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Abstract. Computer vision algorithms are composed of dif-
ferent sub-algorithms often applied in sequence. Determina-
tion of the performance of a total computer vision algorithm
is possible if the performance of each of the sub-algorithm
constituents is given. The performance characterization of
an algorithm has to do with establishing the correspondence
between the random variations and imperfections in the out-
put data and the random variations and imperfections in the
input data. In this paper we illustrate how random perturba-
tion models can be set up for a vision algorithm sequence
involving edge finding, edge linking, and gap filling. By
starting with an appropriate noise model for the input data
we derive random perturbation models for the output data at
each stage of our example sequence. By utilizing the pertur-
bation model for edge detector output derived, we illustrate
how pixel noise can be successively propagated to derive an
error model for the boundary extraction output. It is shown
that the fragmentation of an ideal boundary can be described
by an alternating renewal process and that the parameters of
the renewal process are related to the probability of correct
detection and grouping at the edge linking step. It is also
shown that the characteristics of random segments gener-
ated due to gray-level noise are functions of the probability
of false alarm of the edge detector. Theoretical results are
validated through systematic experiments.

Key words: Random perturbation models – Boundary ex-
traction sequence – Computer vision algorithms – Perfor-
mance characterization

1 Introduction

Computer vision algorithms are composed of different sub-
algorithms often applied in sequence. Determination of the
performance of a total computer vision algorithm is possi-
ble if the performance of each of the sub-algorithm con-
stituents is given. The problem, however, is that for most
published algorithms, no performance characterization has
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been established in the research literature. What does perfor-
mance characterization mean for an algorithm that might be
used in a machine vision system? The algorithm is designed
to accomplish a specific task. If the input data are perfect and
have no noise or no random variation, the output produced
by the algorithm also ought to be perfect. Otherwise, there is
something wrong with the algorithm. Thus, measuring how
well an algorithm does on perfect input data is not interest-
ing. Performance characterization has to do with establishing
the correspondence of the random variations and imperfec-
tions the algorithm produces on the output data caused by
the random variations and the imperfections on the input
data. This means that to do performance characterization,
we must first specify a model for the ideal world in which
only perfect data exist. Then we must give a random per-
turbation model that specifies how the imperfect perturbed
data arise from the perfect data. Finally, we need a criterion
function that quantitatively measures the difference between
the ideal output arising from the perfect ideal input and the
calculated output arising from the corresponding randomly
perturbed input.

In other work [13, 14], we derived theoretical expres-
sions for performance characteristics of edge detectors and
described a methodology of automated tuning of the free
parameters of an algorithm sequence. In this paper we illus-
trate how a random perturbation model for the edge detector
output can be successively propagated through an algorithm
involving linking, and gap-filling. We have seen [13] that by
starting with an gaussian noise model for the gray levels in
the input image, the output perturbations in the edge detector
response could be specified by three parameters: probability
of false alarm, probability of misdetection, and the covari-
ance matrix of the edge location error. Assuming the error
model specified, we derive random perturbation models for
the output data at each stage of our example sequence. Due
to the fact that there are two types of errors, misdetection and
false alarm, the output data consist of true feature entities
and random features that appear due to spurious responses
at the feature extraction step. Hence we analyze the problem
in two parts, by deriving:

– Perturbation models for perturbed true feature entities in
the output.
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– Perturbation models for purely random feature entities
that appear in the output.

The first part is directly related to the misdetection charac-
teristics of the sequence. The second part is related to the
false-alarm characteristics of the feature extraction sequence.

These random perturbation models are useful for per-
forming model-based theoretical comparisons of the perfor-
mance of vision algorithms. Parameters of these random per-
turbation models can be related to measures of error such as
the probability of misdetection of feature units, probability
of false alarm, and the probability of incorrect grouping. The
issue of how these error models can be used to automate the
selection of various free parameters is taken up in another
study [14].

We organize this paper into two pieces, one containing
the details of the perturbation model(s) of true feature en-
tities at the output of the feature extraction sequence and
the other containing the details of the perturbation model
for random entities occurring at the output of the feature ex-
traction sequence. Following the theoretical derivations, we
describe an experimental protocol for validating the theory.

2 Boundary extraction:
ideal data and perturbation model

Continuous domain curves (boundaries between regions) are
implicit or parametric spatial objects. In our analysis we as-
sume that the ideal boundary,C, can be specified in the
continuous domain by parametric equations, that is, the co-
ordinates of points on the curve (r(s), c(s)) satisfy the equa-
tions:

r(s) =
M∑
m=1

αmφm(s) (1)

c(s) =
M∑
m=1

βmφm(s) (2)

where s is the arc length,φ1, . . . φM are the given basis
functions,α1, . . . , αM and β1, . . . , βM are the true coeffi-
cients. This ideal boundary is sampled at a discrete set of
points to produce a one-pixel-wide, connected digital arc on
a rectangular grid. The sampling parameter isw. The repre-
sentation for the digital arc consists of the discrete ordered
point sequence (ri, ci, i = 1, . . . , L), whereL is the number
of points in the digital arc sequence.

