Conditional Expected Gain

Robert M. Haralick

Computer Science, Graduate Center
City University of New York

Conditional Expectation

Definition

Let X and Y be a discrete random variables that take values from the set $A \times B$. The Conditional Expectation of Y given X is defined by

$$
E[Y \mid X=a]=\sum_{b \in B} b P_{X Y}(a, b)
$$

$E[Y \mid X]$ is a function of the various values that X can take.

Recall

$$
\begin{aligned}
P_{T A}\left(c^{j}, c^{k}, d\right) & =P_{T A}\left(c^{j}, c^{k} \mid d\right) P(d) \\
& =P_{T}\left(c^{j} \mid d\right) P_{A}\left(c^{k} \mid d\right) P(d) \\
& =\frac{P_{T}\left(d \mid c^{j}\right) P_{T}\left(c^{j}\right)}{P(d)} P_{A}\left(c^{k} \mid d\right) P(d) \\
& =P_{T}\left(d \mid c^{j}\right) P_{A}\left(c^{k} \mid d\right) P_{T}\left(c^{j}\right) \\
P_{A T}\left(c^{k}, d \mid c^{j}\right) & =\frac{P_{T A}\left(c^{j}, c^{k}, d\right)}{P_{T}\left(c^{j}\right)} \\
& =P_{T}\left(d \mid c^{j}\right) P_{A}\left(c^{k} \mid d\right)=P_{T}\left(d \mid c^{j}\right) f_{d}\left(c_{k}\right)
\end{aligned}
$$

Expected Conditional Economic Gain Given Class

Definition

The conditional expectation of the economic gain given class c^{j} for decision rule f is defined by

$$
\begin{aligned}
E\left[e \mid c^{j} ; f\right] & =\sum_{d \in D} \sum_{k=1}^{K} e\left(c^{j}, c^{k}\right) P_{T A}\left(c^{j}, c^{k}, d\right) \\
& =\sum_{d \in D} \sum_{k=1}^{K} e\left(c^{j}, c^{k}\right) P\left(d \mid c^{j}\right) f_{d}\left(c^{k}\right) \\
& =\sum_{k=1}^{K} e\left(c^{j}, c^{k}\right) \sum_{d \in D} P\left(d \mid c^{j}\right) f_{d}\left(c^{k}\right)
\end{aligned}
$$

where $f_{d}(c)$ is the conditional probability that the decision rule assigns class c given measurement d.

Class Conditional Probability and Prior Probability

- $P(d \mid c)$
- Conditional probability of measurement d given class c
- Class conditional probability
- $P(c)$
- Prior probability of class c
- Prior probability

Economic Gain

The Expected economic gain can be related to the class conditional expected economic gain and prior probabilities.

$$
\begin{aligned}
E[e ; f] & =\sum_{d \in D} \sum_{k=1}^{K} \sum_{j=1}^{K} e\left(c^{j}, c^{k}\right) P\left(c^{j}, d\right) f_{d}\left(c^{k}\right) \\
& =\sum_{j=1}^{K} \sum_{k=1}^{K} \sum_{d \in D} e\left(c^{j}, c^{k}\right) P\left(d \mid c^{j}\right) P\left(c^{j}\right) f_{d}\left(c^{k}\right) \\
& =\sum_{j=1}^{K}\left[\sum_{k=1}^{K} \sum_{d \in D} e\left(c^{j}, c^{k}\right) P\left(d \mid c^{j}\right) f_{d}\left(c^{k}\right)\right] P\left(c^{j}\right) \\
& =\sum_{j=1}^{K} E\left[e \mid c^{j} ; f\right] P\left(c^{j}\right)
\end{aligned}
$$

Economic Gain

When the economic gain is represented in terms of the prior class probabilities, we write

$$
E\left[e ; f, P\left(c^{1}\right), \ldots, P\left(c^{K}\right)\right]
$$

When f is a Bayes decision rule,

$$
E\left[e ; f, P\left(c^{1}\right), \ldots, P\left(c^{K}\right)\right] \geq E\left[e ; g, P\left(c^{1}\right), \ldots, P\left(c^{K}\right)\right]
$$

for any other decision rule g.

