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Making a Distinction

Probability
Bayes: Discrete P(c,d)
Subspace Methods
Logistic Regression: P(c | d)

Arbitrary Function
Linear

Class Conditional Gaussian: P(d | c)
Quadratic
Equal Class Covariance Matrices: Linear

Boundary Modeling
Decision Tree
Fisher Linear Rule
Support Vector Machine
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Decision Trees: Binary Recursive Partitioning

Definition
A Decision Tree is a classifier whose structural form is a tree.

Each node of the tree at the same tree level corresponds
to a mutually exclusive subset of measurement space
The nodes of the tree are either decision nodes or leaf
nodes
At each decision node of the tree a distinction is made that
partitions its subset of measurement space
Each leaf node is associated with an assigned class
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Advantages

Understandable rules
Quick On-line computation
Continuous or categorical variables.
Provide a clear indication of which dimensions are most
relevant for accurate classification
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Disjunction of Conjunctions

On any branch down the tree, the decision region is
specified by the conjunction of the constraints of the nodes
in the branch
There are many branches, each of which represents a
disjunction of these conjunctions
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Measurement Space Partitioning
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Decision Tree
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Decision Tree Leaf Nodes

C1C1

C3C2 C4 C5
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Measurement Space Partitioning

C1

C3

C2

C1

C4C5
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Decision Tree Node Makes A Distinction

f (x)

< 0 ≥ 0

(x1, c1)
(x2, c2)

...
(xZ , cZ )

Labeled Training Data

(xL1 , cL1)
(xL2 , cL2)

...
(xLNL

, cLNL
)

(xR1 , cR1)
(xR2 , cR2)

...
(xRNR

, cRNR
)

f (x1) < 0 xL1 = x1
f (x2) < 0 xL2 = x2
f (x4) < 0 xL3 = x4

f (x3) ≥ 0 xR1 = x3
f (x5) ≥ 0 xR2 = x5
f (x6) ≥ 0 xR3 = x6

Each x is an N-tuple
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Decision Node Issues

What to Distinguish
How to Distinguish
How to evaluate the goodness of a Distinguishment
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What to Distinguish

One subset of classes from another
One class from the others

c2 from c1, c3, . . . , cK

Two or more classes from the others
c2, c4 from c1, c3, c5, . . . , cK
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How to Distinguish

The tuple x = (x1, . . . , xN)

A threshold t
By component of the tuple

Decide using xn
If xn < t , go left; else go right

By Linear Decision Rule Distinguish one group of classes
from its complement

Decide using r =
∑N

n=1 wnxn
if r < t , go left; else go right

By Quantizing and Using Table-Lookup
M ≤ N
{i1, . . . , iM} ⊆ {1, . . . ,N}
a = address(q1(xi1), . . . ,qM(xiM ))
T (a) < 0, go left; else go right

Distance to a point q
If ||x − q|| < t go left; else go right

,
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Where Did the Olives Come From?

Classes
Northern Italy
Southern Italy
Sardinia

Fatty Acid Measurements
Eicosenoic: x1
Linoleic: x2
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Olives

Eicosenoic

Linoleic
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Olives

Eicosenoic

Linoleic
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Decision Tree

SardiniaN. Italy

S. Italy

x1 ≥ 0.07

YN

x2 ≥ 10.5

YN
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Constructing The Tree

Suppose we are constructing the tree
We are at one node
Coming into the node is the training set for the node

The sequence of tuples and their classes

The node will make a distinction solely based on the tuples
The classes of the tuples will be used for evaluation
After making a distinction, the training set is partitioned into
two cells

One cell of tuples and their classes on the left
The other cell of tuples and their classes on the right
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Constructing The Tree

For each class c on the left, there is a probability that it
occurs there: PL(c)
For each class c on the right, there is a probability that it
occurs there: PR(c)
The purpose of making the distinction is to separate one
class from another
If there are two classes the best that can happen is to