The above description for an ideal boundary just spec-
ifies the details of the underlying point set and the under-
lying gray tone characteristics over neighborhoods centered
on the elements of the point set are not specified. Thus, one
needs to specify additional information about the gray-tone
characteristics of the image at the boundary locations. This
information is partially specified by the ideal edge model
and perturbation models. Specification of an ideal bound-
ary model parameters and intensity edge parameters at each
point of the boundary will enable us to derive ideal model
parameters for edge pixels.

Consistent with our analysis in [13], we assume that the
gray-tone variation across each pixel of the boundary can be

adequately modelled by a ramp edge model. This ramp edge
model has three parameters: the true gradient at the pixel,
the orientation, and the scale (width) of the ramp. Thus:
the ideal boundary model, including gray-tone characteris-
tics in the neighborhood of the boundary pixels, consists of:
(ri, ci, gi, θi, si) i = 1, . . . , L, wheregi is the true gradient
magnitude,θi is the true edgel orientation andsi is the true
edge scale at thei’th pixel. For the purpose of this paper, we
assume that the edge scale across a given boundary does not
change withi and hencesi = s, a constant scale parameter.

It is assumed that the true gradientsgi are independent
samples from a prior distribution. The nature of the prior
distribution and the mathematical equations describing the
probability density function vary with the application do-
main. This assumption makes the analysis a little simpler.

Assume that there areN boundary fragments (b1, . . . , bN )
detected that correspond to the true boundary. Then: thej’th
detected boundary piece consists of a sequence of pixels
(r̂i,j , ĉi,j , i = 1, . . . , L̂j) with each pixel having estimated
attributes ˆgi,j , θ̂i,j and ŝi,j . 1 We developed models for per-
turbations on each edgel in the dissertation [13]. Charac-
teristics of the boundary fragments, i.e. the nature of the
distributions of parameters describing the output boundary,
are the subject of this paper. Specifically, we develop mod-
els for describing the boundary errors given the perturbation
model parameters of an edge detector: the probability of mis-
detectionpm, probability of false alarmpf , the distribution
of θ̂, and the standard deviation for the edgel position error
σe. Note that the probability of misdetection and false alarm
should be computed by using the marginal distribution of the
gradient estimate for the entire population of input images.
This distribution can be derived for a given application do-
main and the derivations are given in the paper [14]. Figure 1
illustrates the boundary fragmentation model and associated
notation for the parameters of the error model.

In the first part of our analysis we assume independence
between edgel attribute estimates for adjacent pixels. Under
this assumption, ˆgi, θ̂i and ĝi+1, θ̂i+1 are independent. This
independence assumption is relaxed to include dependence
between adjacent pixels in [13]. The dependence is in part
due to the overlapping neighborhoods used in the estimation
procedure. The dependence is also due to the fact that the
gray-level noise is correlated.

3 Edge linking or grouping step – analysis

A simple edge-linking procedure links adjacent edge pix-
els together. A more sophisticated edge linker would use
edge direction estimates. Neighboring edge pixels would be
linked together if their spatial relationship is consistent with
their edge directions and their edge directions are similar
enough. Due to misdetection of some edge pixels, an entire
boundary is not actually detected at the edge detector out-
put. Instead, after edge labelling and linking, there are short
boundary segments with gaps in between them. The gaps are
caused by misdetected edges. A measure of performance of

1 In our analysis we do not study the effect of the scale. Most operators
assume a particular value for the scale of the ramp edge and do not estimate
this parameter.
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Fig. 1. The renewal process for boundary fragmentation due to noise. The
segment lengths are exponentially distributed with mean parameter 1/λ1;
the gap lengths are exponentially distributed with mean parameter 1/λ2.
M (s) denotes the expected number of breaks in the process for a given arc
of lengths

Fig. 2. Angle-difference histogram obtained over 1000 trials for (g/σ) =
3.0. Left histogram corresponds to the case when neighborhoods (for es-
timation of the angles) do not overlap (i.e., the two orientation estimates
being compared are independent random variables).Right histogramcor-
responds to the case when neighborhoods overlap. Both these histograms
have zero mean and the estimated precision parameter is 229.172 (theoreti-
cal 2̃25.0) for the difference of uncorrelated angle estimates. The precision
parameter for the difference of correlated angle estimates is 294.069

an edge linking scheme is the probability of correct grouping
of edge pixels. We derive the expression for this probability
by assuming the edge idealization specified above.