Definition

When f is a Bayes decision rule, $E\left[e ; f, P\left(c^{1}\right), \ldots, P\left(c^{K}\right)\right]$ is called the Bayes gain.

The Geometry of a Bayes Rule

We will show that the geometry of a Bayes Rule is related to convex combinations and convex sets

Convex Combinations

Definition

Let $x, y \in \mathbb{R}^{N}$ and $0 \leq \lambda \leq 1$. Then $\lambda x+(1-\lambda) y$ is called a convex combination of x and y.

Proposition

If $0 \leq x, y, \lambda \leq 1$, then $0 \leq \lambda x+(1-\lambda) y \leq 1$
Proof.
$0 \leq x, y, \lambda$ implies $\lambda x+(1-\lambda) y \leq \lambda+(1-\lambda)=1$.
$\lambda \leq 1$ implies $0 \leq 1-\lambda$.
$x, y, \lambda, 1-\lambda \geq 0$ implies $\lambda x+(1-\lambda) y \geq 0$.
Therefore, $0 \leq \lambda x+(1-\lambda) y \leq 1$.

Structure of Decision Rules

Consider the structure of a decision rule $f_{d}(c)$.
Suppose $D=\left\{d^{1}, \ldots, d^{Q}\right\}$ and $C=\left\{c^{1}, \ldots, c^{K}\right\}$.
Then this decision rule f can be thought of as a vector in $\mathbb{R}^{K Q}$

$$
f^{\prime}=\left(f_{d^{1}}\left(c^{1}\right), \ldots, f_{d^{1}}\left(c^{K}\right), \ldots, f_{d^{Q}}\left(c^{1}\right), \ldots, f_{d^{Q}}\left(c^{K}\right)\right)
$$

There are some constraints:

- For $q \in\{1, \ldots, Q\}$ and $k \in\{1, \ldots, K\}, 0 \leq f_{d q}\left(c^{k}\right) \leq 1$
- For $q \in\{1, \ldots, Q\}, \sum_{k=1}^{K} f_{d^{q}}\left(c^{k}\right)=1$

Therefore, a decision rule must lie in the unit hypercube of $\mathbb{R}^{Q K}$ and it must lie in the manifold defined by the Q linear constraints

$$
\sum_{k=1}^{K} f_{d q}\left(c^{k}\right)=1, q=1, \ldots, Q
$$

8 Possible Deterministic Decision Rules

	d^{1}	d^{2}	d^{3}
f_{d}^{1}	c_{1}	c_{1}	c_{1}
f_{d}^{2}	c_{1}	c_{1}	c_{2}
f_{d}^{3}	c_{1}	c_{2}	c_{1}
f_{d}^{4}	c_{1}	c_{2}	c_{2}
f_{d}^{5}	c_{2}	c_{1}	c_{1}
f_{d}^{6}	c_{2}	c_{1}	c_{2}
f_{d}^{7}	c_{2}	c_{2}	c_{1}
f_{d}^{8}	c_{2}	c_{2}	c_{2}

Deterministic Decision Rules Written as Probabilistic

$f_{d}^{1}\left(c_{1}\right)$ is the probability that decision rule f^{1} assigns class c_{1} to d^{1} $f_{d}^{1}\left(c_{2}\right)$ is the probability that decision rule f^{1} assigns class c_{2} to d^{1}

f_{d}^{n}	$f_{d^{1}}^{n}\left(c_{1}\right)$	$f_{d^{1}}^{n}\left(c_{2}\right)$	$f_{d^{2}}^{n}\left(c_{1}\right)$	$f_{d^{2}}^{n}\left(c_{2}\right)$	$f_{d^{3}}^{n}\left(c_{1}\right)$	$f_{d^{3}}^{n}\left(c_{2}\right)$
f_{d}^{1}	1	0	1	0	1	0
f_{d}^{2}	1	0	1	0	0	1
f_{d}^{3}	1	0	0	1	1	0
f_{d}^{4}	1	0	0	1	0	1
f_{d}^{5}	0	1	1	0	1	0
f_{d}^{6}	0	1	1	0	0	1
f_{d}^{7}	0	1	0	1	1	0
f_{d}^{8}	0	1	0	1	0	1

$$
\begin{array}{rlrl}
f_{d^{n}}\left(c^{1}\right)+f_{d^{n}}\left(c^{2}\right) & =1, & & n=1,2,3 \\
0 \leq f_{d^{n}}\left(c^{k}\right) \leq 1, & & n=1,2,3 ; k=1,2
\end{array}
$$

