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Abstract

We describe a generic probabilistic graphical model that
works for recognizing three types of text patterns in
a sentence: noun phrases; the meaning of an ambigu-
ous word; and semantic arguments of a verb. We model
dependency in the input symbol sequence rather than
the output class identification sequence as in CRF’s,
HMM’s, and MEMMs. This enables the determination
of the optimal class for each input symbol to be ob-
tained independent of the optimal class for every other
input symbol. The algorithm needs no dynamic pro-
gramming.
Experiments conducted on standard data sets show re-
sults just as good or better that the competing tech-
niques. For instance, our method achieves an average
precision of 97.7% and an average recall of 98.8% for
recognizing noun phrases on WSJ data from Penn Tree-
bank; an average accuracy of 81.12% for recognizing
the six senses of the word ′line′; an average precision of
92.96% and an average of recall of 94.94% for classi-
fying semantic argument boundaries of a verb of a sen-
tence on WSJ data from Penn Treebank and PropBank.

1 Introduction
Researchers have focused on using probabilistic graphical
models, such as HMMs (Molina et al. 2002), MEMMs
(MaCallum, Freitag, and Pereira 2000), or CRFs (Laf-
ferty, MaCallum, and Pereira 2001) to recognize patterns in
texts 1. These models are derived from either a joint prob-
ability function or a conditional probability function for a
sequence of categories given a sequence of symbols (as-
sociated with a sentence) under some conditional indepen-
dence assumptions. One of their conditional independence
assumptions is that for every i, given i− 1 input classes, the
true class identification of input symbol i depends only on
the true class identification of previous class i − 1. These
assumptions might not be the best assumptions for captur-
ing text patterns in a sentence. Moreover, for these graphi-
cal models, the maximum global probability value cannot be
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1Text patterns related to this research are NP chunks (noun
phrases), the meaning of a polysemous word, and semantic argu-
ments of a verb.

determined until the last symbol of the sequence has been
reached and the computation must be done by a dynamic
programming algorithm. Although dynamic programming is
an efficient optimization technique, the conditional probabil-
ity assumptions we have chosen to use leads to an algorithm
whose memory requirements and computational complexity
is less than dynamic programming and whose performance
is just as good or better.

The competing methods use a graphical model that leads
to an optimization that must dependently thread through the
sequence of class assignments to optimize the joint proba-
bility of the class assignment given the measurements. Un-
derstanding the optimization as an optimization of expected
gain, we can see that they use an implicit gain function
which has a value of one if all the class assignments are cor-
rect and value of zero if one or more of the class assignments
are wrong. No partial credit is given for some correct assign-
ments. This criterion leads to difficulties where noise in the
text data extraction can cause the resulting optimal class as-
signments to hallucinate an incorrect yet seemingly coherent
class identification sequence. In effect what happens here is
that a noisy or perturbed symbol at any position in the input
sequence can produce a wrong category path for the whole
sequence.

Our probabilistic graphical model improves this situation.
In effect the model gives partial credit and yet takes depen-
dencies into account. The model is derived from the prob-
ability function of a sequence of classes given a sequence
of symbols by using the information carried by each current
symbol, the association between the current symbol and the
preceding symbol, and the association between the current
symbol and the succeeding symbol. Understanding our op-
timization as an optimization of expected gain, our implicit
gain function gives credit for each correct class assignment.
It has a value of K if K of the class assignments are correct.
The mathematical representation of the model can be found
in Section 2 and the graphical representation of the model
can be found in Figure 1.

Relative to competing methods, for recognizing a new
symbol sequence N long, the time complexity is reduced
from O(M2N) to O(MN) while the memory complexity
is reduced from O(MN) to O(M), where M is the num-
ber of possible classes. Numerical comparisons are shown
on Section 2. Furthermore, when we make a mistake on one



symbol in a sequence, it will not effect other correct deci-
sions that have been made or will be made for other symbols.
Therefore, the misclassification rate for the whole sequence
of categories can be reduced. Indeed, this is the behavior we
have observed using this kind of model for three different
types of text pattern recognition.