Have all of one class on the left
Have all of the other class on the right

The worst thing to happen is to have an equal mixture of
the classes

Each class having probability 1/2 on the left and on the
right

There needs to be an evaluation of a distinction
So that a distinction could be chosen that does the best job
of separating the classes
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Impurity Function

Definition
Let C be an index set for K classes. The probability of class k
occurring is pk . A function φ is an Impurity Function for K
classes if and only if

It is defined on the K -dimensional simplex
{(p1, . . . ,pK ) | pk ≥ 0, k = 1, . . . ,K ;

∑K
k=1 pk = 1}

Maximum only at ( 1
K ,

1
K , . . . ,

1
K )

Minimum only at the points
(1,0, . . . ,0), (0,1,0, . . . ,0), . . . , (0,0, . . . ,0,1)
Symmetric function: for any permutation π1, . . . , πK of
1, . . . ,K , φ(p1, . . . ,pK ) = φ(pπ1 , . . . ,pπK )

The smaller the value the Impurity Function has the better.
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Purity Function

Definition
Let C be an index set for K classes. The probability of class k
occurring is pk . A function φ is an Purity Function for K classes
if and only if

It is defined on the K -dimensional simplex
{(p1, . . . ,pK ) | pk ≥ 0, k = 1, . . . ,K ;

∑K
k=1 pk = 1}

Minimum only at ( 1
K ,

1
K , . . . ,

1
K )

Maximum only at the points
(1,0, . . . ,0), (0,1,0, . . . ,0), . . . , (0,0, . . . ,0,1)
Symmetric function: for any permutation π1, . . . , πK of
1, . . . ,K , φ(p1, . . . ,pK ) = φ(pπ1 , . . . ,pπK )

The larger the value a Purity Function has the better.
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Evaluation of Distinction Choice

Impurity Function of node class probabilities
Entropy of the class probabilities

EL = −
∑

c PL(c) logPL(c)
ER = −

∑
c PR(c) logPR(c)

E = ELPL + ERPR

Gini Index of Diversity
G =

∑
c∈C

∑
{c′∈C|c 6=c′} PL(c)PR(c′) = 1−

∑
c∈C PL(c)PR(c)

Misclassification
ML = 1 −maxc PL(c)
MR = 1 −maxc PL(c)
M = PLML + PRMR

Purity Function of node class probabilities
Purity Index = 1-Gini Index =

∑
c∈C PL(c)PR(c)

Twoing Criterion∣∣∣PLPR
4

(∑
c |PL(c)− PR(c)|

)2
∣∣∣
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Algorithm

Go through all possible distinctions that have been chosen
to be used
For each distinction, evaluate the result
Select the best distinction
Repeat Until Node Training Set is too small

Make node leaf node
Assign majority class
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Decision Tree Node

f (x)

< 0 ≥ 0

(x1, c1)
(x2, c2)

...
(xN , cN)

(xL1, cL1)
(xL2, cL2)

...
(xLNL , cLNL)

(xR1, cR1)
(xR2, cR2)

...
(xRNR , cRNR )
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Entropy After Distinction

CL Subset of Left Classes
CR Subset of Right Classes
C∗ = CL ∪ CR

〈(xL1 , cL1), (xL2 , cL2), . . . (xLNL
, cLNL

)〉 Left Child Data

〈(xR1 , cR1), (xR2 , cR2), . . . (xRNR
, cRNR

)〉 Right Child Data

PL(c) =
#{n | cLn=c}

NL
, c ∈ C∗

PR(c) =
#{n | cRn=c}

NR
, c ∈ C∗

EL = −
∑

c∈C∗ PL(c) log(PL(c))
ER = −

∑
c∈C∗ PR(c) log(PR(c))

PL = NL
NL+NR

, PR = NR
NL+NR

E = PLEL + PRER

The Smaller the Entropy the Better
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Misclassification Rate After Distinction

