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ABSTRACT - In LANDSAT imagery, spectral and spatial informa-

tion can be wused to detect the drainage network as well as

the relative elevation model in mountainous terrain. To do
this, the mixed information of material reflectance and to-
pographic modulation in the original LANDSAT imagery must be

first separated. From the material reflectance information,

big visible rivers <can be detected. From the tobographic

modulation information, ridges and valleys can be detected

and assigned relative elevations. Finally, a relative ele-

vation model <can be generated by interpolating values for

non-ridge and mnon-valley pixels.
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1. Introduction

It is a common task for a photointerpreter to examine
the spatial pattern on an aerial image and by appropriate
interpretation be able to tell the elevation of one area re-—
lative to another and be able to infer the stream network
and the drainage network even though some of the streams may
be below the resolution of the sensor. There is a wealth of
information in spatial patterns on aerial imagery but most
computer data processing of remotely sensed imagery, being

limited to pixel spectral characteristics, does not make use

of it.

In this paper, we describe a procedure by which a rela-
tive elevation‘model can be infered from a LANDSAT scene of
mountainous and hilly terrain. The processing has a number
of distinctly different steps. First to appropriately pre-
pare the imagery for processing we must destripe it and per-—
form haze removal. Destriping can be done by the Horn and
Woodham [1979] technique. Haze removal <can be done by the
Switzer, Kowalik and Lyon [1981] technique. These two steps

constitute the preprocessing and are not discﬁssed in this

paper.

To a first order effect, after preprocessing the-cause
of the intensity value at any pixel is due to the combined
effect of the angle at which the sun illuminates the ground

patch corresponding to the pixel and the reflectance of the
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surface material on the ground patch. To make sense of the
spatial pattern first requires separating these two effects.
For this purpose we modify the Eliason, Soderblom and Chavez

[1981] technique to create two main images. from the LANDSAT

‘imagery. The first image is a reflectance image and the

second image is a topographic modulation image which has in-
formation related to surface slope and sun illumination.

The details of this technique are given in Section 2.

As discussed in Section 3, the reflectance image can be
used by the Alfoldi and Munday [1978] procedure for identi-
fication of all areas of water. The topographic modulation

image can be used to identify the ridges and the valleys.

" This is discussed in Section 4. With the valleys identi-

fied, each_Valley pixel may be assigned a relative elevation
which increases .as the valley path from the pixel to the
river itlempties in' increases. Ridges must.be assigned ele-
vations higher than their neighboring valleys ghd each ridge
pixel can‘fe. assigned a relative elevation which decreases
on the ridge path from the pixel to the saddié point where
the ridge crosses - a vailey. The ridgélvalley glevation as-—
signment procedure is discussed in Section 5. Once ridges
and valleys have been located and assigned relafive eiéva~
tions, a compléte elevation model can be generatea'by inter-
polating values for non—ridge énd non-valley pixels. The

interpolation procedures are discussed in -Section 6.




Since the launch of the first Earth Resources and Tech-—
nology Satellite (ERTS, later renamed LANDSAT) in July 1972,
much work in remote sensing has been done by using pattern
analysis and picture processing techniques for image classi-—
fication, restoration and enhancement.‘- >Few peop;e have
tried the scene analysis or artificial intelligence approach
to describe fhe image in terms of the properties of objects
or regions in the image and the relationships between them.
Ehrich [1977] found global 1lineaments by partitioning the
image into windows and applying 1long, straight linear fil-
ters at different ofientations in each window to extract lo-—
cal evidence. Dynamic programming [Montanari, 1971; Martel-
1i, 1972] was then used to form complete global lineaments.
VanderBrug [1976] tested various detectors to get linear
features in satellite imagery. This was only at the local
level. Later VanderBrug [1977a] wused relaxation to reduce
noise in the output. Finally VanderBrug [1977b] defined a
merit function that can be used to select pairs of segments
to be merged so that local 1line detector responses can be
linked together into a global representation of the curves.
His work is closely related to the Shirai [1973] technique
which employed sequential line following to find edges in
scenes containing polyhedra. Li and Fu [1976] wused tree
grammars to locate highways and rivers from LANDSAT pic-
tures. The above investigations deal with the extraction of

all the linear features from an image, but they do not deal
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“with the intérpretation of these linear features. In the

following investigations, knowledge about the desired fea-

tures are considered crucial in such analyses.

