}{N(t ; x)}$
- Prior probability for tree t is $P(t \mid x)=\frac{N(t ; x)}{\sum_{s=1}^{T} N(s ; x)}$
- A Posteriori Probability for class C

$$
P(c \mid x)=\sum_{t=1}^{T} P(c \mid t, x) P(t \mid x)
$$

Let $T=<\left(y_{n}, x_{n}\right)>_{n=1}^{N}$ be the training data

- y_{n} is the response values
- x_{n} is the vector of predictor values
- $L\left(y, y^{\prime}\right)$ is the loss between y and its prediction y^{\prime}

Find a function f to minimize

$$
E\left[\sum_{n=1}^{N} L\left(y_{n}, f\left(x_{n}\right)\right)\right]
$$

- If y is real valued, the problem is a regression.
- If y is unordered labels, the problem is a classification problem

Strengths of Decision Trees

- Decision Rules are Understandable
- Online computation is quick
- Can handle continuous and categorical variables
- The variables that are important are the ones it uses

Weaknesses of Decision Trees

- The tree is not natural for estimating continuous values
- Can use a regression for leaf nodes
- Does not Work Well with Many Classes
- Computationally Expensive to Train
- Decision boundaries are aligned with axes
- Rectangular Regions