3.1 Probability of correct edge grouping

We have seen in [13] that the edgel orientation estimate is
Von-Mises distributed when conditioned on the true gradi-
ent as well as the estimated gradient magnitudes and when
a square neighborhood is used for the edge detector. Using
this result, we can derive expressions for the probability of
correct grouping of true edge pixels. Hence in the discussion

that follows we assume thatΘ has the Von-Mises distribu-
tion with parametersµ0 and κ = gĝ/σα

2. Here g is the
true gradient magnitude whereas ˆg is the estimated gradient
magnitude. A random variableΘ is said to be Von-Mises
distributed if:

p(θ) =
1

2πI0(κ)
eκ cos(θ−µ0) 0≤ θ < 2π (3)

κ > 0, 0≤ µ0 < 2π

Hereµ0 is the mean,κ is the precision parameter andI0(κ)
is a modified Bessel function of the first kind, order zero
and is given by:

I0(κ) =
∞∑
r=0

1
r!2

(
1
2
κ

)2r

(4)

In the case of an edge linker that links together pairs of
neighboring pixels if their estimated orientations are similar
enough, the difference of the estimated orientationsθ1 and
θ2 is computed. If (θ1 − θ2) mod 2π is small enough, then
the pixels are linked. To determine the probability of linking
pairs of edge pixels whose true orientations are the same, we
proceed as follows. Letθ1 andθ2 be Von-Mises distributed
random variables with meansµ1 andµ2 and concentration
parametersκ1 andκ2, respectively. Then the distribution of
the difference of the random variables (θ1 − θ2) mod 2π is
derived in Mardia [11]. It is shown in [11] that the differ-
ence is not Von-Mises distributed, but can be approximated
by a Von-Mises distribution with meanµ3 = µ1 − µ2 and
concentration parameterκ3, whereκ3 is the solution to the
equation:

A(κ3) = A(κ1)A(κ2) (5)

A(x) = 1− 1
2x

− 1
8x2

− 1
8x3

+ o(x−3) (6)

Whenµ1 = µ2 = µ andκ1 = κ2 = κ, thenµ3 = 0 andκ3 is
the solution to the equation:

1− 1
2κ3

− 1
8κ3

2
− 1

8κ3
3

=

{
1− 1

2κ
− 1

8κ2
− 1

8κ3

}2

(7)

Expanding the right-hand side and ignoring higher order
terms gives the approximate solution:κ3 ≈ κ

2 , which is
accurate for large values ofκ. The probability of the cor-
rect grouping of two pixels will therefore be given by the
integral of the Von-Mises density function with parameter
κ3 over the range of allowable orientation differences. We
discuss the validation of the result here in the experiment
section of this paper.

4 Perturbation model at edge-detector/linker output –
misdetection

Due to the misdetection of some edges, a model boundary
that was supposed to be detected in its entirety appears as
fragments in the edge detector/linker output. In other words
an entire arc/line boundary entity was broken into several
pieces with gaps between each piece. We now illustrate how
the fragmentation in the boundary output can be visualized
as being generated by a renewal process. In addition, we
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illustrate how the various probabilities calculated at the pre-
vious section relate to the interevent distances of the renewal
process.

Imagine that we start from the left of the ideal arc/line
segment and walk along an infinite line. At each step the
probability that the particular pixel will be labelled correctly
as an edge pixel in the output isp = 1−q. A breakage occurs
when we first encounter a pixel that is labelled incorrectly.
Similarly, if we continue walking until we again encounter
a pixel that is labelled correctly we would have traversed
on top of a gap. If one continues walking until the end of
the ideal segment is reached, one would have traversed a
number of edge segments and gaps. The instances where
an edge segment follows a gap can be considered as events
of a discrete renewal process and the interevent times are
distributed as the sum of edge segment length and the gap
length.

The probability mass function for the length of the edge
segment is given by:

Psegmentlength(l = k) = pkq. (8)

This is the geometric distribution that is a special case
of the negative binomial distribution. The distribution of gap
lengths between two edge segments is given by:

Pgaplength(l′ = k) = qkp. (9)

The above distributions assume that the value for the
lengths can theoretically be infinite. LetXi be the length
of the ith edge segment encountered in the walk. LetXi

′

denote the length of theith gap along the walk.
If we assume that the true arc/line length isL pixels, we

are dealing with a situation where the lengths cannot exceed
L pixels. Hence the more realistic distributions would be
the truncated geometric distributions. The probability mass
function for the short-edge segment lengths would then be
given by:

Psegmentlength(l = k) =
(pkq)

1− pL+1
. (10)

Similarly, the probability mass function for short gap
lengths would be:

Pgaplength(l′ = k) =
(qkp)

1− qL+1
. (11)

When an edge linker uses additional criteria than just two
pixels being detected as edges and being neighbors, then the
calculation of edge segment can be done, providing that the
probability of linking to the previous edge pixel, given that
the current pixel and the previous pixels are edge pixels, is
available.

4.1 Perturbation model at edge detector/linker output –
properties

In order to model the gap and segment lengths easily, we
approximate the discrete distributions used in the above sec-
tion by their continuous analogs. We then derive theoretical
expressions for the probability density function of the in-
terevent distances of the line-breaking process. Further, we

show that the mean number of breaks in a given interval
is proportional to the length of the interval, a property that
is intuitively pleasing since longer segments would be more
likely to be broken into pieces than shorter segments.

4.1.1 Probability density function of interval
between two breaks

In this section we derive the expression for the probability
density function for the interval between two breaks in the
line-breaking renewal process. We know that the renewal
process consists of alternating edge segments and gaps. The
edge-segment lengths and the gap lengths are geometrically
distributed. Here we approximate the geometric distribution
by its continuous analog, the exponential distribution.

