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A characterization theorem is derived for homomorphisms of one binary relation to another, The characterization
theorem states that any homomorphism from one relation to another can be represented as the intersection of some basis
relations. Furthermore, appropriate intersections of the basis relations define a refation homomorphism,

The characterization theorem leads to an efficient algorithm for determining all the homomorphisms from one relation to
another: firstfind the basis relations, and then use the basis relations to generate ail single-valued relations which then will be

alf the homomorphisms from one relation to the other.

Specialization of the procedure easily determines whether two relations or digraphs are isomorphic.

INDEX TERMS Relation homomorphism, relation, relation isomorphism, digraph, graph, digraph homomorphism,
digraph isomorphism, graph homomorphism, graph isomorphism, relation composition.

i INTRODUCTION

Characterizing binary relation homomorphisms is
an important task in certain kinds of systems,
chemical compound matching, information
retrieval, artificial intelligence, linguistic and social
network problems. For example, the intercon-
nection of subsystems of a large system can be
thought of as a binary relation and one interesting
system problem is to determine whether two
systems are isomorphic. The structure these hom-
omorphism problems usually present themselves in
is the graph structure. However, for mathematical
simplicity in this paper, we use the binary relation
structure. If A is a set, a binary relation R on the set
A is defined as a subset of Ax 4;: R4 x A The
digraph of a binary relation R on a set A is a graph
whose nodes correspond to the elements in 4 and
whose directed links correspond to the ordered
pairs in R.

Research (Unger,® Corneil and Gotlieb?) on
graph isomorphisms often lead to algorithms which
determine a partition of the nodes and successively
refine the partition using necessary conditions until
a stable partition is reached. Berztiss* gives a node
partitioning backtrack procedure for finding
whether two digraphs are isomorphic.

Rather than using the necessary conditions to
successively refine a partition on the set A4, we
suggest as Ullmann® using the necessary conditions
to eliminate matching certain pairs of one relation
to certain pairs of the other. This, in effect, partitions

C

the arcs of the digraph or the pairs in the binary
relation R. The partition on R determines a
partition on A. What is interesting about this
approach is that using a winnowing process “basic
relations” whose intersections are the homomor-
phisms from one relation to another can be quickly
computed.
To begin we need some definitions

DEFINITION Let RcAx A, and H= A x B. De-
fine the composition of R with H by

" ReH={(b, b')eB x B| for some (a, a')¢R,
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{a, b)eH and (@, b')eH )

Note that this definition of composition is different
from the usual definition of binary relation com-
position. We have made this change of definition in
order to facilitate the picture that a pair (4,a) in
relation R can be mapped to the pair (b, b') only
under the condition that the relation H associates b
with o« and b with o'. In other words, pairs get
mapped to pairs under a mapping which makes the
same association for each component of the pair.

LetRcAxAand SSBx B Forarelation H= A
% B 1o be a homomorphism of R o § we will insist
that H be capable of mapping each pair in R to some
pairin §. We allow some pairsin S to be the image of
no pair in R. The idea of this kind of homomorphism
is illustrated by the kind of square diagram shown in
Figure 1.
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FIGURE I illustrates how a homomorphism maps each pairin R
to some pair in § but there may be some pairs in § with no pre-
images in R.

DEFINITION Let RcAx A, S=BxB,and HzA
x B.

H is a homomorphism of R into § if and only if

1) H is defined everywhere on 4 (for every ae4,
there exists a beB such that (a, b)eH)

2) H issingle-valued on B{(a, b)eH and (a, b')eH
imply b=15")

3) ReHcSS.

The relation R « H is called the homomorphic image
of R under H.

This definition of homomorphism is the same as
Harary.? The specific problem that we are interested
in 1s: given relations R and S, determine all the
homomorphisms of R into §.