Deterministic Decision Rule Written Probabilisticly

$$
\begin{aligned}
f_{d^{n}}\left(c^{2}\right) & =1-f_{d^{n}}\left(c^{1}\right), & & n=1,2,3 \\
0 & \leq f_{d^{n}}\left(c^{1}\right) \leq 1, & & n=1,2,3
\end{aligned}
$$

$f_{d}^{n}\left(c^{1}\right)$	d^{1}	d^{2}	d^{3}
f_{d}^{1}	1	1	1
f_{d}^{2}	1	1	0
f_{d}^{3}	1	0	1
f_{d}^{4}	1	0	0
f_{d}^{5}	0	1	1
f_{d}^{6}	0	1	0
f_{d}^{d}	0	0	1
f_{d}^{8}	0	0	0

Mixture Decision Rules

Let $0 \leq \lambda \leq 1$ What does $g_{d}=\lambda f_{d}^{2}+(1-\lambda) f_{d}^{7}$ mean?
With probability λ choose decision rule f_{d}^{2} and with probability
$1-\lambda$ choose decision rule f_{d}^{7}

	d^{1}	d^{2}	d^{3}
$g_{d}\left(c^{1}\right)$	λ	λ	$1-\lambda$
$g_{d}\left(c^{2}\right)$	$1-\lambda$	$1-\lambda$	λ

$$
F=\left\{f_{d}\left(c^{1}\right) \mid f_{d}\left(c^{1}\right)=\sum_{n=1}^{8} \lambda_{n} f_{d}^{n}\left(c^{1}\right), \text { for some } 0 \leq \lambda_{n} \leq 1, \sum_{n=1}^{8} \lambda_{n}=1\right\}
$$

F is the set of all convex combinations of the decision rules $f_{d}^{1}, \ldots, f_{d}^{8}$.
The convex combinations are probabilistic decision rules.

Convex Combinations of Probabilistic Decision Rules

Proposition

Convex combinations of decision rules are decision rules

Proof.

Let f and g be two decision rules. Let $0 \leq \lambda \leq 1$. Consider $\lambda f_{d}(c)+(1-\lambda) g_{d}(c)$. We have already proven that $0 \leq \lambda f_{d}(c)+(1-\lambda) g_{d}(c) \leq 1$. Consider the convex combination:

$$
\begin{aligned}
\sum_{c \in C}\left[\lambda f_{d}(c)+(1-\lambda) g_{d}(c)\right] & =\lambda \sum_{c \in C} f_{d}(c)+(1-\lambda) \sum_{c \in C} g_{d}(c) \\
& =\lambda+(1-\lambda) \\
& =1
\end{aligned}
$$

Convex Sets

Definition

A set $C \subseteq \mathbb{R}^{N}$ is a convex set if and only if $x, y \in C$ imply $\lambda x+(1-\lambda) y \in C$ for every $0 \leq \lambda \leq 1$.

Proposition

The set F of all convex combinations of decision rules is a convex set.

Example

$$
F=\left\{f_{d}\left(c^{1}\right) \mid f_{d}\left(c^{1}\right)=\sum_{n=1}^{8} \lambda_{n} f_{d}^{n}\left(c^{1}\right), \text { for some } 0 \leq \lambda_{n} \leq 1, \sum_{n=1}^{8} \lambda_{n}=1\right\}
$$

Intersection of Convex Sets are Convex

Proposition

Let C and D be convex sets. Then $C \cap D$ is a convex set.

Proof.

Let $x, y \in C \cap D$ and $0 \leq \lambda \leq 1$. Consider $\lambda x+(1-\lambda) y$.
Since $x, y \in C \cap D, x, y \in C$ and $x, y \in D$.
Since C is convex and $0 \leq \lambda \leq 1, \lambda x+(1-\lambda) y \in C$.
Since D is convex and $0 \leq \lambda \leq 1, \lambda x+(1-\lambda) y \in D$.
$\lambda x+(1-\lambda) y \in C$ and $\lambda x+(1-\lambda) y \in D$ imply
$\lambda x+(1-\lambda) y \in C \cap D$.