A random variableX is exponentially distributed with
parameterλ if:

pX (x) = λexp−λx. (12)

We now show that the exponential distribution is the con-
tinuous analog of the geometric distribution. The probability
mass function for the geometric distribution is given by (with
p being the probability of success andq = 1− p.):

P (X = k) = pkq k ≥ 0 (13)

Let p = 1
1+λε . Then the probability of having discrete lengths

of t/ε or more is given by:∑
k≥ t

ε

P (X = k) =
∑
k≥ t

ε

(
λε

1 +λε

)(
1

1 +λε

)k

=

(
1

1 +λε

) t
ε

(14)

If we let ε go to zero, we can compute the probability that
a continuous random variable,X ′, would be greater than or
equal to a specified lengtht. That is:

Prob(X ′ ≥ t) = lim
ε→0

(
1

1 +λε

) t
ε

(15)

= exp−λt (16)

This means thatX ′ is exponentially distributed. The param-
eterλ of the exponential distribution is equal toq/p.

Now we model the breaks by assuming that the arc
segment lengths and the gap lengths are exponentially dis-
tributed with rate parametersλ1, andλ2, respectively. The
parameterλ1 is an indirect measure of how often a line or
curve of fixed length would break up since it is related to
the mean segment length. The parameterλ2 is a measure of
how long these breaks would be.

Let X denote the random variable giving the distance
between two successive starting points of short edge seg-
ments. First we derive the expression for the probability
density function for the random intervalX. We then derive
the expression for the mean number of breaks in a line/curve
of lengthL in the subsequent section. LetX1 be an expo-
nential random variable,E(λ1), with rate parameterλ1. Let
X2 be an exponential random variable with rate parameter
λ2, E(λ2). Since 1

λ2
corresponds to the mean gap length,
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λ2 >> λ1. We know that:X = X1 + X2. The probability
density function ofX is therefore the convolution of the
individual probability densities ofX1 andX2. Therefore:

pX (x) =
∫ x

0
λ1e

−λ1yλ2e
−λ2(x−y)dy (17)

Simplifying, this expression results in:

pX (x) =
λ1λ2

λ2 − λ1

(
e−λ1x − e−λ2x

)
(18)

The probability distribution function forX can be shown
to be:

Prob(X ≤ x) = 1−
(

1
λ2 − λ1

)(
λ2e

−λ1x − λ1e
−λ2x

)
(19)

4.1.2 Derivation for expected number of breaks
in a line/curve

In the discussion that follows we derive expressions for the
mean number of breaks by considering each break to be an
event with the interevent distances being distributed accord-
ing to Eq. 18.

Let Y1, Y2, . . . , YM be i.i.d random variables with prob-
ability density function given by Eq. 18. LetN (t) denote
a counting process that gives the number of breaks in an
interval t. The process generated is a renewal process with
probability density function for each interval being:

pY (y) =
λ1λ2

λ2 − λ1

(
e−λ1y − e−λ2y

)
(20)

Let Wi denote the random variable giving the sum of the
random event intervals until theith event. Then:Wi =
Y1 +Y2 + ... . . . +Yi. We leth(y) denote the probability den-
sity function of the i.i.d. random variablesYi. We useH(y)
to denote the probability distribution function of the i.i.d.
random variablesYi. We useh(k)(y) to denote the function
obtained by k-fold convolution ofh(y). The Laplace trans-
form of the probability density function ofWi, denoted as
h(k)(s), is given by:

h(k)(s) =

(
λ1λ2

(s + λ1)(s + λ2)

)k

(21)

Using the inverse Laplace transform tables in [1], we get:

h(k)(y) =
(λ1λ2)k

Γ (k)

√
π

(
y

λ2 − λ1

)k− 1
2

e−(λ1+λ2)y/2

×Ik− 1
2

(
λ2 − λ1

2
y

)
(22)

HereΓ (k) is the Gamma function andIk− 1
2
(x) is the mod-

ified spherical Bessel function of the first kind.
The expected number of events in an interval oft is

given by:

M (t) = N (t) =
∞∑
k=0

kProb(N (t) = k) (23)

UsingH (k)(y) to denote the distribution function correspond-
ing to the density functionh(k)(y), the probability that ex-
actly k events (or breaks) occurred in an interval oft is
given by the differenceH (k)(t)−H (k+1)(t). Therefore:

M (t) =
∞∑
k=1

k
(
H (k)(t)−H (k+1)(t)

)
(24)

=
∞∑
k=1

H (k)(t)

Taking the Laplace tranforms on both sides of the above
expression, we can find that:

M (s) =
h(s)

s(1− h(s))
(25)

whereh(s) is the Laplace transform of the density function
h(y). It follows that:

M (s) =
λ1λ2

s2(s + λ1 + λ2)
(26)

Taking the inverse Laplace transforms on both sides of the
above equation, we get:

M (t) =

(
λ1λ2

λ1 + λ2

)[
t− 1− e−(λ1+λ2)t

λ1 + λ2

]
(27)

From the above expression we can see that ift is zeroM (t)
is zero and ast tends towards infinityM (t) also approaches
infinity. Normally, λ1 is very small compared toλ2 and
under this circumstance the expression forM (t) becomes:

M (t) = λ1

[
t− (1− e−λ2t)

λ2

]
(28)

If the second exponential term is small compared to 1 (which
will be the case sinceλ2 is large for small noise levels), then:

M (t) = λ1t. (29)

This means that the mean number of breaks in the line is
equal to the ratio of the length of the entire line to the mean
value of line-segment length.