2 THE WINNOWING PROCESS

Suppose that the relation H= A x B is a2 homo-
morphism of R into §, then what can we find out
about the relation among H, R, and §? Certainly if
H is a homomorphism from R to § and il H
associates b with ¢, and if R associates ¢’ with g, then
all the elements which H associates with a” must be a
subset of all the elements which § associates with #.
This is illustrated in Figure 2. Likewise if H is a
homomorphism from R to § and if H associates b
with a, and if R associates a with a’, then all the
elements which H associates with ' must be a subset
of all the elements which §~' associates with b. This
is illustrated in Figure 3.

As a direct consequence of this fact, if H is a
homomerphism of R to § and ¢ belongs to the
domain of R, then whatever H associates with a
must be contained in the domain of S. Likewise if H
is a homomorphism of R to § and a belongs to the
range of R, then whatever H associates with a must
be contained in the range of §.

Figure 4 shows two simple binary relations and
their corresponding digraphs which we will use as

an example for the rest of the paper. For these
relations'we have Dom S= {4, b, ¢, d} and Range §
=1{b, ¢, d, e}. Since 1 is in the domain of R, any
homomorphism can only associate | with some of
the elementsin {a, b, ¢, d}. Since 2 or Sisin the range
of R, any homomorphism can only associate 2 or 5
with some of the elementsin {b, ¢, d, ¢}. Since 3 and 4
are both in the range and domain of R, any
homomorphism can only associate 3 or 4 with some
of the elements in {a, b,c,d} n {b,c,d, e} ={b, c, d}.
Thus any homomorphism H of R to § must be a -
subset of the relation T shown in Figure 5.

FIGURE 2 illustrates how functions which are homomaorphisms
are constrained.

FIGURE 3 illustrates how functions which are homomorphisms

are constrained,

0 0‘0 ©

R=101,3),01,4,03,2,(3,4,(4,3,4,5)

()
o

O ®

S = {{a,c),{a,d),(b,el,(c,b}, (c,d), (d, ), (d,c}}
FIGURE 4 illustrates the diagraphs for the example relations R

“and S.
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a,b,c,d
b,c,d,e
b,c,d
b,c,d
51b,c,d,e

FIGURE 35 shows the consequences of tracing the constraints, If
H is a homomorphism of relation R to relation § (shown in
Figure 4), then H must be a subset of the relation T.

N e et

This idea of determining more restricted relations
which must contain any homomorphism can be
generalized. Suppose it is known that T is a relation
which contains a homomorphism H but the
homemorphism A is not known. The relation T can
be used to match pairs from the relation R to the
relation S: the pair (a,, @;) of R is matched to the
pair {by, by) of S only if (a,, by )eT and (a,, by)eT.
This set of matched pairs can then be reduced for if it
is the case that a, is associated with b, by T, then
unless each pair of R having a component of value
a, can be matched by T with one pair of § whose
¢orresponding component has value b,, the homo-
morphism T contains will not match a, to b,.
Hence, if the pair (a,, b;}is in Tand there is some
pair of R having a component of value a, and this
pair of R cannot be matched by T to some pairin §
having a corresponding component value of b, then
the pair {a,, b,) can be removed from T and T will
still contain all the homomorphisms T originally
contained.

We call this process of iteratively taking incon-
sistent pairs out of T the winnowing process and it
bears a close relationship to the Waltz filtering
process (Waltz 1972, 1975).7 Proposition 1 gives a
formal statement of the winnowing process and
proves that after winnowing the inconsistent associ-
ations out of a given relation, the new relation will
contain all the homomorphisms it originally con-
tained. As an immediate consequence of Pro-
position 1, its corollary states that homomorphisms
are fixed points of the winnowing process. This
suggests that the winnowing processis a natural one
to consider for determining homomorphisms.

Before stating and proving Proposition 1, iis
corallary, or other propositions, we will need some
convenient notational conventions. Let R=4,
x A,. We will define the following sets related to R:

A,R={azA,|for some (a,, a,)ed; x A,,

{ay,a,)eR}, n=1o0r2;

 R,(a)={(a,,a;)eR|a,=a},n=10r2.