Bajcsy and Tavakoli [1975] argued that an image filter
is nof meanihgful unless one has a world model, a descrip-
tion of the world omne is dealing with. They recognized ob-—
jects matching this description and filtered them out. This
strategy is wused to sequence the recognition of Abridges,

rivers, lakes, ‘and islands from satellite pictures. Nagao

and Matsuyama [1980] built an image understanding system

~that automatically located a variety of objects in an aerial

phbtogrgph by using diverse knowledge of the world. It is

one of the first image understanding systems that ‘has ihcor—
porated very sophiscated artificial intelligence techniques
into the analysis of complex aerial photographs. Fischler,

Tenenbaum and Wolf [1981] designed a low-resolution ~road

tracking (LRRT) algorithm for aerial imagery. The ‘approach

was based on a new paradigm for combining local information

from multiple sources, map knowledge, and gemneric knowledge

about roads. The final interpretation of the scene was ac-—

hieved by using either graph search or dynamic programming.

Similarly, -knowlnge is important in our problem which
requires analysis both at the local and global levels. Lo-

cal level analysis will be discussed in Section Z'to 4, glo-

bal level analysis will be discussed in Section 5 to 6.



2. Illumination model

The brightness and darkness in each band of LANDSAT im-

ages come from two main sources. First, they can be due to
material properties. For example, in the spectral region
(.8 - 1.1 pm) of band 7, water bodies absorb infrared radia-—

tion, so they appear as clearly delineated dark bodies];
living vegetation reflects strongly in this portiom of the
infrared, so areas of living green vegetation appear as
bright regions. Second, they may be due té topography and
sun illumination angle effects. The mountain side facing to
the sun appears as a bright region; the mountain side facing
away from the sun may appear as a shadow or dark region.
Unfortunately, the LANDSAT data values are some combination
of these two effects. Eliason, Soderblom, and Chavez [1981]
address this problem by de}ining an illumination model in-
volving material reflectance and topographic modulation im-
ages. In the following, we will introduce a modified Lam-—
bertian model in which the information of diffuse light and

shadows is also included.

For a pixel (x,y) which receives sunlight, the original
LANDSAT image G measuring the amount of reflected light at

band b is

G(x,y,b) = r(x,y,b)I(b) cosO(x,y) + r(x,y,b)D(b) + H(b)
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where r is the surface reflectance, I is illumination flux,
© is the Vangle between sun incidence direction and surface
normal, D is diffuse light, and H is the haze due to atmos-

pheric scattering; On the other hand, for a pixel (x,y) in

shadow, G is simply

G(x,y,b) = r(x,y,b) D(b) + H(b)

After the haze H(b) is removed by the Switzer, Kowalick
and Lyon [1981] technique, for pixels receiving sunlight,

the ratio image of bands b1 and b2 is

:G'(x.y,bl) G(x.y.bl) - H(bi)

G'(x,y.b))  G(x,y,by) - H(b,)

r(x,y,b;) [I(by)cosO(x,y) + D(by)]

) e (e ©at
r(x.y.bl)

r(X.y.bz)

if we assume I(b,;) = aI(b,) and D(b,) = aD(b,).

Similarly, for pixels in shadows,
’
G'(x,y,b,) r(x,y,b )

’
G (x,y,b2 r(x.y,bz).

In either case, the ratio is independent of cos®. Thus,
by clustering using different ratio images as features, the

pixels grouped in one cluster should belong to the same ma-



10

terial reflectance group. The result is called a reflec-

tance cluster image.

