Conditional Expected Gain

Robert M. Haralick

Computer Science, Graduate Center City University of New York

Э

Definition

Let X and Y be a discrete random variables that take values from the set $A \times B$. The Conditional Expectation of Y given X is defined by

$$E[Y \mid X = a] = \sum_{b \in B} bP_{XY}(a, b)$$

E[Y | X] is a function of the various values that X can take.

The Event (c^j, c^k, d)

Recall

$$P_{TA}(c^{j}, c^{k}, d) = P_{TA}(c^{j}, c^{k}|d)P(d)$$

$$= P_{T}(c^{j}|d)P_{A}(c^{k}|d)P(d)$$

$$= \frac{P_{T}(d|c^{j})P_{T}(c^{j})}{P(d)}P_{A}(c^{k}|d)P(d)$$

$$= P_{T}(d|c^{j})P_{A}(c^{k}|d)P_{T}(c^{j})$$

$$P_{AT}(c^{k}, d|c^{j}) = \frac{P_{TA}(c^{j}, c^{k}, d)}{P_{T}(c^{j})}$$

$$= P_{T}(d|c^{j})P_{A}(c^{k}|d) = P_{T}(d|c^{j})f_{d}(c_{k})$$

◆□ > ◆□ > ◆目 > ◆目 > ● ● ● ●

Expected Conditional Economic Gain Given Class

Definition

The conditional expectation of the economic gain given class c^{j} for decision rule *f* is defined by

$$E[e \mid c^{j}; f] = \sum_{d \in D} \sum_{k=1}^{K} e(c^{j}, c^{k}) P_{TA}(c^{j}, c^{k}, d)$$

$$= \sum_{d \in D} \sum_{k=1}^{K} e(c^{j}, c^{k}) P(d \mid c^{j}) f_{d}(c^{k})$$

$$= \sum_{k=1}^{K} e(c^{j}, c^{k}) \sum_{d \in D} P(d \mid c^{j}) f_{d}(c^{k})$$

where $f_d(c)$ is the conditional probability that the decision rule assigns class *c* given measurement *d*.

Э

Class Conditional Probability and Prior Probability

• *P*(*d*|*c*)

- Conditional probability of measurement d given class c
- Class conditional probability
- *P*(*c*)
 - Prior probability of class c
 - Prior probability

< □ > < 同 > < Ξ > < Ξ > -

Economic Gain

The Expected economic gain can be related to the class conditional expected economic gain and prior probabilities.

$$E[e; f] = \sum_{d \in D} \sum_{k=1}^{K} \sum_{j=1}^{K} e(c^{j}, c^{k}) P(c^{j}, d) f_{d}(c^{k})$$

$$= \sum_{j=1}^{K} \sum_{k=1}^{K} \sum_{d \in D} e(c^{j}, c^{k}) P(d \mid c^{j}) P(c^{j}) f_{d}(c^{k})$$

$$= \sum_{j=1}^{K} \left[\sum_{k=1}^{K} \sum_{d \in D} e(c^{j}, c^{k}) P(d \mid c^{j}) f_{d}(c^{k}) \right] P(c^{j})$$

$$= \sum_{j=1}^{K} E[e \mid c^{j}; f] P(c^{j})$$

ヘロト ヘ戸ト ヘヨト ヘヨト

When the economic gain is represented in terms of the prior class probabilities, we write

$$E[e; f, P(c^1), \ldots, P(c^K)]$$

When f is a Bayes decision rule,

$$E[e; f, P(c^1), \ldots, P(c^K)] \ge E[e; g, P(c^1), \ldots, P(c^K)]$$

for any other decision rule g.

Definition

When *f* is a Bayes decision rule, $E[e; f, P(c^1), ..., P(c^K)]$ is called the Bayes gain.

We will show that the geometry of a Bayes Rule is related to convex combinations and convex sets

< < >> < </p>

Convex Combinations

Definition

Let $x, y \in \mathbb{R}^N$ and $0 \le \lambda \le 1$. Then $\lambda x + (1 - \lambda)y$ is called a convex combination of x and y.

Proposition

If
$$0 \le x, y, \lambda \le 1$$
, then $0 \le \lambda x + (1 - \lambda)y \le 1$

Proof.

$$0 \le x, y, \lambda$$
 implies $\lambda x + (1 - \lambda)y \le \lambda + (1 - \lambda) = 1$.
 $\lambda \le 1$ implies $0 \le 1 - \lambda$.
 $x, y, \lambda, 1 - \lambda \ge 0$ implies $\lambda x + (1 - \lambda)y \ge 0$.
Therefore, $0 \le \lambda x + (1 - \lambda)y \le 1$.