5 Gap filling algorithm – analysis

After edge linking, the boundary gaps must be filled. The
boundary gap-filling procedure will fill gaps of length less
than a specified lengthL. The perturbation model for the
input data is nothing but the renewal process, and the ques-
tions are: What is the data model for the output of the gap
filling algorithm? What is the distribution of gap lengths and
what is the distribution of segment lengths? We show here
that the mean number of gaps that are left unfilled in the
output is the product of the mean number of gaps in the
input and the probability that a random gap is not filled.

Edge or gap filling can be thought of as a process that
fills in gaps of lengths less than some threshold, sayL. For
the analysis, we assume that we have a broken-line segment
with the gap length and line length parameters ofλ2 and
λ1, respectively. Assume that the line-breaking process is a
renewal process with event interval length density function
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as given in Eq. 18. The problem is to find the output distri-
bution lengths obtained by filling gaps in the input of length
less thanL given that the length of the ideal input segment
is t. Let q denote the probability that the gap length in the
input is less thanL. Then:

q =
∫ L

0
λ2e

−λ2ydy = 1− e−λ2L (30)

If there aren gaps in the input then the probability that
exactly i gaps will be filled is given by:(n
i

)
qi(1− q)n−i (31)

and the mean number of gaps filled will be:

µ =
n∑
i=0

i
(n
i

)
qi(1− q)n−i = nq

= n(1− e−λ2L)

The mean number of gaps that are not filled is then given
by: ne−λ2L.

We have already seen that the mean number of breaks
in a line as given by Eq. 27 is dependent on the mean line-
segment lengths and mean gap-segment lengths. Here we
have shown that given that there aren breaks in the input
the mean number of gaps that are filled just depends on the
mean gap-segment length.

The input to the gap-filling procedure is a renewal pro-
cess, and the output obtained from the procedure is also a
renewal process. We now derive the expression for the prob-
ability density function of the interval times in the output
renewal process. Consider an interval in the output process.
This interval was obtained by deleting multiple events (fill-
ing gaps of length less than some threshold) from the input
process. The probability of a gap in the input being filled
was (1−e(−λ2L)). Let p = e−λ2L. Given that there are exactly
i intervals in the input process the probability that exactly
i − 1 intervals vanish to produce the output is given by:
p(1− p)i−1.

Since the output process intervals are obtained by ran-
dom convolution of the interval times in the input process,
the Laplace transform of the probability density function,
(hf (s)), for the interval time in the output process is related
to the Laplace transform of the probability density function
for the input process.hf (s) is related toh(s) as follows:

hf (s) =
∞∑
i=1

p(1− p)i−1hi(s)

=
ph(s)

1− (1− p)h(s)

=
λ1λ2p

s2 + (λ1 + λ2)s + λ1λ2p

The mean number of breaks in the output process can there-
fore be obtained by using the expression forhf (s). The
Laplace transform of the expression for mean number of
breaks can be shown to be equal to:

Mf (s) =
λ1λ2p

s2(s + λ1 + λ2)
(32)

Taking inverse Laplace transforms we can show that the
expression for the mean number of breaks in the output of
the gap filling procedure is given by:

Mf (t) =

(
λ1λ2p

(λ1 + λ2)2

)
× [(λ1 + λ2)t− (1− e−(λ1+λ2)t)

]
(33)

Sinceλ2 >> λ1, we can approximate the above expression
by settingλ1 + λ2 ' λ2 to:

Mf (t) =

(
λ1p

λ2

)[
λ2t− (1− e−λ2t)

]
= λ1pt−

(
λ1p

λ2

)(
1− e−λ2t

)
From the above expression it can be seen that the mean
number of the gaps in the output is related to the mean
number of gaps in the input (λ1t) and to the probability (p)
of not filling a gap. It can also be seen that:

Mf (t) = M (t)p = M (t)e−λ2L. (34)

This means that the mean number of gaps in the output is
the product of the expected number of gaps in the input and
the probability that a gap is not filled.