PROPOSITION 11 The Winnowing Process. Let
ReAxA,S=sBxB H=T=A4xB.

Define one iteration of the winnowing process by -
G={(a;, a5, by, b3)eR x 8] (ay, b,)eT
and (a,, b)eT}

A,,G(al,az)}

2

Qz{(al,b)sﬂbs M N

=i (ay.@2)ER 5 (1)

If H is defined everywheré and R-Hc<S, then
HcQc=T

Proof Let (a, b)eH. To show (a, b)eQ, we need
only show

bsﬁ 1 AGlay, ay).

n=1 {(a;,4;)cR,(a)
Iffor any n, R, (a)=®, we have

(\  AGa,a)=8B.

() ,a)eR,(n)

Since H=T, (ay, b)eH implies (&, b)eT'so that {a,,
b)eQ and this case causes no problem.
Let r be any.index such that R, (a)#+@ We will

show
be ()

{ay.az)eR qla)

A Glag,ag).

The argument for n= 1 or n=2 is similar so without
loss of generality, suppose n=1.

Let{a,,a,)eR, (a). By definition of R, (a), we must
have ¢, =a; now for convenience we let b, =b so
that (a,, b,}=(a,, b)eH. Since H is defined
everywhere, there exists b, such that (a,, b,)eH.
Now, (a,, a,)eR, (ay, b,)eH, and (a;, b,)eH imply
{b,, b;)eR o H. But by supposition, R« H <= § so that
{(by, by )eR = H implies (b,, b, )eS. And (a,, a;)eR, (b,
b,)eS, (ay, by )eH, (a,, by)eH, and H <= Timply {a,,
ay, by, b;)eG. Hence b =b,eA, Gla,, a;)and (g, b)eQ.

COROLLARY (Homomorphisms are fixed points of
the winnowing process ).

Suppose R-H< § and H is defined everywhere.
Define

G={(a,,a;, by, b;)eR x S| (ay. by)eH
and (a5, by e}

A"G(al, az)}

2

Q={(a1,b)eH|bs 0 N

=1 {ay.a3)eR\a)

Then H= Q.
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Proof  Itis obvious from the definition of Q that.
@ < H. From the proposition, H< (. Hence H=Q.

It the winnowing takes place successively, first
constructing a relation T, from a given T} and then a
T, from a given T, and so on, it is obvious that if
H<T,, then HS T, for each n, and for finite sized
relations, there must be an N such that T =T, for all
nZN. In other words, the process converges in a
finite number of steps to a fixed point.

Using the T in Figure 5 as T}, Figure 6 shows how
certain associations of the pairs of R with the pairs
of § can be eliminated from consideration. As a
result a new relation T, can be constructed which is
contained in T; and 7, contains all the homomor-
phisms 7, contains. Figure 7 shows what happens if

. ac ad be ch cd £ de T, p:::?;‘i.li Ities
13 t 1 acd
I / 2| bege
32) / / 3 cd
Wi s / L 5| <d
iy i / 5 . bede
) 7 rd

FIGURE 6 illustrates Proposition 2. Since R« Hc § implies
H(3)={b,c,d}, (see Figure 2), ail possible retationships which
allow 3 to be mapped to ¢ or ¢ are illegal. Hence (1, 3} cannot be
mapped by H to (b, ¢); (3, 2) cannot be mapped to (a, c) or (a, d);
(3, 4) cannot be mapped by H to {a, c} or (a, 43; and (4, 3) cannot
be mapped by H to (b, ). Since H{4)= {b, ¢, d}, (1, 4) and (3, 4)
cannot be mapped by H to (b, ¢); (4, 3) and (4, 5) cannot be
mapped by H 1o (4, ¢) or (a, d). All the iliegal possibilities are
marked out as per Proposition 2. Allowed possibilities are
tabulated on the right.