Three text pattern recognition tasks are designed for test-
ing our model. They are noun phrases, the meaning of a pol-
ysemous word , and semantic arguments of a verb in a sen-
tence. In Section 3, we will formerly discuss these tasks.
Moreover, we have conducted our tests on standard data.
The results demonstrate that our method is effective. Some
results exceed or approach the current state of the art. The
rest of the paper is structured in the following way. The sec-
ond section presents the proposed method. The third section
describes the three tasks. The fourth section demonstrates
the empirical results. The fifth section reviews related re-
searches and discussions. The sixth section is the conclu-
sion.

2 The Method
Defining the Task
Let S =< s1, . . . , sN > be a sequence of N symbols
associated with a sentence. Let C be a set of M classes,
C = {C1, . . . , CM} 2. The task is to find a sequence
of classes < c∗1, . . . , c

∗
N >, c∗n ∈ C that best describes

S =< s1, . . . , sN > in the sense that

< c∗1, c
∗
2, ..., c

∗
N >

= argmax
c1,c2,...,cN

p(c1, c2, . . . , cN |s1, s2, . . . , sN )

In order to find the sequence< c∗1, c
∗
2, . . . , c

∗
N >, we need to

compute p(c1, c2, . . . , cN |s1, s2, . . . , sN ). For this we build
a decomposable graphical model.

The Model
In the usual kind of hidden Markov models, there is a de-
pendency in the class sequence. In our model, there is also
sequence dependency. That dependency is between neigh-
boring classes to measurements instead of between class
and neighboring class. In effect our model works because
the dependency from neighboring classes to measurement is
greater than the dependency between class and neighboring
class.

The conditional independence graph that defines our
graphical model is shown in Figure 1. For comparison,
the conditional independence graph that defines the typical
Markov dependency in the class sequence is shown in Figure
2.

Our graphical model leads to the following representation
for the probability

p(c1, . . . , cN |s1, . . . , sN ) =∏N

n=1
p(sn−1|sn, cn)p(sn+1|sn, cn)p(sn|cn)p(cn)∑

ck∈C

∏N

k=1
p(sk−1|sk, ck)p(sk+1|sk, ck)p(sk|ck)p(ck)

(1)

2Cm ∈ C will have a different meaning for each of the different
tasks

s1 s2 s3 sN−2 sN−1 sN

c1 c2 c3 cN−2 cN−1 cN

Figure 1: The conditional independence graph defining our
graphical model.

s1 s2 s3 sN−2 sN−1 sN

c1 c2 c3 cN−2 cN−1 cN

Figure 2: The usual conditional independence graph for
Markov dependencies among the classes.

Properties of The Model
Property 1. The Markov blanket for node cn is
sn−1, sn, sn+1. Therefore, the Markov blanket prop-
erty of the conditional independence graph tells
us that class cn is conditionally independent of
s1, . . . , sn−2, sn+2, . . . sN given sn−1, sn, sn+1. Therefore,
P (cn|s1, . . . , sN ) = p(cn|sn−1, sn, sn+1)

Property 2. Notice that in our conditional indepen-
dence graph, all paths between nodes sn−1 and sn+1

must go through the one of the nodes in sn and cn.
This means that sn−1 is conditionally independent of
sn+1 given sn and cn. Hence p(sn−1, sn+1|sn, cn) =
p(sn−1|sn, cn)p(sn+1|sn, cn). Therefore,

p(cn|sn−1, sn, sn+1) =
p(sn−1, sn, sn+1, cn)

p(sn−1, sn, sn+1)

=
p(sn−1, sn+1|sn, cn)p(sn, cn)

p(sn−1, sn, sn+1)

=
p(sn−1|sn, cn)p(sn+1|sn, cn)p(sn|cn)p(cn)

p(sn−1, sn, sn+1)
,

n = 2, . . . , N − 1

Property 3. Properties 1 and 2 imply that
p(cn|s1, . . . , sN ) = p(cn|sn−1, sn, sn+1)

=
p(sn−1|sn, cn)p(sn+1|sn, cn)p(sn|cn)p(cn)

p(sn−1, sn, sn+1)
,

n = 2, . . . , N − 1

Property 4. A node si together with its left neighbour si−1
and the node ci forms a clique. A node si together with its
right neighbour si+1 and the node ci forms of a clique.3
Moreover, nodes si and ci form a separator and nodes si
and si+1 form a separator.4

3A clique is a maximal complete set of nodes. Λ ⊆ V is a clique
if and only if λ1, λ2 ∈ Λ, λ1 6= λ2, imply {λ1, λ2} ∈ E and there
is no set that properly contains Λ with this property.