5.0.3 Distribution of the gap lengths
after the gap-filling process

The distribution of gap lengths after the gap-filling process
is easy to derive. The gaps in the output arise only if the
individual lengths are greater than the gap threshold,L. Also,
the gap distribution at the input to the gap-filling algorithm
was exponential with parameterλ2. Hence: the pdf of the
gap lengths at the output is given by:

pX (x) = λ2e
−λ2(x−L) if x > L (35)

= 0 otherwise

5.0.4 Distribution of the edge-segment lengths
after gap filling

Suppose that exactlyi gaps were filled to produce a single
segment in the output. Hence there are exactlyi + 1 edge
segments andi gap lengths between these segments. The gap
lengths were all less thanL; otherwise they would not have
been filled. LetXj , j = 1, . . . , i + 1 denote the sequence of
random variables for the edge-segment lengths in the input
and X ′k, k = 1, . . . , i denote the sequence of gap lengths
in the input. Then the length of a single output segment is
given by:

i+1∑
j=1

Xj +
i∑
k=1

X ′k. (36)

But we know thatXj ’s are i.i.d exponential random vari-
ables with parameterλ1 andXk′’s are i.i.d truncated expo-
nential random variables with probability density function:
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pXk′(x) =
λ2e

−λ2x

1− e−λ2L
if x < L (37)

= 0 otherwise.

It can be shown that the probability density function for the
sum of i + 1 exponentially distributed random variables (
Xj ’s ), with parameterλ1, is given by:

pY (y) =
(λ1y)iλ1e

−λ1y

i!
0≤ y <∞ (38)

Similarly, it can also be shown that the pdf for the sum ofi
truncated exponential random variables, with parameterλ2,
is given by:

pY ′ (y) =
(λ2y)i−1λ2e

−λ2y

(i− 1)!(1− e−λ2L)i

0≤ y ≤ (k − 1)L (39)

Hence the length,Z, of the output segment (given thati
gaps were filled) is distributed as the sum ofY andY ′. The
pdf for the sum is given by:

pZ(z|i) = Cie
−λ2z

×
[

i∑
k=0

(
i
k

)
(−1)kzi

∫ z

0
yi+k−1e−(λ2−λ1)ydy

]
0≤ z <∞

Ci =
λ1

i+1λ2
i

i!(i− 1)!(1− e−λ2L)i
(40)

From this we can compute that the probability that the out-
put segment length is z bypZ(z) =

∑
i>0 pZ(z|i gaps are

filled)P (i), whereP (i) is the probability that there will be
exactly i gaps filled.

6 Perturbation models for random entities

In the above analysis we modelled the perturbations to the
features we are looking for, namely, curve/line segments.
Everything that was said was conditioned upon the fact that
a true model line/curve segment got broken into multiple
pieces. Here we now focus on modelling noise due to which
the algorithm sequence produces false features. For exam-
ple, a sequence of correlated noise pixels gives rise to a
false edge and hence a false-line segment. Typically, these
line segments are of small length. A cleaning step may re-
move these segments, but during the process one may end
up missing a number of model features.

If we had correlated noise in the gray-level image, the
edge detector would label non-edge pixels as edge pixels
and the edge linking and fitting step would produce short-
line segments at the output. The input perturbations (due
to spurious edges) are specified by the probability of false
alarm of the edge detector. The set of points at the input of
the edge linker can be modelled as a random point process.

Thus, in the analysis that follows we take a look at the
spatial pattern of these random false labellings over an im-
age. Since each non-edge pixel in the image gets labelled
incorrectly as a true edge with probabilitypf , the spatial

pattern generated follows a discrete random process. The dis-
crete random process we use is theBernoulli lattice process,
(see [16]). The Bernoulli lattice process is the discretized
analogue of the Poisson point process.

Definew to be the width and height of each pixel and
let Lw denote the lattice formed with parameterw, the mesh
of the lattice. Then the Bernoulli lattice processφp,w is a
random subset ofLw. Each point ofLw is contained inφp,w
with probability pf independently of all others.

If nr andnc denote the number of rows in the image and
the number of columns in the image, respectively, then the
mean number of pixels in the process is given by:pf∗nr∗nc.
The intensity of the process (λ) , defined as the number of
points per unit area, is given by:p/w2. If both p andw tend
to zero together such that the intensity tends toλ in the limit,
then the process becomes a Poisson point process.

6.0.5 Nearest-neighbor distance distribution
of the point process

We have seen that the spatial process seen at the output of the
edge detector is the discretized version of the Poisson point
process. Since two points in the input of the edge linker are
linked in the output if the distance between the points is less
than a specified threshold, the distance distribution between
events in the input is of interest to us. We give expressions
for the nearest-neighbor distance distribution for the events
of a Poisson point process here. The derivation we give is
actually a special case of the general solution given in [16].

Let D(r) denote the probability distribution function of
the nearest-neighbor distance. Given that an event,E1, oc-
curred at a particular location, we wish to compute the prob-
ability that the distance to another event will be less than or
equal tor. This probability is clearly equal to 1 minus the
probability of finding no event within a circle of radius r.
That is:

D(r) = 1− P ( No event within a circle of radiusr|E1).