ac ad be cb cd db de T3 :ll::?l ities
i3 ¢ /! / 1 acd
14 J 4 i 2 bed
3z i ¢ / 3 cd
EL] / ¢ / f / 3| cd
43 / £ £ 4 / 5 bed
&5 / / Is

FIGURE 7 illustrates Proposition 2. Since R< H= § implies
H{3}{c,d} {see Figure 3}, (1, 3) or (4, 3)cannot be mapped to (c, b)
or (d, b)and (3, 2 or (3, 4) cannot be mapped to (b, e). Since
Hdys{e, d} (1, 4) or (3, 4) cannot be mapped to (¢, b) or (d, b)
and (4, 5) cannot be mapped to {b, ¢). The disallowed mappings
are marked out. As per Proposition 2, allowed possibilities are
tabulated on the right.

the winnowing process begins using the T, of Figure
6 to construct the smaller relation Ty shown in
Figure 7. Further iterations cannot reduce T; any
more,

Unfortunately, the resulting relation T is not
single-valued and although it is a fixed point of the
winnowing process, it does not necessarily have the
composition property: Re T, < 8. Hence, -not all

fixed points of the winnowing process are homo-
morphisms. Proposition 2 tells us which fixed
points of the winnowing process are guaranteed to
have the composition property: Any single-valued
relation f which is a fixed point of the winnowing
process is guaranteed to have the composition
property Ro f<§.

PROPOSITION 2 Let R=AxA, SSBxB. Let
J S A x B be single-valued.

Define  G={(a,, ay b,, b;)eR x §]
(al’ bl)gf; {aZs bz)b‘f}

2

Suppose f={(a, b)sA x Blbe

n=1

m AnG(a]sal)}

(a1.m3)¢R fa)

ThenRe f=8.

Proof Let (b, b,)eR> f. Then for some (a,,
@ eR, (ay, by)ef and (ay, by)ef. Now (a,, by )ef
imptlies

2

bie [

T on=1 (zy,23)ER(a)
Since, {ay, a;)eR, (4 ), b1eA, Glay, a,).

Obviously Gla,, a;)#0 so let (8,, f,)eG(a,, a,).
Now (ala a3, ﬁh ﬁl)gG lmphes ()31: ﬁZ)aS and (als
B1)ef and (as, fi;)ef. But f is single-valued so that
(a,, B, )ef and (ay, by )ef imply b, = . Likewise (a,,
Bz)ef and (ay, by)ef imply by=f,. Then, (b1, b3)
=(f;,f.)eSsothat R- f= 5.

Thus our search for homomorphisms is now
limited to trying to determine all the single-valued
fixed points of the winnowing process. It would be
nice if we could take two or more fixed points of the
winnowing process, somehow combine them to-
gether in an appropriate way, and then have the
resulting relation also be a fixed point of the process.
With such a mechanism, it might be possible to
generate the single-valued fixed points of the
winnowing process from some small set of easily
determined fixed points of the winnowing process.

There is a natural place to look for the easily
determined fixed points of the winnowing process.
Suppose we begin the process with a relation which
allows everything in 4 to be paired with everything
in B except that the element a,eA is allowed to be
paired only with the element b eB. The successive
winnowing process then will determine a fixed
point, called the basis relation T1°1, which containg

B, G (o, az).
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ac | ad [befch[cd|db] e T} > 2
13 N 1]a 2) 7=yl freAx B [}
14 A VA VA VA 2 | abege '
2 3| abede A, G%a,, a
u 4 abede [a,,aQR"m] 1+ 42)
e 5| abcde
& where

G®={(a;, as, by, b,)eR x S{ay, b, JeT*

ac | ad | be [cb | cd | db | de T and (a,, b, )sT%}
13 A VA VAR AV A V4 ifa If fis defined everywhere and
14 A A A VA 4 2 | bed
(/7|7 ' 3| cd f= 0N 7
E- N A VA N 4 / 4|cd (abjey
4 7 . . . .
AR / / 7| bed then f is a fixed point of the winnowing process:
s sy S J, ?