4Γ = {Γ1, ...,ΓM} is a set of separators, where Γk = Λk ∩
(Λ1 ∪ ...,∪Λk−1).



Property 5. For a sequence of N symbols, our model has a
set of 2N − 2 cliques and a set of 2N − 3 separators.

Property 6. Our model has an unique junction tree
G1 = (V1, E1). Each v ∈ V1 is a clique. The pair of nodes
in each edge is a separator. The junction tree is illustrated
in Figure 3, where nodes A = {sN−1, sN , cN}, B =
{sN−2, sN−1, cN−1}, C = {s2, s3, c3}, D = {s1, s2, c2},
E = {sN−1, sN , cN−1}, F = {sN−2, sN−1, cN−2},
G = {s2, s3, c2}, H = {s1, s2, c1}.

Property 7. The product of the probabilities for the cliques
divided by the product of the probabilities for the separators
is the joint probability p(c1, . . . , cN , s1, . . . , sN )

p(c1, . . . , cN , s1, . . . , sN )

=

∏N−1

n=2
p(sn+1|sn, cn)p(sn−1|sn, cn)p(sn|cn)p(cn)∏N−1

m=1
p(sm, sm+1)

×p(s2|s1, c1)p(s0|s1, c1)p(s1|c1)p(c1)

×p(sN+1|sN , cN )p(sN−1|sN , cN )p(sN |cN )p(cN )

=

∏N

n=1
p(sn−1|sn, cn)p(sn+1|sn, cn)p(sn|cn)p(cn)∏N−1

m=1
p(sm, sm+1)

Property 8. By property 7, the conditional probability can
be obtained by:

p(c1, . . . , cN |s1, . . . , sN )

=
p(c1, . . . , cN , s1, . . . , sN )∑

c1,...,cN
p(c1, . . . , cN , s1, . . . , sN )

=

∏N

n=1
p(sn−1|sn, cn)p(sn+1|sn, cn)p(sn|cn)p(cn)∑

c′n∈C

∏N

n=1
p(sn−1|sn, c′n)p(sn+1|sn, c′n)p(sn|c′n)p(c′n)

Finding < c∗1, . . . , c
∗
N >

Property 9. By property 7 and property 8, we find a se-
quence of category < c∗1, . . . , c

∗
N > for a sequence of sym-

bols< s1, . . . , sN >, we only need to find c∗n for sn individ-
ually. Note, the denominator in (1) is a constant. Therefore,
it does not effect a decision for assigning ci to si.

< c∗1, c
∗
2, ..., c

∗
N >=

argmax
c1∈C

{p(s2|s1, c1)p(s1|c1)p(c1)}

argmax
c2∈C

{p(s1|s2, c2)p(s3|s2, c2)p(s2|c2)p(c2)}
...

argmax
cN−1∈C

{p(sN−2|sN−1, cN−1)p(sN |sN−1, cN−1)

p(sN−1|cN−1)p(cN−1)}
argmax
cN∈C

{p(sN−1|sN , cN )p(sN |cN )p(cN )} (2)

Complexity
Time Complexity For each symbol sn ∈ S, we need to as-
sign a cn, s.t. Psn|cn = max{p(sn−1|sn, cn) p(sn+1|sn, cn)

