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ABSTRACT

In order to design vision systems which work, a sound engineering method-
ology must be utilized. In the systems engineering approach, a complex system
is divided into simple subsystems and from the input/output characteristics
of each subsystem, the input/output characteristics of the total system can
be determined. Machine vision systems are complex, and they are composed
of different algorithms applied in sequence. Determination of the performance
of a total machine vision system is possible if the performance of each of
the subpieces, i.e. the algorithms, is given. The problem, however, is that
for most algorithms, there is no performance characterization which has been
established and published in the research literature.

Performance characterization has to do with establishing the correspon-
dence of the random variations and imperfections which the algorithm pro-
duces on the output data caused by the random variations and imperfections
of the input data. This paper illustrates how random perturbation models and
propagation of random errors can be set up for a vision algorithm involving
edge detection, edge linking, arc segmentation, and line fitting. The paper
also discusses important dimensions that must be included in the performance
characterization of any vision module performing a parametric estimation such
as object pose, curve fit, or edge orientation estimation. Finally, we outline
a general parametric model having three components: a relational model; a
noise model; and a computational estimation model.
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1. Introduction

Machine vision systems are complex and they are composed of different algorithms
applied in sequence. Determination of the performance of a total machine vision system
is possible if the performance of each of the subsystems, i.e. the algorithms, is given. The
problein, however, is that for most algorithms, there is no performance characterization
which has been established and published in the research literature.

What does performance characterization mean for an algorithm which might be used
in a machine vision system? The algorithm is designed to accomplish a specific task. If
the input data is perfect and has no noise and no random variation, the output produced
by the algorithm ought also to be perfect. Otherwise, there is something wrong with the
algorithm. So measuring how well an algorithm does on perfect input data is not interesting.
Performance characterization has to do with establishing the correspondence of the random
variations and impertections which the algorithm produces on the output data caused by
the random variations and imperfections of the input data.

Now we are thrown into an immediate problem. It is typically the case that an algorithm
changes the data unit. For example, an edge-linking process changes the data from the unit
of pixel to the unit of a group of pixels. An arc segmentation/extraction process applied
to the groups of pixels produced by an edge linking process produces fitted curve segments.
This unit change means that the representation used for the random variation of the output
data set may have to be entirely different than the random variation used for the input data
set. In our edge-linking/arc extraction example, the input data might be described by the
false alarm/misdetection characteristics produced by the preceding edge operation, as well
as the random variation in the position and rotation of the correctly detected edge pixels.
The random variation in the output data from the extraction process, on the other hand,
must be described in terms of fitting errors (random variation in the fitted coefficients) and
segmentation errors.

The representation of the segmentation errors must be natural and suitable for the
input of the next process in high-level vision which might be a model-matching process,
for example. What should this representation be to make it possible to characterize the
identification accuracy of the model matching as a function of the input segmentation errors
and fitting errors? Questions like these, have typically not been addressed in the machine
vision literature. Until they are, analyzing the performance of a vision algorithm will be in
the dark ages of an expensive experimental trial-and-error process. This paper illustrates
how random perturbation models can be set up in a simple setting for a Vision algorithm
involving edge detection, edge linking, arc segmentation, and line fitting. The paper also
dlscusses important dimensions that must be included in the performance characterization
of any vision module performing a parametric estimation such as object pose, curve fit, or
edge orientation estimation. Finally, we outline a general parametric model having three
components: a relational model; a noise model; and a computational estimation model.
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2. Background Discussion

Our position is that a proposed vision methodology or architecture should be logically or
intellectually and experimentally compelling. That is, the reasons for doing things one way
rather than another should not be chosen because of heuristics, but because there is some
prior information which indicates that the choice is among the best choices that could be
made in the given circumstances and best choices are those based on a methodology whose
assumptions have been experimentally verified.

We must therefore ask: what is it that compels one to adopt a particular vision
methodology or architecture? The answer to this question involves answering questions
about representations, algorithms, and accuracy. An algorithm employed at any stage in the
image analysis sequence employs a representation for the data with which it works, Then we
must ask: what kinds of conditions exceed the limits of the representation? When is reality
not covered by the representation? These will be the cases of sure fajlure. The algorithm
itself is a numerical calculation. So we must ask under what conditions does it break down
because there are singular computational instances in which the numerical calculation is not
stable? TIinally, the algorithm works with noisy data, data which has been perturbed from
its ideal form. Therefore, the results of the algorithm will be perturbed from their ideal form
too. To what degree will a perturbation of the nput data affect the accuracy of the output,
in a qualitative sense and in a quantitative sense?

The methodology should employ both black-box and white-box perspectives. In the
black-box perspective, we care about the requirements relating to the computer vision task
the black-box is supposed to solve, and we determine whether these requirements are met
by an empirical performance analysis. In the white-box perspective, the box is examined
from the inside out. We ask whether it provides guaranteed answers under a given set of
well-defined assumptions. We establish the guarantee by theory. Then we ask whether the
assumptions are consistent with the reality the box is supposed to handle. We establish this
consistency by an experimental reality-assumption validation test.

Everything that is said here about the box — white or black — meaning an individual
algorithm that is a part of a total vision system can likewise be said for the total vision
algorithm.