] that is if

ac | ad [ be|cb|cd | db| 1Py = a1, @z br, by JoR x S[(a, by )ef
E V2NNV, t]a and (ag, byJef}
14 VAN VAN VAN VAN IV 2 | bed 5
2SS 3} cd and f’—{(oc Bes|p= A.Gla

- ) - I3 s o

NIV I / 4|cd HD, ml,al(}]x,m (@1, 0,)
asl/ /S / 5| bed ’ ;
2 VA VA e ‘then f'=f.

FIGURE 8 shows the successive eliminations of mapping
possibilities by the construction of T'* by successive winnowing,

all homomorphisms which map a, to b,. Figure 8
illustrates the results of successive winnowing where
the element 1 is constrained to map to a.

The intersection of T%®. with another basis
relation T°*2 will contain all homomorphisms
mapping a, to by and a, to b,,

Intersections of basis relations where the in-
tersections stay defined everywhere then become
candidates for homomorphisms. Proposition 3
states that if f is any defined everywhere relation
from A to B and [ has the representation

b
T,
{a,blef

where T® is any fixed point of the winnowing
process which maps a to only b, then f is a fixed
point of the winnowing process.

PROPOSITION 3 Let REdxA, SSBxB, fcA
* B.

Foreach (a, b)ed x Blet T® < 4 x B satisfy
1) (a, B)e T implies b= g

Proof By Proposition 1, f'< f so all we need
show is that f< f". Let («, f)ef. We want to show
that

2
£ N
n=1 (a;azkRx)

Either R, (2)=@,n=1,2 or not. If R,{x) =0, n=1, 2
then

AnG(als az)

2
ﬂ ﬂ AnG(ala ﬂ2)=B

n=1 (og,az)eR,(a)

so that the assertion is trivially true.

Il R, (a}#0 for some n, then R, (x)#£0 or
Ry(a)#9. Suppose R,(¢)#0. Then ‘et (a,,
az)eR, (). Since f is defined everywhere, there
exists a y such that (a,,y)ef. But

f= ﬂ Tab
{a.blef

so that surely (o, £)eT°2%. Hence, by definition of
T"z}',

2
pe(l [V AG(,a,)
=1 {xy,2;7)eR (1)
But (a;, a,kR,{x) so that we must have
BeAG°¥(a,, a,). Hence, there exists a & such that {8,
0)e G**(ay, a,). Thus (B, 8)eS, (a,, BET*, and (as,
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8) T*2*, But (a,,0)e T°" implies § =y so we have (f,
)= (B, 3)S. ‘ |

, NOW’) (ﬁa }!)ES: (aia ﬁ)Ej’ (a2= 'P)Ef, and (al: al)SR
imply (B, y)eGlay, a3 ) so that

e Glay, az).

Since this is true for each (a,, o, R (),

fe )

La.a2)e R )

A, Glay, az).

If R, (o)== 0, a similar argument shows

pe [}

(2y,02)eR312)

A, Glay, ay)

Hence

gy () AGlayay).

w#=1 (o .u2)eR,(x}

3. BINARY RELATION
HOMOMORPHISM
CHARACTERIZATION

From Proposition 3 it is only a short way to a
characterization of the binary relation homomor-
phism for if 7% is in {act not just any fixed point of
the winnowing process which allows a to bemapped
only to b, but if T* is the basis relation determined
by the winnowing process which begins with {{a,
b}} v (4 —{a}) x B, then we should certainly have

He [} 1%

{a,. by H

for any homomorphism H, from Proposition 1; and
since a homomorphism is defined everywhere, the
form

n 1

{a.byeH

must be single-valued so that

H= () 1
{a.bcH
This gives us
H= () 17
{a.biH

for any homomorphism H.
Conversely if H is any defined everywhere binary
relation having the representation