CL Subset of Left Classes
CR Subset of Right Classes
C∗ = CL ∪ CR

〈(xL1 , cL1), (xL2 , cL2), . . . , (xLNL
, cLNL

)〉 Left Child Data

〈(xR1 , cR1), (xR2 , cR2), . . . , (xRNR
, cRNR

)〉 Right Child Data

PL(c) =
#{n | cLn=c}

NL
, c ∈ C∗

PR(c) =
#{n | cRn=c}

NR
, c ∈ C∗

ML = 1−maxc∈C∗ PL(c)
MR = 1−maxc∈C∗ PR(c)
PL = NL

NL+NR
, PR = NR

NL+NR

M = PLML + PRMR

The Lower the Misclassification The Better

26 / 45



Purity After Distinction

CL Subset of Left Classes
CR Subset of Right Classes
C∗ = CL ∪ CR

〈(xL1 , cL1), (xL2 , cL2), . . . (xLNL
, cLNL

)〉 Left Child Data

〈(xR1 , cR1), (xR2 , cR2), . . . (xRNR
, cRNR

)〉 Right Child Data

PL(c) =
#{n∈[1,LNL

] | cLn=c}
NL

, c ∈ C∗

PR(c) =
#{n∈[1,NR ] | cRn=c}

NR
, c ∈ C∗

IL =
∑

c∈C∗ PL(c)2

IR =
∑

c∈C∗ PR(c)2

PL = NL
NL+NR

, PR = NR
NL+NR

I = PLIL + PRIR
The Larger the Purity the Better
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Twoing Criterion After Distinction

CL Subset of Left Classes
CR Subset of Right Classes
C∗ = CL ∪ CR

〈(xL1 , cL1), (xL2 , cL2), . . . , (xLNL
, cLNL

)〉 Left Child Data

〈(xR1 , cR1), (xR2 , cR2), . . . , (xRNR
, cRNR

)〉 Right Child Data

PL(c) =
#{n∈[1,NL] | cLn=c}

NL
, c ∈ C∗

PR(c) =
#{n∈[1,NR ] | cRn=c}

NR
, c ∈ C∗

PL = NL
NL+NR

, PR = NR
NL+NR∣∣∣PLPR

4

(∑
c∈C∗ |PL(c)− PR(c)|

)2
∣∣∣

The Larger the Twoing Criterion the Better
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Distinction By Feature

Consider the training tuple sequence. 〈x1, x2, . . . , xZ 〉. Arrange
a matrix with xn as the nth row.



x11 x12 . . . x1N
x21 x22 . . . x2N
...

...
...

...

xz1 xz2
... xzN

...
...

...
...

xZ1 xZ2 . . . xZN
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Distinction By Feature

Node Data: (x1, c1), (x2, c2), . . . (xN , cN)

xn = (xn1, xn2, . . . , xnK )

For each component k sort in ascending order:
x(1)k ≤ x(2)k ≤ . . . ≤ x(N)k

For each (n, k) ∈ {1, . . . ,N} × {1, . . . ,K}
n defines the threshold
k defines the component
Define fnk (z1, . . . , zK ) = zk − (x(n)k + x(n+1)k )/2
If fnk (z1, . . . , zK ) < 0 go left; else go right

Let (n∗, k∗) maximize the criterion
Use fn∗k∗ to make the distinction
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Algorithm

Go through all possible partitions of the classes present at
the node
For each class partition go through all possible distinctions
For each class partition and each way of distinction,
evaluate the result
Select the best partition and the best way of distinction
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All Possible Class Partitions

{{c1}, {c2, c3, c4}}
{{c2}, {c1, c3, c4}}
{{c3}, {c1, c2, c4}}
{{c4}, {c1, c2, c3}}
{{c1, c2}, {c3, c4}}
{{c1, c3}, {c2, c4}}
{{c1, c4}, {c2, c3}}
{CL,CR}
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Best Distinction: Fisher Linear Discriminant