A

B

C

D

E

F

G

H

sN−1, sN

sN−2, sN−1

s2, s3

s1, s2

sN−1, cN−1

s2, c2

Figure 3: The junction tree shows the cliques in running
order and the separators between them. The product of
the probabilities for the cliques divided by the product of
the probabilities for the separators is the joint probabil-
ity p(c1, . . . , cN , s1, . . . , sN ). A = {sN−1, sN , cN}, B =
{sN−2, sN−1, cN−1}, C = {s2, s3, c3}, D = {s1, s2, c2},
E = {sN−1, sN , cN−1}, F = {sN−2, sN−1, cN−2}, G =
{s2, s3, c2}, H = {s1, s2, c1}.

p(sn|cn) p(cn)|cn ∈ C} = max{P (sn|cn)|cn ∈ C}. To
compute a P (sn|cn), we need to have four multiplications.
To obtain the maximum probability value Psn|cn , we need
to have M − 1 comparisons. In the case of a sequence of N
symbols, we have

Tc = 4 ∗N ∗ (M − 1) = O(N ∗M)

where M is the cardinality of C and N is the length of sym-
bol sequence S.

Memory Complexity Because the global maximum prob-
ability is determined by each local maximal probability, for
a sequence of N symbols, we only need to store the infor-
mation of the current symbol. That is, we need only store M
probability values in order to find the maximal probability
value. Therefore,

Mc =M = O(M)

Comparisons HMMs or CRF s employ dynamic pro-
gramming to obtain a sequence optimal of classes for a se-
quence of symbols by computing a joint probability p(s1 . . .
sn c1 . . . cN ) or or a conditional probability p(c1 . . . cN |
s1 . . . sn). In dynamic programming, the optimal class for
the current symbol is obtained based on an optimal class of
the previous symbol. Therefore, the optimal class for the last
symbol is determined after the last symbol has been reached.
The optimal class sequence needs to be determined by trac-
ing back from the last optimal class assignment to the first
optimal class assignment. For each symbol, the information
of M classes needs to be stored. Hence, for a sequence of N
symbols, the time complexity is O(M2N) and the memory
complexity is O(M ∗N).
Ratio of Time Complexity

NM

M2N
=

1

M

Ratio of Memory Complexity
M

M ∗N
=

1

N



We compute ratios of time complexity and memory com-
plexity of our model to HMMs and CRF s to see the dif-
ferences. It is clear that if we need to recognize a sequence
of N symbols with M categories, our model only takes 1

M

time and 1
N memory space compared to HMMs or CRF s.

For example, if the cardinality of C is (M = 8), for a se-
quence of thirty symbols (N = 30), our method only needs
to have 1

8 time and 1
30 memory space of aHMM or a CRF

to recognize this sequence.

3 Three Tasks
Descriptions
In the previous section, we have conducted a numerical com-
parison on complexities between our model and other prob-
abilistic graphic models such as HMMs and CRF s. Start-
ing from this section, we will discuss three tasks and apply
our method on these tasks. The tasks are: identifying noun
phrases (NP chunking), identifying the meaning of a poly-
semous word (word sense disambiguation WSD), and iden-
tifying semantic arguments (ISA) of a verb in a sentence. A
symbol sequence in each task associates with different ob-
jects. In NP chunking, it associates with a sentence; in WSD,
it represents a polysemous word (called the context of the
word); in ISA, it is a path related to a verb in a parse tree.
Moreover, a set of categories in each task also has differ-
ent representations. In NP chunking, it is a set of locations
of a word related a noun phrase; in WSD, it is a set of pre-
defined sense of the ambiguous word; in SAI, it is a set of
directions from the current node to its neighbours. Then our
method is applied to find an optimal category sequence as-
sociating with a symbol sequence with the maximum con-
ditional probability. Then NP chunks are formed by finding
blocks in the optimal category sequence; the meaning of a
polysemous word is determined by selecting the most fre-
quently appeared category in the optimal category sequence;
and semantic arguments before and after a verb is obtained
by finding siblings of each node in the optimal path.

Definition of Task 1
Let L be English language, V be a vocabulary associates
with a parse tree defined by (), and T be a set of part-of-
speech tags of V defined by Penn Treebank project (Mar-
cus, Santorini, and Marcinkiewicz 1994). Let S be a se-
quence of symbols associated with a sentence, s.t. S =<
s1, ..., si, ..., sN >, si = (wi, ti), wi ∈ V, ti ∈ T . Let C be
a set of categories, C = {C1, C2, C3}, where C1 represents
a symbol is inside an noun phrase, C2 represents a symbol
is not in an noun phrase, C3 represents a symbol starts at a
new noun phrase.