{a.beH

Proposition 3 states that H is a fixed point of the
winnowing process since H is defined everywhere.
And since (g, b')eT® implies b'=b, H defined
everywhere implies

m 7'ub

{a.byeld
is single-valued. By Proposition 2,

Tt

(i.bjckt

single-valued and a fixed point of the winnowing
process imply that

T

[UR3133)

has the composition property
Re [ T*<S.
{a.b)eH
And since

'Iub

{a.b)edl
is defined everywhere, single-valued, and has the
compaosition property, it must be a homomorphism.

THEOREM (Binary Relation Homomorphism
Characterization Theorem). Let R£AxA, S&B
% B, and H= A x B. For each (a, b) A x B let

T ={(a, b)} v (4—{a}}xB.

Define T%, ..., T, ... iteratively by

f=0v N

n=1 (0,d3)eR (x)

T = {(% BleTst

An Gub[als sy )}

where
G ={{a,,t3 b\, bs)eR x S|(a;, by )eTE?
and (as, by e TEE} .

Suppose for all nzN and for all (a, b)eAx B, T*
=T Hisahomomorphism of R into S if and only if
b

1

1) () T isdefined everywhere
(a,byeH

2)H= [ 1T

(a.h)cH
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Proof Suppose H is a homomorphism of R into -

8. Let (&, B)efl. Then by Proposition 1, He T,
Since this is true for each

(o fH,HS [} T,

{z.p)eH
Now let

(a, bk ﬂ T,

(x. BleH

Since H is defined everywhere, there exists a y such
that (a,y)eH. Then

(@, b (| T

lz,f1H

implies (a, b)e T*. But by construction of T%. (g,
b)eT™ implies b=y. Hence, (a, b)= (a,y)eH so that

| T*<H.
(@, f)eH
Now
He (| T
(x,f)eH
and
(V T¥<H
(x,8)eH
imply
(\ T*#=H.
(x.8)eR

And since H is a homomorphism, it is defined
everywhere so that

n,m

(W
is defined everywhere,
Suppose
H= (] T
(a,b)eH

is defined everywhere, By Proposition 3, H is a fixed
point of the winnowing process. Also H is single-
valued for if (a, b, }eH and (a,'b, )eH then (a, b, Je T2
which implies b, = b;. By Proposition 2, any single-
valued relation H which is a fixed point of the
winnowing process has the composition property
R« H<S. Now by definition of homomorphism, H
is a homomorphism of R into 5.

4 DEPTH FIRST SEARCH

The binary relation characterization theorem al-
lows all homomorphisms of R into S to be found by
a depth first search in the following manner.
Suppose we are looking for homomorphisms which
map the element 1c4 to the element aeB. We can
determine by the successive winnowing process the

‘basis relation T'° which must contain all such

homomorphisms. Now, T!“ may have other ele-
ments of 4 which are uniquely mapped to elements
of B. If so, we can determine the basis relation for
these pairs and take the intersection of all of them
with T The resulting intersection must contain
any homomorphism which maps 1 to a If the
resulting intersection relation has additional ele-
ments which are uniquely mapped, more in-
tersections can be taken. When the resulting
intersection has no more additional elements Wwhich
are uniquely mapped, then one of three cases exists:

1) either the intersection is not defined every-
where in which case no homomorphism mapping 1
to g exusts;

2} or the intersection relation [ is defined
everywhere and single-valued in which case

f _= m Tab
la,byef
so that f is 2 homomorphism;
3) or the intersection relation is defined every-
where and not single-valued in which case a choice
must be made in a branch of the depth first search.

The choice is to map to a unique element of B one of
those elements of 4 having possible multiple
associations with the elements of B. In this last case,
once such a choice is made, the corresponding basis
retation must be intersected with the previously
intersected relations. This brings us back to the
point of looking for additional uniquely mapped
pairs. From here the search iterates un:il each
branch of the tree terminates in one of the first two
cases.