ヘロト ヘ団 ト ヘヨト ヘヨト

Э

Structure of Decision Rules

Consider the structure of a decision rule $f_d(c)$. Suppose $D = \{d^1, \dots, d^Q\}$ and $C = \{c^1, \dots, c^K\}$. Then this decision rule *f* can be thought of as a vector in \mathbb{R}^{KQ}

$$f' = (f_{d^1}(c^1), \dots, f_{d^1}(c^K), \dots, f_{d^Q}(c^1), \dots, f_{d^Q}(c^K))$$

There are some constraints:

• For
$$q \in \{1, ..., Q\}$$
 and $k \in \{1, ..., K\}$, $0 \le f_{d^q}(c^k) \le 1$
• For $q \in \{1, ..., Q\}$, $\sum_{k=1}^{K} f_{d^q}(c^k) = 1$

Therefore, a decision rule must lie in the unit hypercube of \mathbb{R}^{QK} and it must lie in the manifold defined by the *Q* linear constraints

$$\sum_{k=1}^{K} f_{d^q}(\boldsymbol{c}^k) = 1, \ q = 1, \ldots, Q$$

8 Possible Deterministic Decision Rules

	<i>d</i> ¹	d²	d ³
f_d^1	<i>C</i> ₁	<i>C</i> 1	<i>C</i> 1
f_d^2	<i>C</i> ₁	<i>C</i> ₁	<i>C</i> ₂
$\int f_d^3$	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₁
f_d^4	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₂
$\int f_d^5$	<i>C</i> ₂	<i>C</i> ₁	<i>C</i> ₁
f_d^6	<i>C</i> ₂	<i>C</i> ₁	<i>C</i> ₂
f_d^7	<i>C</i> ₂	<i>C</i> ₂	<i>C</i> ₁
f_d^8	<i>C</i> ₂	<i>C</i> ₂	<i>C</i> ₂

·문→ ★ 문→ · · · 문

Deterministic Decision Rules Written as Probabilistic

 $f_d^1(c_1)$ is the probability that decision rule f^1 assigns class c_1 to d^1 $f_d^1(c_2)$ is the probability that decision rule f^1 assigns class c_2 to d^1

f_d^n	$f_{d^1}^n(c_1)$	$f_{d^1}^n(c_2)$	$f_{d^2}^n(c_1)$	$f_{d^2}^n(c_2)$	$f_{d^3}^n(c_1)$	$f_{d^3}^n(c_2)$
f_d^1	1	0	1	0	1	0
f_d^2	1	0	1	0	0	1
$f_d^{\bar{3}}$	1	0	0	1	1	0
f_d^4	1	0	0	1	0	1
f_d^{5}	0	1	1	0	1	0
f_d^6	0	1	1	0	0	1
f_d^7	0	1	0	1	1	0
f_d^8	0	1	0	1	0	1

$$egin{array}{ll} f_{d^n}(c^1)+f_{d^n}(c^2)=1, & n=1,2,3\ 0\leq f_{d^n}(c^k)\leq 1, & n=1,2,3; \; k=1,2 \end{array}$$

□ > < 団 > < 三 > < 三 > < 三 > < ○ < ○</p>

12/32

Deterministic Decision Rule Written Probabilisticly

$$f_{d^n}(c^2) = 1 - f_{d^n}(c^1), \qquad n = 1, 2, 3$$

 $0 \le f_{d^n}(c^1) \le 1, \qquad n = 1, 2, 3$

$f_d^n(c^1)$	<i>d</i> ¹	d²	d ³
f_d^1	1	1	1
f_d^2	1	1	0
f_d^3	1	0	1
$f_d^{\tilde{4}}$	1	0	0
f_d^5	0	1	1
f_d^6	0	1	0
f_d^7	0	0	1
$f_d^{\tilde{8}}$	0	0	0

13/32

ъ

→ < Ξ → </p>

Mixture Decision Rules

Let $0 \le \lambda \le 1$ What does $g_d = \lambda f_d^2 + (1 - \lambda) f_d^7$ mean? With probability λ choose decision rule f_d^2 and with probability $1 - \lambda$ choose decision rule f_d^7

	d ¹	d ²	d ³
$g_d(c^1)$	λ	λ	$1 - \lambda$
$g_d(c^2)$	$1 - \lambda$	$1 - \lambda$	λ

$$F = \{ f_d(c^1) \mid f_d(c^1) = \sum_{n=1}^8 \lambda_n f_d^n(c^1), \text{ for some } 0 \le \lambda_n \le 1, \sum_{n=1}^8 \lambda_n = 1 \}$$

F is the set of all convex combinations of the decision rules f_d^1, \ldots, f_d^8 . The convex combinations are probabilistic decision rules.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Convex Combinations of Probabilistic Decision Rules

Proposition

Convex combinations of decision rules are decision rules

Proof.