Building Blocks B is a block if and only if:
1. For some i ≤ j, B = < (si, ci), (si+1, ci+1), . . ., (sj , cj) >

2. ci ∈ {C1, C3}
3. cn = C1, n = i+ 1, . . . , j

4. For some B′, if B′ ⊇ B and B′ satisfying 1, 2, 3 →
B′ ⇐⇒ B

Formulating Task
• Finding a sequence of categories < c∗1, . . ., c∗N > s.t.

< c∗1, . . . , c
∗
N >= argmax

c1,...,cN

p(c1, . . . , cN |s1, . . . , cN )

• Finding {B1, . . . , BM}, eachBm is a block satisfying the
definition of B.

Definition of Task 2
Let L, V , and T be defined in Task 1. Let S be a sequence of
symbols associated with the context of a polysemous word,
s.t. S =< st−i...st...st+j >, st = (wt, tt), wt is a polyse-
mous word wt ∈ V , tt ∈ T . Let C be a set of categories,
C = {C1, C2, . . . , CM}, where each Cm is a predefined
sense of wt.

Formulating Task
• finding a sequence of categories < c∗t−i . . . c

∗
t . . . c

∗
t+j >

s.t.

< c∗t−i . . . c
∗
t . . . c

∗
t+j >=

argmax
ct−i...ct+j

p(ct−i . . . ct+j |st−i . . . st+j)

• assigning wt to c∗∗t if and only if

c∗∗t =

max{#{c∗l |c∗l = Cm, Cm ∈ C, l = t− i . . . t+ j}}

Definition of Task 3
Let T = (V , E , A, L) be a labeled rooted tree associated
with a sentence, where A is defined by (Weischedel et
al. 2007). Let π = {V B, V BN , V BG, V BZ, V BP ,
V BD} ⊆ A. Let C = {C1, C2, C3, C4, C5} be a set of
class labels, where C1 represents from the current node
to its parent, C2 represents from the current node to its
first child, C3 represents from the current node to its
right sibling, C4 represents from the current node to its
left sibling, andC5 represents from the current node to itself.

Formulating Task
• For each x ∈ V and L(x) ∈ π, find a sequence nodes
< b∗1, b∗2 , . . ., b∗L >, s.t.

< b∗1, . . . , b
∗
L > = argmax

b1,...,bL

p(c1, . . . , cL, b1, . . . , bL)

• Find a path P(x) = τ1 → . . . ,→ τK from <
b∗1, . . . , b

∗
L >, s.t. for each τk ∈ P(x), there is a least

one child y, L(y) ∈ π
• Find a child r, L(r) 6∈ π for each τk to form R(x) =
{ri|i = 1 . . .M}

A labeled rooted forest F (x) = {T1, . . . TM} is formed.
Each Ti is a labeled rooted tree, rooted as ri, and induced
by the descendants of ri. Each labeled rooted tree Ti asso-
ciates with a semantic arguments of x. |F | is # of semantic
arguments of x.



4 Empirical Results
Experiments Set Up
We test these three tasks on data sets, such as WSJ data
from the Peen TreeBank and the PropBank!(Weischedel
et al. 2007), CoNLL-2000 Shared Task Data (Tjong and
Sang 2000), and data developed by (Leacock, Towell, and
Voorhees 1993) and (Bruce and Wiebe 1994) for WSD. The
evaluation metrics we have used for task 1 and task 3 are
precision , recall, and F-measure (F1). Moreover, the eval-
uation metric we have used for task 2 is accuracy . We have
used 10-fold cross validation technique to obtain an average
output.