Figure 9 lists all the basis relations which are
defined everywhere for our example relation R and
S. Figure 10 illustrates the tree determined by a
depth first search. The tree shows all the & possible
relation homomorphisms which map 1 to a. Figure
I1 shows the & homomorphisms and their cor-
responding homomorphic images.

A simple specialization of this iterative process
allows the determination of whether one relation is
isomorphic to a part of another, In the depth first
search, terminate any branch when two elements
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-l-lq T2b TZ: Tid T3c T3d T4 | T4 ]'5!1 TSc TSd
I| a|ad|a|a|[a)a|aja ad a|a
Zlbed| b ) c | d |bd | bc|bc| bd[bcd] bd| be
Ilediced | d | ¢ ¢ d|d c |Jed| ¢ d
dicd|cd|c | d d [ 4 d |cdi d ¢
5|bed|bed [ bd | be [ be | b | bd | e | b | ¢ | d

FIGURE 9 tabulates those basis relations which are defined
everywhere.

FIGURE 10illusirates a tree determined by a depth first search.
The tree shows all the 8 possible relation homomorphisms which
map 1to A

la (a) 1a (a) la (a)

20 ‘ o) ‘ 2b A

% OREIOC-s O 10 ()
: NV’

5¢ 5b o 5d o

la o la o

2 ‘ fao ‘
3: () ?‘g X9
5b (b) 5d

FIGURE 11 illustrates the 8 possible homomorphisms and 1heir
corrgspanding homomorphic images.

from A map to the same element from B. This
guarantees that the resulting intersection relation
will be one-one. Since we assumed the relations R
and § to be finite, one-one homomorphisms are
isomorphisms.

5 NUMBER OF OPERATIONS

A crude but simple estimate can be made of the
average number of operations needed to calculate

all the homomorphisms from relation R to relation -

§ assuming that the number of intersections which
need to be taken in the depth first search is
proportional to the number of homomorphisms
which exist. This assumption is not valid for
pathological worst cases, but it is probably alright
for more typical cases. Suppose that RE A4 x A4 and
S=Bx B. Let # be the counting measure. Suppose

#R=L,
#A=N,

#S=L2
#B=N,

#{H=AxB|H is defined everywhere, single-
valued, and R- H= §} =K. :

Then, there are N, N, basis relations to determine.
For each basis relation the winnowing process itself
can take no'more than N, N, iterations to converge
to a fixed point. Each winnowing iteration cannot
take more than L, L,{L, + L,) N, operations. Thus
the basis relations require at most NIN3L, L,(L,
+L,) operations to calculate them. Each basis
relation has at most NN, members and the
intersection of the two basis relations stored in an
ordered manner requires at most 2N, N, oper-
ations. In the forest containing trees like that of
Figure 10, there are at most NN, trees. Each tree
has complete branches which are ¥, levels long.
There must bea total of no more than K complete tree
branches in the entire forest. There are an average of
N,K nodes at which intersections must be taken.
Since each relation intersection takes no more than
2NN ,, operations we obtain that the total number
of operations required to find all homomorphisms is
fixed cost of no more than 2NIN3L,L,(L, +L,)
operations and an average number NIN,K of
operations for the depth first search.

6 CONCLUSION

We have shown how all relation homomorphisms
have a representation in the form of the intersection
of some basis relations and how it is that all
intersections of basis relations taken over any
relation defined everywhere homomorphisms when
the resulting intersection relation is defined every-
where. Using this fact, we have suggested a depth
first search procedure for generating all the homo-
morphisms of one relation to another. A rough
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estimate on the number of operationsinvolvedin this
process is proportional to the number of homomor-
. phisms .that exists from one relation to the other
times the number of nodes cubed plus a fixed
overhead cost proportional to the number of pairs

in the relation cubed times the number of nodes to

the fifth power.
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