A window of 4-bands LANDSAT scene is shown in Figure 1.

The image was taken in April 1976 over areas in Nicholas

County, West Virginia and neighboring counties. The ratio

images of 5/4, 6/5, 17/6 are shown in Figure 2, and the re-

flectance cluster image is shown in Figure 3.

Figure 1 - 4- bands LANDSAT scene in W. Va.
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Figure 2 — Ratio images of 5/4, 6/5 and 7/6
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Figure 3 - Reflectance cluster image.
The reflectance cluster image is a function
R : X xY = {1:2; TT T NC}

where X is the set of row <coordinates, Y is the set of co—
lumn coordinates, and Nc is the total number of clusters.

Each reflectance cluster cl is a subset of pixels defined by
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Clc1) = {(x,y) | R (x,y) = cl}, 1 L cl LN

The pixels in each C(cl) do not have identical gray tone

intensities in the dehazed G' image. This is due to the

fact that some pixels are directly lit and others 'are in

shadow. By performing a second clustering on G' within each
C(cl), we can split each C(cl) into a bright sub-cluster
CO(cI) consisting of ‘directly 1lit pixels and a dark sub-

cluster Cl(cl) consisting- of pixels in shadow. A binary

shadow image Sw can be defined by

Sw:.X x Y = {0’1}"
Sw (x,y) = {O if (x,y) e CO(Rc(x,y))

1 if (x,y) e Cl(Rc(x,y)).

This is shown in Figure 4.

‘Figure 4 - Binary shadow image.
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After the 1it and shadowed pixels are identified, we ex-
tract a diffuse light image Df which contains in each pixel
(x,y) the value r(x,y,b)D(b), a reflectance image R which
contains in each pixel (x,y) the value r(x,y,b)I(b), and a
topographic modulation image Tp which contains in each pixel

(x,y) the value cosO(x,y). Thus, for directly lit pixels
G'(x,y,b) = R(x,y,b) Tp(x.y) + Df(x,y.b). (*)

and for shadowed pixels

G'(x,y,b) = Df(x,y,b)

Since shadowed pixels contain the information of diffuse
light only, the mean dehazed G' value of pixels in C1(°1)
can be used to represent the reflected diffuse light infor-

mation for cluster cl. The diffuse 1it image Df is defined

by
. Z | G'(u,v)
Df(xDYJb.) = e e ——
#,Cl(cl)
(u,v) e Cl(cl)
where cl = Rc(x,y). If the reflectance cluster image were

perfect, we would have
Assumption 1 : r(x,y,b) is a constant r(cl,b) for all (x,y)

in C(cl) with cl = Rc(x,y).

In this case,

1 o
Df(xv."y.b) r(cl,b)D(b) > ___________
A # Cl(cl)

Cl(cl)

r(cl,b) D(b)
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Since directly 1it pixels contain the information of
diffuse light as well as direct sun illumination, the mean

G' - Df value of pixels in Co(cl) can be used to represent

.the‘reflected sun illumination information for cluster cl.

If pixel (x,y) is in reflectance cluster cl, that is, if

'Rc(x,y) = ¢l1, then the reflectance image R can be defined by

G'.(U,V.b) - Df(u)vlb)

(u,v) &€ 00(01)

- Z cos®(u,v)
r(CI)b) I(b) o e e
# CO<¢1)

R(x,y,b)

T(cl,b) I(b) X_(c1)

where Xc is the spatial average of <c¢co0sO® for pixels in

Colcl). It is meaningful to look at R image only if we make

the following assumption.

Assumption 2: Xc(cl) takes the same value Xc for all re-

flectance clusters,

Finally, from equation (*%*),
G'(x,y,b) - Df(x;y.b)
R(x,y,b)

cosO(x.y)

which contains the information about the cosine of the angle

between the surface normal and the illumination direction.