Results on the First Task
We have conducted experiments for identifying NP chunks
on two kinds of data sets. One is CoNLL-2000 Shared Task
data set and the other is WSJ data set from Penn Treebank.
On the first data set, three types of symbols are designed
to test our model. They are the lexicon of a word, the POS
tag of a word, and the lexicon and the POS tag of a word.
The results are shown in the table 1. By comparing the re-
sults, we have noticed that if the model is built only on
the lexical information, it has the lowest performance of F-
measure 89.75%. The model’s performance improved 3%
on F-measure if it is constructed by POS tags. The model
achieves the best performance of 95.59% on F-measure if
both lexicon and POS tags are included.

The second data set we have used to verify our model is
the WSJ data from Penn Treebank: WSJ 0200 - WSJ 2999.
The main reason for using this data set is that we want to
see whether the performance of our model can be improved
when it is built on more data. In this experiment, based on
the result we obtained from the CoNLL-2000 data, each
symbol is the lexicon word+POS tag. In this case, the train-
ing set is seven times larger than the CoNLL-2000 shared
task training data set. The testing set result is shown in Ta-
ble 1. The standard deviations are the numbers inside the
parentheses.

Compared with the results on these two data sets, we have
noticed that the average precision is improved about 2.7%
from 95.15% to 97.73% . The average recall is improved
about 2.8% from 96.05% to 98.65%. The average F-measure
is improved about 2.7% from 95.59% to 98.2% as the train-
ing sets expended into the seven times larger. This suggests a
tradeoff between sizes of training sets and the performances
of our model need to be considered.

Table 1: The test results on the CoNLL-2000 and WSJ data

Data Symbol type Precision Recall F-measure
% % %

CoNLL
Lexicon+POS 95.15 96.05 95.59

POS 92.27 93.76 92.76
Lexicon 86.27 93.35 89.75

WSJ Lexicon+POS 97.73 98.65 98.18
(0.19) (0.14) (0.08)

Results on the Second Task
We test our model for identifying the sense of a word on the
data sets line, hard, serve, and interest. The senses’ descrip-
tions and instances’ distributions can be found in (Leacock,
Towell, and Voorhees 1993) and (Bruce and Wiebe 1994). In
these data sets, line and interest are polysemous nouns, hard
is a polysemous adjective, and serve is a polysmous verb. In
our experiment, line has 6 senses, serve has 4 senses, hard
has 3 senses, interest has 3 senses (other 3 senses are omit-
ted due to lack of instances). The test metric that we use is
accuracy.

Table 2 shows the test results. In the table, Mean rep-
resents the average accuracy, Std represents the stand de-
viation, MaxA represents the maximum accuracy obtained
from tests, and MinA represents the minimum average ac-
curacy obtained obtained from tests.

Table 2: The results on line, serve, hard, interest data

Ambiguous Senses Mean Std MaxA MinA
word % % % %

Line (n) 6 81.16 1.92 84.50 78.0
3 85.25 2.13 91.70 81.05

Serve (v) 4 79.80 1.90 82.92 76.88
Hard (adj) 3 82.88 3.10 87.03 78.11
Interest (n) 3 92.10 2.21 95.50 86.00

By observing the results in Table2, we notice that,
whether a ambiguous word is a noun, an adjective, or a verb,
whether it has three senses, four senses, even six senses,
our model achieves an average of accuracy 80%. This result
is very encouraging and surpasses the results published by
other researchers (Leacock, Towell, and Voorhees 1993) and
(Levin, Sharifi, and Ball 2006). Moreover, by observing the
outputs of two polysemous nouns line and interest, we found
that as number of senses of a polysemous noun increases,
the accuracy decreases. This suggests that nouns with larger
number of senses are more difficult to recognize than nouns
with small number of senses by our model. Furthermore, by
observing the Means in column three, we notice that nouns
are relatively easier to identify than adjectives or verbs. By
observing the standard deviations in column four, the accu-
racies produced by our model on adjective data is more di-
vergent than that of the nouns or verbs.

Results on the Third Task
In this experiment, we use WSJ data, section 00 from
Pen Treebank and PropBank to test our model for iden-
tifying semantic arguments of a verb. For each sentence,
Treebank provides a corresponding parse tree while Prop-
Bank provides corresponding semantic arguments of pred-
icates in the sentence. The total number of trees in our
data set is 233. These trees are generated by a statistic
parser from corresponding sentences with an average accu-
racy 95% (Weischedel et al. 2007). In our data set, the num-
ber of predicates is 621. For each predicate, an average of
three semantic arguments and a total of 1959 semantic argu-



ments are obtained. These semantic arguments of predicates
in PropBank are generated by human labels.