(41)

SinceE1 is an event of probability zero, we have to
deriveD(r) by assuming thatE1 occurred within a circle of
radiusε and then letε tend to zero. Doing this, we can show
that:

D(r) = 1− e−(λπr2). (42)

The mean distance can be shown to be:

µr =
1

2
√
λ
. (43)

A given edge pixel in the input has a probabilityp(L)
of getting deleted in the output, wherep(L) is the prob-
ability that no edge pixel exists within a radius of length
L around the given edge pixel. This suggests that the in-
put Poisson process is being thinned to produce the output
process. It is shown in [16] that the process produced by de-
pendent thinning results in a cluster-point process. However,
the gap-filling algorithm fills the gaps and therefore produces
segments instead of points. The process so obtained is a line-
segment process.
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7 Validation of theoretical results
for boundary error model

This section describes the experimental protocol employed
to validate the theoretical results provided in this paper. We
have seen that the probability of correct edgel grouping
based on similarity orientation estimates can be computed
from the distribution of orientation estimate differences. This
distribution was shown to be approximated by a Von-Mises
distribution. We have also seen that the output error model
for the boundary extraction scheme can be described by the
probability distribution of segment lengths and by the prob-
ability distribution of the lengths of random segments. The
errors in the pixel positions are not considered in this paper,
but are also studied in [13]. Given a noisy image contain-
ing a true line feature of a particular length, we therefore
obtain plots for the empirical distributions of the following
measures for a given signal-to-noise ratio:

– Distribution of angle-estimate differences
– Segment-length distribution
– Gap-length distribution
– Distribution of number of breaks in true line

There are two parts to the experiment. Since the first part of
our theoretical derivations is in the discrete (pixel) domain
and the latter part of the derivations extends these into the
continuous domain, our experiments were done both in the
discrete and continuous domain. For our continuous-domain
experiments we assume exponential models for the segment
and gap-length distributions, simulate the alternating renewal
process and validate the analytical results. For our discrete-
domain experiment involving the validation of our analytical
result on the distribution of angle differences, we generate
synthetic-image data using the protocol described below and
obtain the desired distributions. To keep the length of the
paper short, the segment length and gap-length distributions
in the discrete setting are not discussed and we concentrate
on the results from the continuous domain experiments.

7.1 Image generation

Synthetic images of size 51 rows by 51 columns were
generated with step edges at various orientations passing
through the center pixel (R,C) = (26, 26) in the image.
The gray value,I(r, c), at a particular pixel, (r, c), in the
synthetic image was obtained by using the function where
ρ = (r −R)cos(θ) + (c− C)sin(θ).

I(r, c) = Imin, ρ < 0 (44)

= Imax,

otherwise,Imin andImax are the gray values in the left and
right of the step edge. The variablesR andC designate a
point in the image on which the step edge boundary lies.
In our experiments we setImin to be 100 andImax to be
200. We used orientation (θ) values of 0, 15,. . ., 175 deg.
To generate ramp edges, we averaged images containing the
step edges with a kernel of size 5 by 5. To these ramp edge
images we added additive Gaussian noise to obtain images
with various signal-to-noise ratios. We define signal-to-noise
ratio as:SNR = g

σ . whereg is the true gradient magnitude

Fig. 3. Probability mass function of number of breaks in an interval of
length 1000.0 units. Thenumber inside each graphindicates the value of
λ2 = 1/λ1 used to generate the distribution. Note how the number of breaks
increases as the mean segment interval length decreases

for the ramp edge andσ is the noise standard deviation.
Ground-truth edge images were generated by using the fol-
lowing function whereρ = (r −R)cos(θ) + (c− C)sin(θ).

I1(r, c) = 0 ρ < −0.5 (45)

= 1 otherwise.

I2(r, c) = 0 ρ < 0.5

= 1 otherwise.

I(r, c) = I1(r, c) exor I2(r, c)

7.2 Validation of angle difference distribution

Our first step is to validate that the distribution of differ-
ence in the angle estimates for adjacent pixels can be ap-
proximated by a Von-Mises distribution with zero mean and
precision parameterκ/2 (whereκ is the precision parameter
of each individual angle estimate). Figure 2 illustrates the
histograms (binsize = 0.05 radians) for the difference an-
gle estimate obtained over 1000 trials forg/σ = 3.0. The
expected precision parameter for the individual angle esti-
mates is approximately equal to (g2/σ2) ∗ f (w). The factor
f (w) here is a scale factor that is a function of the neigh-
borhood size,w, used for the estimation of row and column
gradients.f (w) is equal to 50 for the 5 by 5 kernel. The pre-
dicted precision parameter for the difference angle estimate
is approximately 225.0. The estimated precision parameter is
229.172. While this validates the theory, one must note that
the approximation provided is valid only for largeκ’s. In
addition, the approximation assumes independence between
angle estimates for adjacent pixels. In reality, these angles
are actually dependent because of the overlap in neighbor-
hood windows. When the dependence is considered, then
the angle-difference distribution still has mean zero, but a
reduced variance (or in other words, increased precision pa-
rameter value). The estimated precision parameter for this
case is found to be 294.069.
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Fig. 4. Plot of mean number of breaks (with corresponding standard deviation estimates from the probability mass functions in previous figure) versus
λ1 ∗ 1000. The theoretical approximation for largeλ2’s is the linear function plotted