Let f and g be two decision rules. Let $0 \le \lambda \le 1$. Consider $\lambda f_d(c) + (1 - \lambda)g_d(c)$. We have already proven that $0 \le \lambda f_d(c) + (1 - \lambda)g_d(c) \le 1$. Consider the convex combination:

$$\sum_{c \in C} [\lambda f_d(c) + (1 - \lambda)g_d(c)] = \lambda \sum_{c \in C} f_d(c) + (1 - \lambda) \sum_{c \in C} g_d(c)$$
$$= \lambda + (1 - \lambda)$$
$$= 1$$

Convex Sets

Definition

A set $C \subseteq \mathbb{R}^N$ is a convex set if and only if $x, y \in C$ imply $\lambda x + (1 - \lambda)y \in C$ for every $0 \le \lambda \le 1$.

Proposition

The set F of all convex combinations of decision rules is a convex set.

Example

$$F = \{ f_d(c^1) \mid f_d(c^1) = \sum_{n=1}^8 \lambda_n f_d^n(c^1), \text{ for some } 0 \le \lambda_n \le 1, \ \sum_{n=1}^8 \lambda_n = 1 \}$$

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

Intersection of Convex Sets are Convex

Proposition

Let C and D be convex sets. Then $C \cap D$ is a convex set.

Proof.

Let $x, y \in C \cap D$ and $0 \le \lambda \le 1$. Consider $\lambda x + (1 - \lambda)y$. Since $x, y \in C \cap D$, $x, y \in C$ and $x, y \in D$. Since C is convex and $0 \le \lambda \le 1$, $\lambda x + (1 - \lambda)y \in C$. Since D is convex and $0 \le \lambda \le 1$, $\lambda x + (1 - \lambda)y \in D$. $\lambda x + (1 - \lambda)y \in C$ and $\lambda x + (1 - \lambda)y \in D$ imply $\lambda x + (1 - \lambda)y \in C \cap D$.

Definition

Let *f* and *g* be decision rules and $0 \le \lambda \le 1$. Then

$$h_d(c) = \lambda f_d(c) + (1 - \lambda)g_d(c)$$

is called a mixed decision rule of f and g.

- With probability λ apply decision rule *f* and probability 1 λ apply decision rule *g*.
- If we apply decision rule f, the we assign class c with probability f(c|d)
- If we apply decision rule g, then we assign class c with probability g(c|d)

イロト イヨト イヨト

Extreme Points

Definition

Let $A \subseteq \mathbb{R}^N$. A point $e \in A$ is called an Extreme Point of A if and only if $b, c \in A$ with $e = \frac{b+c}{2}$ implies e = b = c.

If *e* is an extreme point of *A* and if *b*, $c \in A$ and for some λ , $0 \le \lambda \le 1$ then

$$e = \lambda b + (1 - \lambda)c$$
 implies $e = b = c$

If *e* is an extreme point of *A* then there is no convex combination of a distinct pair of points in *A* that equals *e*.

Deterministic Decision Rules are Extreme Points

Proposition

Let F be the set of all convex combinations of decision rules. Let f be a deterministic decision rule. Then f is an extreme point of F.

Proof.

Let $g, h \in F$ satisfy $f = \frac{g+h}{2}$. Hence for every $d \in D$ and $c \in C$,

$$f_d(c)=rac{g_d(c)+h_d(c)}{2}$$

Since f is a deterministic decision rule, for some $c^* \in C$, $f_d(c^*) = 1$ and for all $c \in C - \{c^*\}$, $f_d(c) = 0$. Consider $c \in C$ for which $f_d(c) = 0$.

$$f_d(c)=0=rac{g_d(c)+h_d(c)}{2}$$

Since $g_d(c)$, $h_d(c) \ge 0$ and since $g_d(c) + h_d(c) = 0$, it follows that $g_d(c) = h_d(c) = 0$.

Proof Continued

Proof.

Now consider c*.

$$f_d(c^*) = 1 = rac{g_d(c^*) + h_d(c^*)}{2}$$

Hence, $g_d(c^*) + h_d(c^*) = 2$. But $g_d(c^*), h_d(c^*) \le 1$. Therefore, $g_d(c^*) = 1$ and $h_d(c^*) = 1$.

Now, by definition of extreme point, a deterministic decision rule $f \in F$ is an extreme point of F, the set of all convex combinations of decision rules.