Among the 233 trees, 208 trees are in the training set
while 25 trees are are in the testing set. [What happened to
cross validation?] By our model, total 196 labeled rooted
subtrees associated with 63 verbs are constructed. Among
these trees, 186 trees are associating correct semantic ar-
guments of verbs while 10 trees have been misclassified.
Among 10 trees, 4 trees are not semantic arguments while
other 6 trees are some leaves associating with semantic ar-
guments while other parts are not.

We also used our model to determine the semantic argu-
ments of verbs. The results are shown in Table 3. Among 196
semantic arguments to be classified, 151 semantic arguments
are correctly identified and 10 semantic arguments are clas-
sified incorrectly. Two kinds of errors can be noticed from
this experiment. One of them is incorrect boundary. That is,
some parts of a sequence does not belong to the semantic
argument. Another error is a sequence is misclassified as a
semantic argument.

Table 3: The test results on WSJ data
Data Precision Recall F-measure

% % %

WSJ 92.335 94.1675 93.2512
(0.6195) (0.5174) (0.4605)

5 Related Researches and More
Comparisons

The graphical models used by most researchers consist of
HMMs (MaCallum, Freitag, and Pereira 2000) (Molina et
al. 2002), MEMMs(MaCallum, Freitag, and Pereira 2000),
and CRFs(Lafferty, MaCallum, and Pereira 2001) (Sha and
Fereira 2003). These models are built for obtaining an opti-
mal corresponding category sequence c =< c1, . . . , cN >
for a symbol sequence s =< s1, . . . , sN > by finding the
maximum value for the joint probability p(c, s) or the condi-
tional probability p(c|s). Each ci or si is a node, ideally, for
each ci, degree(ci) should be 2N−1. That is for any pair of
nodes ci, cj and ci, sj , there is a link. However, assumptions
are made in these methods. Figure 4 show these graphical
models for symbol si. By examining these graphical mod-
els, we find that for each ci, degree(ci) or (in degree(ci)
are different. While in degree(ci) equals 1 for a HMM ,
in degree(ci) equals 2 for a MEMM , degree(ci) equals 2
for a CRF , degree(ci) equals 3 for the model presented by
the paper. Our model has more links suggesting it has fewer
assumptions. Moreover, there is a link from ci−1 to ci in any
model except our model. In our model, instead of using ci−1
to predict ci, we use si−1 and si+1 to predict ci. We believe
that ci can be better predicted from si−1 and si+1 rather than
ci−1 when these symbols consist of several kinds of infor-
mation. For example, in the case of NP chunking, POS tag
information carried on a symbol is much more useful than
the class information assigned to the previous symbol.

By observing the graphical representation of each model,
we notice that a HMM makes two conditional indepen-
dence assumptions. First, given its previous class identifica-
tion, the current class identification is independent of other
classes. Moreover, given its current class, the symbol is in-
dependent of other classes and symbols. MEMM makes
one conditional independence assumption. Given its pre-
vious class identification and the current symbol, the cur-
rent class identification is independent of other classes and
symbols. A CRF makes the same two conditional assump-
tions as a HMM . The model presented in this paper makes
one conditional independence assumption. Given the cur-
rent, the preceding, and the succeeding symbol, the current
class identification is independent of other class identifica-
tions and symbols.