Mixed Decision Rules

Definition

Let f and g be decision rules and $0 \leq \lambda \leq 1$.
Then

$$
h_{d}(c)=\lambda f_{d}(c)+(1-\lambda) g_{d}(c)
$$

is called a mixed decision rule of f and g.

- With probability λ apply decision rule f and probability $1-\lambda$ apply decision rule g.
- If we apply decision rule f, the we assign class c with probability $f(c \mid d)$
- If we apply decision rule g, then we assign class c with probability $g(c \mid d)$

Extreme Points

Definition

Let $A \subseteq \mathbb{R}^{N}$. A point $e \in A$ is called an Extreme Point of A if and only if $b, c \in A$ with $e=\frac{b+c}{2}$ implies $e=b=c$.

If e is an extreme point of A and if $b, c \in A$ and for some $\lambda, 0 \leq \lambda \leq 1$ then

$$
e=\lambda b+(1-\lambda) c \text { implies } e=b=c
$$

If e is an extreme point of A then there is no convex combination of a distinct pair of points in A that equals e.

Deterministic Decision Rules are Extreme Points

Proposition

Let F be the set of all convex combinations of decision rules. Let f be a deterministic decision rule. Then f is an extreme point of F.

Proof.

Let $g, h \in F$ satisfy $f=\frac{g+h}{2}$. Hence for every $d \in D$ and $c \in C$,

$$
f_{d}(c)=\frac{g_{d}(c)+h_{d}(c)}{2}
$$

Since f is a deterministic decision rule, for some $c^{*} \in C, f_{d}\left(c^{*}\right)=1$ and for all $c \in C-\left\{c^{*}\right\}, f_{d}(c)=0$. Consider $c \in C$ for which $f_{d}(c)=0$.

$$
f_{d}(c)=0=\frac{g_{d}(c)+h_{d}(c)}{2}
$$

Since $g_{d}(c), h_{d}(c) \geq 0$ and since $g_{d}(c)+h_{d}(c)=0$, it follows that $g_{d}(c)=h_{d}(c)=0$.

Proof.

Now consider c^{*}.

$$
f_{d}\left(c^{*}\right)=1=\frac{g_{d}\left(c^{*}\right)+h_{d}\left(c^{*}\right)}{2}
$$

Hence, $g_{d}\left(c^{*}\right)+h_{d}\left(c^{*}\right)=2$. But $g_{d}\left(c^{*}\right), h_{d}\left(c^{*}\right) \leq 1$. Therefore, $g_{d}\left(c^{*}\right)=1$ and $h_{d}\left(c^{*}\right)=1$.

Now, by definition of extreme point, a deterministic decision rule $f \in F$ is an extreme point of F, the set of all convex combinations of decision rules.

Convex Polyhedrons

Definition

A Closed Convex Polyhedron is a non-empty set P formed as the solutions to a matrix equation $A x \leq b$.

$$
P=\{x \mid A x \leq b\}
$$

Each row of the matrix equation specifies a hyperplane half space and P is the intersection of these hyperplane half spaces.

Definition

A bounded polyhedron is a polytope.

Closed Convex Polytope Example Tetrahedron

$$
\begin{gathered}
P=\{x \mid A x \leq b\} \\
A=\left(\begin{array}{rrr}
1 & 1 & 1 \\
1 & -1 & -1 \\
-1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right) \\
b=\left(\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right)
\end{gathered}
$$

The Set of Decision Rules is a Closed Convex Polytope

Proposition

Let F be the set of all decision rules formed from the finite set C of classes and the finite set D of measurements.
The set F is a closed convex polytope lying in a linear manifold of dimension $|C||D|-|D|$.

Proof.