A D > A D > A D >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definition

A Closed Convex Polyhedron is a non-empty set *P* formed as the solutions to a matrix equation $Ax \le b$.

$$P = \{x \mid Ax \le b\}$$

Each row of the matrix equation specifies a hyperplane half space and P is the intersection of these hyperplane half spaces.

Definition

A bounded polyhedron is a polytope.

Closed Convex Polytope Example Tetrahedron

토 X K 토 X - -

Đ.

The Set of Decision Rules is a Closed Convex Polytope

Proposition

Let F be the set of all decision rules formed from the finite set C of classes and the finite set D of measurements. The set F is a closed convex polytope lying in a linear manifold of dimension |C| |D| - |D|.

Proof.

Let $f \in F$. We already know that $f \in \mathbb{R}^{|C| |D|}$. The |D| linear constraints are formed from the requirement that $\sum_{c \in C} f_d(c) = 1$. The remaining constraints are of the form • $f_d(c) > 0$ which is equivalent to $-f_d(c) < 0$

・ロット (雪) (山) (山)

ъ

Definition

Let $X = \{x_1, \ldots, x_M\} \subset \mathbb{R}^N$. The Convex Hull of X is defined by

$$\mathcal{CH}(X) = \{ y \in \mathbb{R}^N \mid y = \sum_{m=1}^M \lambda_m x_m, \text{where } \lambda_m \ge 0, \sum_{m=1}^M \lambda_m = 1 \}$$

Theorem

Any closed convex polytope is the convex hull of its extreme points.

<ロ> <四> <四> <四> <三</td>

Any Probabilistic Decision Rule can be represented as a convex combination of the deterministic decision rules.

Theorem

Let f be a probabilistic decision rule and let f^1, \ldots, f^M be the set of all possible deterministic decision rules. Then there exists a convex combination $\lambda_1, \ldots, \lambda_M$ such that

$$f_d(c) = \sum_{m=1}^M \lambda_m f_d^m(c)$$

Proposition

Let $C \subseteq \mathbb{R}^N$ be a convex set. Let e be an extreme point of C. Let D be a convex subset of C. If $e \in D$, then e is an extreme point of D.

Proof.

Let e be an extreme point of C. Suppose $e \in D$. Let $a, b \in D$ satisfy $e = \frac{a+b}{2}$. Since $D \subseteq C$, $a, b \in C$. Now, $a, b \in D \subseteq C$, with $e = \frac{a+b}{2}$. Since e is an extreme point of C, e = a = b. But now we have $e \in D$ and $a, b \in D$ satisfying $e = \frac{a+b}{2}$. And we have just proved that e = a = b. Therefore, e is an extreme point of D.

Expected Conditional Gain: Mixed Decision Rules

Proposition

$$E[e \mid c^{j}; \lambda f + (1 - \lambda)g] = \lambda E[e \mid c^{j}; f] + (1 - \lambda)E[e \mid c^{j}; g]$$

Proof.

$$E[e \mid o^{j}; \lambda f + (1 - \lambda)g] = \sum_{k=1}^{K} \sum_{d \in D} e(o^{j}, c^{k})P(d \mid o^{j})\{\lambda f(c^{k} \mid d) + (1 - \lambda)g(c^{k} \mid d)\}$$

$$= \lambda \sum_{k=1}^{K} \sum_{d \in D} e(o^{j}, c^{k})P(d \mid o^{j})f(c^{k} \mid d) + (1 - \lambda)\sum_{k=1}^{K} \sum_{d \in D} e(o^{j}, c^{k})P(d \mid o^{j})g(c^{k} \mid d)$$

$$= \lambda E[e \mid o^{j}; f] + (1 - \lambda)E[e \mid o^{j}; g]$$

< < >> < <</>

ъ

Example

е	Assigned		$P(d \mid c)$	Measurement		$f_d(C)$	Mea	Measurement		
True	C ¹	<i>C</i> ²	True Class	d ¹	d ²	d^3	True Class	<i>d</i> ¹	d ²	d ³
<i>C</i> ¹	2	-1	C ¹	.2	.3	.5	C ¹	1	0	0
<i>C</i> ²	-1	2	<i>C</i> ²	.5	.4	.1	<i>C</i> ²	0	1	1

$$E[e \mid c^{j}; f] = \sum_{d \in D} \sum_{k=1}^{K} e(c^{j}, c^{k}) P(d \mid c^{j}) f_{d}(c^{k})$$