Moreover, mathematical notations of directed graphic
models can be directly built from it graphical representa-
tion for a joint probability. Then a conditional probabil-
ity can be found by applying Bayes’ theorem. The models
representing a HMM and a MEMM are directed mod-
els. The mathematical notation of the HMM is p(c, s) =∏N

i=1 p(si|ci)p(ci|ci−1) while the mathematical notation of

the MEMM is p(c|s) =

∏N

i=1
p(ci|ci−1si)∑

cn∈C

∏N

n=1
p(cn|cn−1sn)

. Fur-

thermore, mathematical notations of undirected models can
be derived from the notion of the product of cliques divided
by the product of separators in a graph for a joint probabil-
ity. The same method is applied as in directed graphic model
for a conditional probability. For example, the CRF is rep-

resented as p(c|s) =

∏N

i=1
p(si|ci)p(ci|ci−1)∑

cn∈C

∏N

n=1
p(sn|cn)p(cn|cn−1)

. The

model discussed in this paper is represented by p(c|s) =∏N

i=1
p(si−1|si,ci)p(si+1|si,ci)p(si|ci)p(ci)∑

cn∈C

∏N

n=1
p(sn−1|sn,cn)p(sn+1|sn,cn)p(sn|cn)p(cn)

. Com-

pared with these mathematical expressions for p(c|s), CRF
has two terms, MEMM has one term, and our model has
four terms in the numerator. Moreover, different from the
other two models, none of the terms in our model is related
to ci−1.

A number of NP chunking, WSD, semantic role labelling
methods has been developed over the years. The methods
for NP chunking are (Church 1988) (Ramshaw and Mar-
cus 1995) (Molina et al. 2002) (Abney and Abney 1991)
(Wu-Chieh et al. 2008), the methods for WSD are (Hearst
1991) (Gale, Church, and Yarowsky 1992) (Leacock, Tow-
ell, and Voorhees 1993) (Leacock, Miller, and Chodorow
1998) (Yarowsky 1994), and the methods for semantic role
labelling are (Gildea and Jurafsky 2002) (Baldewein et al.
2004) (Cohn and Blunsom 2005). In contrast to these meth-
ods, we apply our new model to identify a noun phrase, the
meaning of a polysemous word, and semantic arguments
of a verb in a sentence. In NP chunking task, we adopt
Ramshaw’s idea (Ramshaw and Marcus 1995) of designing
three possible class identifications for a word in a sentence
to determine whether the word is inside a NP chunk, out-
side a NP chunk, or start a new NP chunk. In WSD task,
in contrast with other WSD methods, the polysemous word
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Figure 4: (1): a HMM model p(s, c) =∏N
i=1 p(si|ci)p(ci|ci−1), (3): a MEMM model

p(c|s) =

∏N

i=1
p(ci|ci−1,si)∑

cn∈C

∏N

n=1
p(cn|cn−1sn)

, (4): a CRF

model p(c|s) =

∏N

i=1
p(si|ci)p(ci−1|ci)∑

cn∈C

∏N

n=1
p(sn|cn)p(cn|cn−1)

,

and (5): the model presented by this paper p(c|s) =∏N

i=1
p(si−1|si,ci)p(si+1|si,ci)p(si|ci)p(ci)∑

cn∈C

∏N

n=1
p(sn−1|sn,cn)p(sn+1|sn,cn)p(sn|cn)p(cn)

, where

s =< s1, . . . , sN >, < c1, . . . , cN >

is represented by a sequences of symbols, each symbol is a
ordered pair (the lexicon and the POS tag of a word). Each
symbol is represented by it’s left symbol and right symbol.
Moreover, in the semantic argument identification task, we
created our own algorithm. The experiments in the section
4 show our model achieves better performance than HMMs
and CRFs (Sha and Fereira 2003).

6 Conclusions
A generic probabilistic graphical model has been discussed
throughout this paper. It has an unique graphic represen-
tation and mathematical notation which are different from
other existed graphic models such as HMMs, CRF s, and
MEMMs. It does not need to employ dynamic program-
ming for obtaining a sequence of optimal class assignments
for a sequence of symbols. As a consequence, it requires
less operating time and less memory spaces than compet-
ing techniques. Moreover, because a sequence of optimal
class assignments for a sequence of symbols is determined
by finding the optimal class assignment for each symbol in-
dependently, the misclassification for the sequence of class
assignments can be reduced. Performance of three different
types of tasks: noun phase identification, word sense disam-
biguation, and semantic arguments of a verb classification,
have demonstrated the effectiveness of our graphical model.
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