Let $f \in F$. We already know that $f \in \mathbb{R}^{|C||D|}$. The $|D|$ linear constraints are formed from the requirement that
$\sum_{c \in C} f_{d}(c)=1$. The remaining constraints are of the form

- $f_{d}(c) \geq 0$ which is equivalent to $-f_{d}(c) \leq 0$
- $f_{d}(c) \leq 1$

Minkowski's Theorem

Definition

Let $X=\left\{x_{1}, \ldots, x_{M}\right\} \subset \mathbb{R}^{N}$. The Convex Hull of X is defined by

$$
\mathcal{C H}(X)=\left\{y \in \mathbb{R}^{N} \mid y=\sum_{m=1}^{M} \lambda_{m} x_{m}, \text { where } \lambda_{m} \geq 0, \sum_{m=1}^{M} \lambda_{m}=1\right\}
$$

Theorem

Any closed convex polytope is the convex hull of its extreme points.

Probabilistic Decision Rules

Any Probabilistic Decision Rule can be represented as a convex combination of the deterministic decision rules.

Theorem

Let f be a probabilistic decision rule and let f^{1}, \ldots, f^{M} be the set of all possible deterministic decision rules. Then there exists a convex combination $\lambda_{1}, \ldots, \lambda_{M}$ such that

$$
f_{d}(c)=\sum_{m=1}^{M} \lambda_{m} f_{d}^{m}(c)
$$

Extreme Points Convex Sets

Proposition

Let $C \subseteq \mathbb{R}^{N}$ be a convex set. Let e be an extreme point of C.
Let D be a convex subset of C. If $e \in D$, then e is an extreme point of D.

Proof.

Let e be an extreme point of C. Suppose $e \in D$. Let $a, b \in D$ satisfy $e=\frac{a+b}{2}$. Since $D \subseteq C, a, b \in C$. Now, $a, b \in D \subseteq C$, with $e=\frac{a+b}{2}$. Since e is an extreme point of $C, e=a=b$. But now we have $e \in D$ and $a, b \in D$ satisfying $e=\frac{a+b}{2}$. And we have just proved that $e=a=b$. Therefore, e is an extreme point of D.

Expected Conditional Gain: Mixed Decision Rules

Proposition

$E\left[e \mid c^{j} ; \lambda f+(1-\lambda) g\right]=\lambda E\left[e \mid c^{j} ; f\right]+(1-\lambda) E\left[e \mid c^{j} ; g\right]$

Proof.

$$
\begin{aligned}
E\left[e \mid c^{j} ; \lambda f+(1-\lambda) g\right]= & \sum_{k=1}^{K} \sum_{d \in D} e\left(c^{j}, c^{k}\right) P\left(d \mid c^{j}\right)\left\{\lambda f\left(c^{k} \mid d\right)+(1-\lambda) g\left(c^{k} \mid d\right)\right\} \\
= & \lambda \sum_{k=1}^{K} \sum_{d \in D} e\left(c^{j}, c^{k}\right) P\left(d \mid c^{j}\right) f\left(c^{k} \mid d\right)+ \\
& (1-\lambda) \sum_{k=1}^{K} \sum_{d \in D} e\left(c^{j}, c^{k}\right) P\left(d \mid c^{j}\right) g\left(c^{k} \mid d\right) \\
= & \lambda E\left[e \mid c^{j} ; f\right]+(1-\lambda) E\left[e \mid c^{j} ; g\right]
\end{aligned}
$$

Example

e	Assigned		$P(d \mid c)$	Measurement			$f_{d}(c)$	Measurement		
True	c^{1}	c^{2}	True Class	${ }^{1}$	d^{2}	d^{3}	True Class	${ }^{1}$	d^{2}	d^{3}
c^{1}	2	-1	c^{1}	. 2	. 3	. 5	c^{1}	1	0	0
c^{2}	-1	2	c^{2}	. 5	. 4	. 1	c^{2}	0	1	1

$$
E\left[e \mid c^{j} ; f\right]=\sum_{d \in D} \sum_{k=1}^{K} e\left(c^{j}, c^{k}\right) P\left(d \mid c^{j}\right) f_{d}\left(c^{k}\right)
$$