$$\begin{split} E[e \mid c^{1}; f] &= e(c^{1}, c^{1}) P(d^{1} \mid c^{1}) f_{d^{1}}(c^{1}) + e(c^{1}, c^{2}) P(d^{1} \mid c^{1}) f_{d^{1}}(c^{2}) + \\ &\quad e(c^{1}, c^{1}) P(d^{2} \mid c^{1}) f_{d^{2}}(c^{1}) + e(c^{1}, c^{2}) P(d^{2} \mid c^{1}) f_{d^{2}}(c^{2} + \\ &\quad e(c^{1}, c^{1}) P(d^{3} \mid c^{1}) f_{d^{3}}(c^{1}) + e(c^{1}, c^{2}) P(d^{3} \mid c^{1}) f_{d^{3}}(c^{2}) \\ &= 2 * .2 * 1 + (-1) * .2 * 0 + \\ &\quad 2 * .3 * 0 + (-1) * .3 * 1 + \\ &\quad 2 * .5 * 0 + (-1) * .5 * 1 \\ &= .4 - .3 - .5 = -.4 \end{split}$$

・ロ・・四・・ヨ・ ・ヨ・ ・ ヨ・ うへぐ

Example

е	Assigned		$P(d \mid c)$	Measurement		$f_d(C)$	Mea	Measuremen		
True	C ¹	<i>C</i> ²	True Class	<i>d</i> ¹	d ²	d^3	True Class	d ¹	d ²	d ³
<i>C</i> ¹	2	-1	C ¹	.2	.3	.5	C ¹	1	0	0
<i>C</i> ²	-1	2	<i>C</i> ²	.5	.4	.1	<i>C</i> ²	0	1	1

$$E[e \mid c^{i}; f] = \sum_{d \in D} \sum_{k=1}^{K} e(c^{i}, c^{k}) P(d \mid c^{i}) f_{d}(c^{k})$$

$$\begin{split} E[e \mid c^{2}; f] &= e(c^{2}, c^{1}) P(d^{1} \mid c^{2}) f_{d^{1}}(c^{1}) + e(c^{2}, c^{2}) P(d^{1} \mid c^{2}) f_{d^{1}}(c^{2}) + \\ &\quad e(c^{2}, c^{1}) P(d^{2} \mid c^{2}) f_{d^{2}}(c^{1}) + e(c^{2}, c^{2}) P(d^{2} \mid c^{2}) f_{d^{2}}(c^{2}) + \\ &\quad e(c^{2}, c^{1}) P(d^{3} \mid c^{2}) f_{d^{3}}(c^{1}) + e(c^{2}, c^{2}) P(d^{3} \mid c^{2}) f_{d^{3}}(c^{2}) \\ &= (-1) * .5 * 1 + 2 * .5 * 0 + \\ &\quad (-1) * .4 * 0 + 2 * .4 * 1 + \\ &\quad (-1) * .1 * 0 + 2 * .1 * 1 \\ &= -.5 + .8 + .2 = .5 \end{split}$$

・ロ・・四・・ヨ・ ・ヨ・ ・ ヨ・ うへぐ

Example

е	Assigned		ssigned $P(d \mid c)$		Measurement		
True	<i>C</i> ¹	<i>C</i> ²	True Class	d ¹	d ²	d^3	
<i>C</i> ¹	2	-1	C ¹	.2	.3	.5	
<i>C</i> ²	-1	2	<i>C</i> ²	.5	.4	.1	

$$E[e \mid c^{i}; f] = \sum_{d \in D} \sum_{k=1}^{K} e(c^{i}, c^{k}) P(d \mid c^{i}) f_{d}(c^{k})$$

	Mea	asurer	nents	Conditional Gain		
f	<i>d</i> ¹	d ²	d ³	$E[e c^1; f]$	$E[e c^2;f]$	
f^1	<i>C</i> ¹	<i>c</i> ¹		2.0	-1.0	
f ²	<i>C</i> ¹	C ¹	<i>c</i> ²	.5	7	
f ³	C ¹	<i>C</i> ²	<i>C</i> ¹	1.1	.2	
f ⁴	C ¹	<i>c</i> ²	<i>c</i> ²	4	.5	
f ⁵	<i>C</i> ²	<i>C</i> ¹	<i>C</i> ¹	1.4	.5	
f ⁶	<i>C</i> ²	C ¹	<i>c</i> ²	1	.8	
f ⁷	<i>C</i> ²	<i>C</i> ²	<i>C</i> ¹	.5	1.7	
f ⁸	<i>C</i> ²	<i>C</i> ²	<i>c</i> ²	-1.	2.0	

Conditional Expected Gains: All Decision Rules

ロト 《母》 《臣》 《臣》 三臣 うろく(