The D R, and Tp images for Figure 1 are shown in Figure

f’
5,6, and 7.
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Figure 5 — Diffuse light image.
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Figure 6 - Reflectan’ce"'image.
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Figure 7

- Topographic modulation image.
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3. Detection of Visible Rivers

Visible river detection can play an important part in
generating an elevation model since elevations away from the

river must increase. Visible rivers <can be detected using

the material reflectance image created by the technique dis-
cussed in the last section. In the spectral regionm (.8 -

1.1 Pm) of band 7, water bodies absorbd infrareq radiation,

so visible rivers appear as dark curves, and lakes appear as
dark regions. In the material reflectance image of band 7,
these dark features become more clear because shadows are
removed. However, not all dark features are water bodies;

the real water bodies can be identified by the following

process [Alfoldi and Munday, 1978].

(1) A band 4 green coefficient x of every pixel is cal-
culated as the ratio of the radiance of band 4 over the ra-

diance sum of bands 4, 5 and 6. Similarly a band 5 red

coefficient y is <calculated for every pixel. X and y are

called LANDSAT chromaticity coordinates.

(2) In this coordinate system, Munday [1974] has deter-

mined a curve (Figure 8) which is the locus of the positions

of chromaticity values of water bodies. If, for some pix-

els, the x, y values <calculated in '1 are close to this

curve, then those pixels can be identified as portions of_

water bodies.
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Figure 8 - Chromaticity plot.
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4., Ridge-Valley Detection

In this section, we describe how to extract shadowed and
bright areas, create linear features on the borders betwéen
these areas, and then classify these linear features into

ridge and valley segments. In the next two sections, we

discuss how to generate a relative elevation model.

From the shadow image of Figure 4, we can get the con-—
nected components of bright and shadowed regions. Because
valleys and ridges exist on the borders between these re-
gions, the perimeters of these bright and shadowed régibns

are segmented into border segments according to their left

" regions, right regions, and orientations. A border segment

is a maximally 1long sequence of connected pixels which are
o# the border between two given regions. Because the detec-
tion of ridges andvvalleYSiis highly orientation-dependent
and the sun illumination comes from east in Figure 1, veach
border §egment is further broken into several piecesjaccordF
ing to orienmtation: all the east-west parts can be separat-—

ed from the north—south parts.. The result is shown in Fig-

ure 9.
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As the sun illumination comes from east, those border
segments which are valley segments or ridge segments can be
identified according to the ©brightness of their left and
right regions. Because most of the trees in this area in
April are unfoliated, the strongest region boundaries are
shadow boundaries rather than tonal boundaries, and the
strongest boundaries are those at the extremes of steep
slopes oriented normal to the sun direction. Because the
sun illumination is predominantly east-west, a boundary that

is dark on the left and bright on the right will correspond

to a ridge, and the reverse will correspond to a valley.

East-west region boundaries are <classified according to
the labeling of neighboring north—south boundaries as well
as their orientation relative to the =east-west boundaries,
As shown in Figure 10, east-west boundaries have the same
labeling of the north-south boundary which makes the angle
between them larger. The results of iidgq—valley finding

are shown in Figure 11. Assignment of relative elevation to

ridge and valley is discussed in the next section.
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Valley Ridge

R\ Yney v\ nge

Figure 10 - Classifying east—west border segments'.
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Valley map consisting,of the border segments

- a.

which are identified as valleys.

Figure 11
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5. Relative Elevations of Ridge and Valley Segments

In this section, we‘describe how to estimhte the rela-

-ti#e elevations of the ridges and valleys. First we will

describe a model which can do the elevation assignment job,

then we will give the equations of elevation assignment.