Fig. 5. Plot of observed mean segment length versus (λ1 ∗ s) for a boundary of lengths = 1000.0 units. Note how the mean of lengths of the segments
observed deviates from the mean parameter of the renewal process (that governs the segment lengths) when (s ∗ λ1) > 5. This is the instance at which the
truncation of the process at a given lengths has significant effect on the mean parameter of the observed segment lengths. It is important to note that the
mean parameter 1/λ1 and the mean length of the observed segments are not the same

Fig. 6. Plot of observed mean gap length versus (1/λ1) for a boundary of lengths = 1000.0 units. Note that in this case, since (1/λ2) << s the observed
gap lengths are very close to the mean parameter of the renewal process 1/λ2. As in the case of the segment length distribution, when 1/λ2 is comparable
to s, we see the effects of truncation of the renewal process at lengths

Fig. 7. Plot of r(Tg) = −log(Mf (s)/M (s))/λ2 vs gap-filling thresholdTg for a boundary of lengths = 1000.0 units. The observed valuesr(Tg) should
be equal toTg

7.3 Validation of continuous-domain results

To validate the theoretical results we used 5000 trials to
generate instances in the renewal process and gathered the

empirical distributions for the quantities of interest outlined
above (i.e., segment length, gap length, number of breaks,
etc.). The parameters governing the renewal processλ1, λ2,
L (the gap filling threshold) were varied. Figure 3 illustrates
the probability mass function for the number of breaks in
an interval of lengths = 1000.0 units. Figure 4 illustrates
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the relationship between the mean number of breaks versus
λ1 ∗ s. As expected, the mean number of breaks is a lin-
ear function of the interval lengths and the parameterλ1.
Figure 5 illustrates how the mean of the observed segment
lengths varies as a function ofλ1∗s. It can be seen that when
s ∗ λ1 > 5, the observed mean is not the same as the mean
segment length parameter 1/λ1 of the renewal process. This
is expected since the process is truncated at lengths. In fact,
we should view the segment and gap length distributions as
being parametrized by three parametersλ1, λ2 and s. Fig-
ure 6 illustrates how the mean gap length varies as a function
of 1/λ1. Since the gaps are very small in length compared to
the total length of the interval (s) the mean of the observed
gap lengths is close to the renewal process’s original mean
parameter for gaps (1/λ2). Figure 7 illustrates the validation
of the analytical result relating the mean number of breaks
after the gap-filling operation to the mean number of breaks
in the input process and the gap-filling threshold.

7.4 Discussion

Even though we have validated the correctness of the analyt-
ical results provided in the paper, there are, however, several
issues that are not addressed here. First, in order to do the
theoretical analysis, the estimated parameters at each pixel,
i.e., gradient magnitudes, angle, were assumed to be inde-
pendent of each other. This assumption, although correct for
the case where the neighborhoods centered on the pixels do
not share any common point, is a limiting one. Possible ways
of handling this is discussed in [13]. We did not discuss here
how the probabilities of false alarmpf and misdetectionpm
can be obtained since this is the subject of the section on
edge-detector performance characterization in [13]. In fact,
the pm and pf are functions of the neighborhood operator
size, the gradient magnitude thresholdT , and the signal-to-
noise ratio (g/σ) (the ratio of the true gradient magnitude to
the standard deviation of noise in the input). The parameter
λ1 is given bypm(T, g, σ,K)/(1.0− pm(T, g, σ,K)). Note
the usage of the notationpm() by recognizing thatpm() is a
function of the input parameters in the edge-detection step.
It is also to be emphasized that the derivations in this paper
assume stationarity of the sequence of binary random vari-
ables. Moreover the derivations for the length distributions
are pertinent only when questions are asked relative to a a
randomly chosen observed boundary fragment that is part of
a perturbed boundary. A slightly different question is: Given
an ideal boundary and a process that fragments the bound-
ary into pieces, what is the likelihood of observingn pieces,
b1, . . . , bn, with lengths l1, . . . , ln and gapsg1, . . . , gn−1?
This question is addressed in a different paper by Haral-
ick et al. [7]. Haralick et al. provide an expression for the
above likelihood and analyze the effect of the morphologi-
cal dilation operation on an observation of a random binary
sequence.

8 Conclusion

In this paper we illustrated how one could set up random per-
turbation models for an example vision sequence involving

edge finding, linking, and gap filling. This paper discussed
how it is possible to propagate random perturbation mod-
els successively through the sequence. This paper does not
discuss how one could utilize the random perturbation mod-
els for automatic selection of free parameters of the vision
algorithms. This is the subject of the paper [14]. Theoret-
ical results concerning the boundary error model were de-
rived. Theoretical results are validated through systematic
experiments. It was assumed here that the true gradientsgi
are independent samples from a prior distribution. The na-
ture of the prior distribution and the mathematical equations
describing the probability density function vary with appli-
cation domain. This assumption made the analysis a little
simpler. In general, the true gray values at a particular pixel
may depend on object characteristics, illumination direction,
sensor position, etc. Thus, expecting thegi’s to be indepen-
dent samples is not necessarily meaningful. It may often be
the case that if we know something about the gradient at one
location we may be able to say something about the gradient
magnitude a few pixels away. This will make the analysis
more involved.
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