{CL,CR} Desired partition
Node Data (x1, c1), (x2, c2), . . . (xN , cN)

Desired Left Child
XL = {xn | cn ∈ CL}
Mean µL = 1

NL

∑
x∈XL

x
Scatter SL =

∑
x∈XL

(x − µL)(x − µL)
′

Desired Right Child
XR = {xn | cn ∈ CR}
Mean µR = 1

NR

∑
x∈XR

x
Scatter SR =

∑
x∈XR

(x − µR)(x − µR)
′

Within Group Scatter SW = SL + SR

Between Group Scatter SB = (µL − µR)(µL − µr )
′

Find w to maximize J(w) = w ′SBw
w ′SW w
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All Possible Distinctions

Find w to maximize J(w) = w ′SBw
w ′SW w

w = S−1
W (µL − µR)

Node Data (x1, c1), (x2, c2), . . . (xN , cN)

yn = w ′xn

Sort y(1), . . . , y(N)

θn = (y(n) + y(n+1))/2
Distinction Functions f (x) = w ′x − θk , k = 1, . . . ,N − 1
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Algorithm

Go through all possible partitions of the classes present at
the node
For each class partition go through all possible distinctions
For each class partition and each way of distinction,
evaluate the result
Select the best partition and the best way of distinction
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Stopping Criterion

Data in node is all of same class
Node is at maximum tree depth
Number of instances in node is too small
Best splitting criteria is smaller than a threshold
Cross Validation
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Cross Validation

Divide Training set into Q parts, L1, . . . ,LQ

Use L1, . . . ,LQ−2 to develop tree
Use LQ−1 to determine if a node lives

The incoming data to a node has an error rate
The children nodes have an error rate
If the children nodes have an error rate signicantly smaller
than the parent node keep the children nodes
Else make the parent node a leaf node

Use LQ to estimate the error rate of the tree
Then go round robin using L2, . . .LQ−1 to develop the tree
Use LQ to determine if a node lives
Use L1 to estimate the error rate of the tree

37 / 45



Quality of Training Data

Poor Training Data gives Poor Results
Insufficient Data Sample

Does not Capture Distribution
Does not Reflect the Real World Distribution

Number of Observations in Each Class
Does not reflect the class prior probabilities
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Decision Forests

Construct multiple decision trees
Classify new tuple x by maximum a posterior probability
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Multiple Decision Trees

Setup
Training Sample of size N
Dimensionality M
Select n < N
Select m < M

Repeat many times
From the training sample, randomly sample of size n
Randomly select m features
Construct Decision Tree using sample
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A Posteriori Probability

T Trees
For new tuple x and tree t ,

The leaf node for x has N(t ; x) tuples from the training set
landing there
The number of tuples landing there whose true class is c is
n(c, t ; x)
Posterior probability for class c is P(c | t) = n(c,t ;x)

N(t ;x)

Prior probability for tree t is P(t | x) = N(t ;x)∑T
s=1 N(s;x)

A Posteriori Probability for class c

P(c | x) =
T∑

t=1

P(c | t , x)P(t | x)
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Formal Statement

Let T =< (yn, xn) >
N
n=1 be the training data

yn is the response values
xn is the vector of predictor values
L(y , y ′) is the loss between y and its prediction y ′

Find a function f to minimize

E [
N∑

n=1

L(yn, f (xn))]

If y is real valued, the problem is a regression.
If y is unordered labels, the problem is a classification
problem
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Strengths of Decision Trees

Decision Rules are Understandable
Online computation is quick
Can handle continuous and categorical variables
The variables that are important are the ones it uses
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Weaknesses of Decision Trees

The tree is not natural for estimating continuous values
Can use a regression for leaf nodes

Does not Work Well with Many Classes
Computationally Expensive to Train
Decision boundaries are aligned with axes

Rectangular Regions

44 / 45