Assuming that we have a stream network in a mountainous

area, and we know whé;e the biggest rivers are, we can trace
the network, startihg from the biggest rivers, to find the
flow directions of all the stream segments because water al-
ways flows from higher locations to lower locations, In
other Qofds; 'if the valley segments detected in the last
section formed a network, . them starting from the visible
rivérs detected in Sectionm 3, we <can trace the network and
assign relative elevations to all the ‘segments, Unfortu-
nately, the observed valley segments do not form a networkp
there are ﬁany gaps. As shown in Figure 12. “if it is dark
on the right and bright on the left of stream Vb, then Vg
cannotbbe detected due to the shadow on the right of Vb, and

a gap exists between Vb and a smaller stream Vs.
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Vb
b
a Vs
7’
7
’/
Vg
Figure 12 — The gap between a smaller and a larger stream.

The knowledge that the cross—sections of valleys are V-
shaped can be used to bridge the gaps. If one looks at to-
pographic maps, the elevation contours of valleys such as in
Figure 13 can be frequently found. Thus, if one draws a

line ab perpendicular to the valley Va, the elevations are
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increasing from point o to point a R and also from point o

to point b. However, if a ridge point is encountered .during

the process, the increasing has to stop because the eleva-

tion starts to decrease. Thus the route of growth is di-

rected both by the valleys and by the ridges, in other

words, by global information.

a 0
Va 1800 loOO 2CCo
.Figure 13 - The elevation pattern of valleys and its rela-—

tion to elevation growing

Applying this idea to Figure 12 and assuming that growing

prqpagates away from valley segment Vb, the end a of valley

segment Vs will be touched first by this growing, and it is
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deduced that end b of Vs must be higher than end a. This is
the basic idea for determining the higher—lower ends of all
the valley segments. The elevations of all the points in
one segment can be calculated if we know its slope. On the
other hand, ridges get elevations when the growing stops at
them. Now, we will give the simple equations of elevation

assignment.,

Our elevation growing model simply assumes that eleva-
tion increases monotonically from valleys to ridges or along
valley segments from rivers to the saddles where a valley
crosses a ridge. It can be used for assigning initial rela-
tive elevations to each pixel. Because no attempt is made
to realistically account for the topographic shape of the
hillsides from the valley tb the ridge, the initial relative
elevations will be more accurate for the ridge or valley la-
beled pixels than the non-ridge and non-valley labeled pix-
els. Section 6 discusses a more realistic procedure for
hillside elevation estimation using the ridge valley eleva-

tions calculated in this section.

There are two ways a pixel can get assigned an elevation
depending on whether the pixel belongs to a valley segment
or whether the pixel does not belong to a . valley segment.
Let U be the set of valley segments. Two slopes are associ-

ated with each valley segment Vs in U: Sv(Vs) and Sp(Vs).
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Sv(Vs) is the slope along Vs itself. Sp(Vs) is the slope of

lines outside of Vs and perpendicular to Vs.

The elevation growing model <constructs the elevation
function El1: Zr X Zc -> Ip, where Zr is the set of row coor-
dinates,{ic is the set of column coordinates, and Ip is the
set of zero and positive integers. If p is a pixel belonging
to a‘Valley segment Vs and pi is the lower'end pixel idénti;
fied as in Figure 12, then

El(p) = E1(pl) + Sv(Vs) * Dist(p, pl)

where Dist is the Euclidean distance between two pixels.

If p does not belong to any valley segment, and its ele-
vation is originated from pixel pr of valley segment Vs,

then

El(ﬁ) = El(pr) + Sp(Vs), * Dist(p, pr).

In a small area, one can assume the elevations of visi-
ble rivers are lowest. Assigning some initial elevation V#—
lues to the pixels of the valley segments classified as vi—
sible:rfvers, the elevations of allvthe other pixels in the
image window can be related to the initial elevations of vi-
sible ri?er segments hy repeatedly using the above two equa-
tions. The relative heights of valley segments created by

elevation growing model are indicated by'arrqws in Figure

14, and the ground truth is shown in Figure 15.
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Figure 14 — Relative elevations of valley segments. The ar-

row are from high ends to low ends.
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Figure 15 - Stream map created from ground truth.
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5.1 Identification of Peak Junctions