$$
\begin{aligned}
E\left[e \mid c^{1} ; f\right]= & e\left(c^{1}, c^{1}\right) P\left(d^{1} \mid c^{1}\right) f_{d^{1}}\left(c^{1}\right)+e\left(c^{1}, c^{2}\right) P\left(d^{1} \mid c^{1}\right) f_{d^{1}}\left(c^{2}\right)+ \\
& e\left(c^{1}, c^{1}\right) P\left(d^{2} \mid c^{1}\right) f_{d^{2}}\left(c^{1}\right)+e\left(c^{1}, c^{2}\right) P\left(d^{2} \mid c^{1}\right) f_{d^{2}}\left(c^{2}+\right. \\
& e\left(c^{1}, c^{1}\right) P\left(d^{3} \mid c^{1}\right) f_{d^{3}}\left(c^{1}\right)+e\left(c^{1}, c^{2}\right) P\left(d^{3} \mid c^{1}\right) f_{d^{3}}\left(c^{2}\right) \\
= & 2 * .2 * 1+(-1) * .2 * 0+ \\
& 2 * .3 * 0+(-1) * .3 * 1+ \\
& 2 * .5 * 0+(-1) * .5 * 1 \\
= & .4-.3-.5=-.4
\end{aligned}
$$

Example

e	Assigned		$P(d \mid c)$	Measurement			$f_{d}(c)$			Measurement		
True	c^{1}	c^{2}										
c^{1}	2	-1										
c^{2}	True Class	d^{1}	d^{2}	d^{3}								
c^{1}	.2	.3	.5	True Class	d^{1}	d^{2}	d^{3}					
c^{1}	1	0	0									
c^{2}	.5	.4	.1	c^{2}	0	1	1					

$$
E\left[e \mid c^{j} ; f\right]=\sum_{d \in D} \sum_{k=1}^{K} e\left(c^{j}, c^{k}\right) P\left(d \mid c^{j}\right) f_{d}\left(c^{k}\right)
$$

$$
\begin{aligned}
E\left[e \mid c^{2} ; f\right]= & e\left(c^{2}, c^{1}\right) P\left(d^{1} \mid c^{2}\right) f_{d^{1}}\left(c^{1}\right)+e\left(c^{2}, c^{2}\right) P\left(d^{1} \mid c^{2}\right) f_{d^{1}}\left(c^{2}\right)+ \\
& e\left(c^{2}, c^{1}\right) P\left(d^{2} \mid c^{2}\right) f_{d^{2}}\left(c^{1}\right)+e\left(c^{2}, c^{2}\right) P\left(d^{2} \mid c^{2}\right) f_{d^{2}}\left(c^{2}\right)+ \\
& e\left(c^{2}, c^{1}\right) P\left(d^{3} \mid c^{2}\right) f_{d^{3}}\left(c^{1}\right)+e\left(c^{2}, c^{2}\right) P\left(d^{3} \mid c^{2}\right) f_{d^{3}}\left(c^{2}\right) \\
= & (-1) * .5 * 1+2 * .5 * 0+ \\
& (-1) * .4 * 0+2 * .4 * 1+ \\
& (-1) * .1 * 0+2 * .1 * 1 \\
= & -.5+.8+.2=.5
\end{aligned}
$$

Example

e	Assigned					
True	c^{1}	c^{2}				
c^{1}	2	-1				
c^{2}	-1	2				
True Class	d^{1}				d^{2}	d^{3}
c^{1}	.2	.3				
c^{2}	.5	.4				

$$
E\left[e \mid c^{j} ; f\right]=\sum_{d \in D} \sum_{k=1}^{K} e\left(c^{j}, c^{k}\right) P\left(d \mid c^{j}\right) f_{d}\left(c^{k}\right)
$$

	Measurements			Conditional Gain	
f	d^{1}	d^{2}	d^{3}	$E\left[e \mid c^{1} ; f\right]$	$E\left[e \mid c^{2} ; f\right]$
f^{1}	c^{1}	c^{1}	c^{1}	2.0	-1.0
f^{2}	c^{1}	c^{1}	c^{2}	.5	-.7
f^{3}	c^{1}	c^{2}	c^{1}	1.1	.2
f^{4}	c^{1}	c^{2}	c^{2}	-.4	.5
f^{5}	c^{2}	c^{1}	c^{1}	1.4	.5
f^{6}	c^{2}	c^{1}	c^{2}	-.1	.8
f^{7}	c^{2}	c^{2}	c^{1}	.5	1.7
f^{8}	c^{2}	c^{2}	c^{2}	-1.	2.0

Conditional Expected Gains: All Decision Rules