—_=

When several valleys and ridge§ point toward a junction,
very often this juction is a peak (peak at junction). The
peak itself is formed by the junction of several ridges that
radiate outward from the peak. (The idealized situation
represented in Figure 16 shows four symetrically oriented
ridges; in our area, real peaks are often formed by junc-—
tions of two or three ridges.) Ridges - -of course are sepa-
'rated by valleys, so the.highet tips of valley segments tend
to point toward_pqaks. The ridge segments intersect to form
a peak, whereas’ valley segments te#d to point towards peaks,
without actually joining. =~ In this sﬁbéection, we discuss

the criteria which can be used to identify peak junctions.

Because ridge segments are the major features of:peaks,
we make the constraint that the number of ridge segments at
a junctionm is lﬁrger than the number of valley segments.
For many situations, it seems reasonable to relate the
heights of peaks to the lemgths of ridges that form the
peaks. For our class of topographic forms (for example), it
is unlikely that very high peaks can be formed by the inter-
section of vgry short ridges. As a result, to exclude very
low peaks and ' false peaks from comnsideration, we impose a
‘rather arbitrary constraint.upon definitions of peaks. Cur-

rently, we define a peak junction as a junction composed of
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four border segments, with the number of its ridge segments
larger than the number of valley segments, and the length of
its longest ridge segment longer than 800 meters. The peaks
thus located in Figure 1 are marked as triangles in Figure

~11.b. The correspondence between this result and the topo-

graphical map is suprisingly good.

\Y \\::::::/ \Y PERSPECTIVE VIEW
R R
\Y
R
PLAN VIEW
- ,"‘-v.-._,v
v ':
R &V R
i
J; Figurev16‘- Idealized relationships between peaks, valleys,

ridges.

o -
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6. Interpolating Between Ridges and Valleys

In the last section all pixels were assigned elevations,
but because realistic shape of the hillsides from valleys to
ridges were not takem into account, only the relative eleva-
tions of the ridges and valleys are held to be accurate. In
this section we describe a few interpolation procedures
which permit more realistic elevation assignment to non-val-

ley and non—ridge pixels.

The first interpolating surface has the givem elevation
valngs at ridges and valleys and has a 3 X 3 digital Lapla-
cian of zero at all non-ridge and non-valley pixels. This
will be referred to as the Laplacian surface. The system of
linear equations which this constraint gives rise to can be

written as

The vector x is the solution and represents the values to be
assigned to each ’'variable’ (mon-ridge non-valley) pixel in
the elevation model. The A matrix is defined by applying
the digital Laplacian mask operator (Figure 17) to each va-
riable pixel. A mask operator is applied to a pixel by
placing the mask over the image so that the central (large
positive) mask value is directly over the pixel whose value
is to be computed. The pixel value is changed to make the
sum of the mask values times the corresponding image values

under them equal to zero. For the Laplacian surface only,
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Neumann boundary <conditions are enforced along the outside
rows and columns of the elevation model image. That is, the
outer-most row or column is }epeated so that the mask opera-
tor can be applied to the outside pixels. There is one row
in A for each variable pixel in the elevation model and one
coefficienf value in that row for <each Variable, A is a
sparse matrix since no variable is constrained by\mor;fthan
four other variables (due to the definition of the digital
Laplacian mask operator). The b vector is the right hgnd
side of éach of the linear equations in the system. The
constants on the 1left hand side of each equation (that re-
sult from applying the Laplacian operator to a variable pix-
él that has a known ﬁixel 4-adjacent to it) are carried to
the right hand side and appear in b. For equations repre-

senting variable pixels not 4—-adjacent to knmown pixels, the

corresponding b element is zero.

Figure 17 - A digital Laplacian mask

The second interpolating surface has the given boundary

values and minimizes the quadratic variationm of the result-
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ing surface [Grimson, 1981]. The boundary conditions with
which the surface must agree are depth values along the
zero—crossings. If the surface elevation function is E and
subscripts denote partial differentiation, then the final

surface E minimizes

Ji (B2 _ + 2 ‘szy + Ezyy) dy d
Since the surface function can be converted to a discrete
grid format, the differential operators can be converted t&
difference operators, and the double integral can ﬁe con-—
verted to double summation, the solution of the above func-
tion can be formed by setting up a discreté corresponding
set of linear equations
Q x = 0.

The x and b vectors have the same meaning as in the Lapla-
cian case and are constructed similarly. The Q matrix 'is
likewise similar to the A matrix of the Laplacian. Instead
of using Neumann boundary conditions at the edge of the im-—
age, the quadratid variation surface is defined by using
special masks to fit the rows and columns mnear the outside
edges. The six masks (Fignre 18) are rotated as necessary
and applied to the only appropriate variable pixels of the
elevation image to define Q. Mask two is applied to <cormner
pixels, mask three is applied to pixels in the outsidé row
or column that are adjacent to a cerner pixel, mask four is

applied to other pixels in the outside rows and columns,
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mask five is applied to pixels in the next—to—the outside

row and columns that are 8-adjacent to cormer pixels, mask

six is applied to other pixels in the next to the outside

rows and columns, and mask 1 is applied to all other varia-

ble pixels in the image.

4 -16 4 E
2 =16 49 -16 2 -
4 -16 4
2
(1) (2)
2
2
_ 4 =12 4
4 -12 4 =
-8 29 -12 5 . 2 =12 22 -12 2
(3) (&)
2
2
~12 36 -l16 2 2 -16 38 -16 2
4-12 4 4-12. 4
(5) (6)
Figure 18 - Six masks for the quadratic variation method.



40

The third kind of interpolation surfaces can be created
without using any mask. For each non-boundary pixel, we can
first find its distances to the nearest valley pixels and
nearest ridge pixels. From these distances and the eleva-
'tions at these nearest valley pixel and nearest ridge pixel,
either a linear, cubic, or fifth order fit interpolation can
be used to calculate the elevation of this non-boundary pix-
el. If cubic fit is used, the first order derivative is
zero at ridge and valley pixels.' If fifth order fit is
used, both the first and second order derivatives are zero
at ridge and valley pixels. The resulting images with high-
er brightness indicating higher =elevation and the corres-—
ponding surface plots are shown in Figure 19. The image and
surface plot of the elevations read from digital terrain:
tape [NCIC, 1980] for this area are shown in Figure 20. The"
reconstructed LANDSAT images by wusing diffuse 1light image
(Figure 5), reflectance image (Figure 6), elevation model
(Figure 19a), and an artificial sun at specified azimuth and
elevation angles are shown in Figure 21. They are reason-—

able reconstructions.



‘Figure

19a. Elevation Model by Method 1, Laplacian Mask
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Figure 19b. Elevation Model by Method 2, Quadratic variation



Figure 19c.

Elevation Model by Method 3,

Linear fit
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Figure 19d. Elevation Model by Method 3, Cubic fit
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Figure

19e. Elevation Model by Method 3, Fifth order

fit
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Figure 20 - Elevation model from digital

terrain tape.
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- Reconstructed LANDSAT imagery

Figure 21



48

1. Conclusion

‘In order to reconstruct 3D spatial information from
LANDSAT imagery, we need to identify shadowed and directly
1it pixels as well as local slope information. A model in-
volving reflectance, topography, diffuse light, and haze has
been discussed and a technique for computing this informa-
tion has been given, The shadow reflectance, and elevation
images look quite good by comparing with the topographic map
of the same area and our understanding of the vegetation

surface cover.

Once the shadow image and local slope information is
determined, ridge and valley segments are detected and then
an elevation growing model is used to assign relative eleva-
tions to them. Interpolation generates surface elevation at
all 1locations from the known values at ridge and valley
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