Section 3 of the paper gives a discussion of an example mid-level vision module for which
the random perturbation process of the previous low-level vision stage involves units that
are different from the units produced by the output of the mid-level vision process, so that
different random perturbation processes must be employed for charé(:terizing the input and
output randomness. The example illustrates how, with some thought, it is possible to handle
the situation, how the parameters of the random perturbation process can be estimated, and
how the analysis that propagates the characterization of the random perturbation cf the
input to the random perturbation of the output can be done.
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Section 4 gives a discussion of the kinds of performance characterization issues that must
be handled for any vision module performing a parametric estimation. Vision modules doing
2D or 3D pose estimation, curve fitting, and edge orientation are just a few examples of such
kinds of vision modules. Important issues of robustness, reliability, and error propagation
are discussed in Section 4.

3. Example Discussion

In sections 1 and 2 of the paper, we outlined some of the fundamental questions of
performance characterization. In this section, we change our perspective from the abstract
to the concrete to illustrate how one of the random perturbation models can be set up in the
simple setting described here for a vision algorithm involving edge detection, edge linking, arc
segmentation, and line fitting. The example focuses on edge-linking, but there is no implied
limitation that the proposed methodology cannot be employed to handle more complex
vision algorithms involving perspective projection, matching, high-level control, and complex
objects or scenes. We only employ this example for its ease and convenience. Note that the
input random perturbation model differs from the output random perturbation model. This
happens whenever the data structure of the output differs from the data structure of the
input.

3.1 Random Perturbations at the Edge-Linking/Line-Fitting Stage

In this section we discuss the nature of the input data and the output data seen by an
edge-linking mid-level-vision module and then proceed to model the random perturbation
of the input and give details of how to estimate the model parameters from first principles.
This discussion is illustrative of what can be done at any step of the vision process.

Let us assume that there is a step edge which is corrupted with noise. Edge detection
may muslabel a pixel by assigning the non-edge label to edge pixels and assigning the edge
label to non-edge pixels. So, for edge detection, the output random perturbation model can
be specified by the misdetection and false alarm rates that are specified for the pixel as
the data structure. A more involved edge detection model could take into account spatial
correlations or dependencies in pixel misdetection and false alarm rates.

The edge-linking stage makes use of some information like spatial proximity and gradient
direction to link the edge-labeled pixels. The output data structure produced by the edge-
linking process is set of line or arc segments. However, if the noise level is quite high, the
linking process will leave gaps between successive arcs, and whatever gap-filling process it
employs will often be unable to close all the gaps between the edge segments. Therefore edge-
linking leaves a collection of line segments with gaps between them. From this discussion
one can view the input to the line-fitting stage as a collection of pixels belonging to short line
segments. The entity that is the ideal input is the entire collection of pixels which belong to
the line. It is reasonable for the random perturbation process that breaks these ideal long
line segments into a collection of short line segments to possess the following characteristics:
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e Long model line segments get broken up more than short model line segments. Th
number of breaks is proportional to the length of the line segment, contrast across th
edge being assumed constant.

o Short isolated line segments are more likely caused by correlated noise in the Image.
o The probability of missing a line segment is higher for smaller length lines.

o Orientation estimates for smaller line segments may not be close to the true value. This
is mainly because of the number of points involved in the estimation and the length o
the line.

* The gap lengths between collinear image line segments arising from the same model line
segment are small.

* Two model line segments intersecting at a very obtuse angle may give rise to a single
linked line segment in the image.

All the above statements applies to curve segments as well. In the next section, we
proceed to the mathematical characterization of the random perturbation process which
breaks lines or curves.

The tasks that have to he accomplished are:

1) to state a random perturbation model suitable for characterizing random line lengths;

2) to use this random perturbation model to determine the probability density function for
the interval length between two breaks;

3) to show how the free parameters of this random perturbation model relate to the

statistical parameters of the previous process, which in this case is edge detection;

4) to show how the free parameters of this random perturbation model can be estimated
from suitably labeled sample imagery: and

5) to show how the random perturbation of the input to a gap-filling process that is part of
an edge-linking procedure can be propagated to the random perturbation process that
characterizes the output of the gap-filling process.

3.2 Perturbation Model for Lines/Curves

Suppose that we have a curve C which is defined parametrically as:

r(s) = i O Pm ()

()= 3 Bt (s)

where s is the arc length, ¢,,... ¢, are the given basis functions, Q1. 0 and fy, ..., By
are the unknown coefficients. The parametrization is assumed to be defined in the interval
[0, L], where L is the length of the curve. Given such a curve, we describe a process which
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generates broken curve segments. A random variable X is exponentially distributed with

 parameter Aif:
Prob(X = 2 = Aexp=*® ., (1)

It should be noted that the mean value of X is ;.

We can model the breaks by assuming that the curve segment lengths and the gap lengths
are exponentially distributed with rate parameters A, and A., respectively. The parameter
')\ is an indirect measure of how often a line or curve of fixed length would break up since
it is related to the mean segment length. The parameter A is a measure of how long these
breaks would be.

Assuming that we are given the interval [0,L] and rate parameters A\; and A, for
the segment lengths and the gap lengths, the random perturbation process generates the
collection of line/curve segments as follows:

o Start from the left end point of the interval (this corresponds to s = 0) and choose a value
s: from an exponential distribution with rate parameter A;. The sequence of (r,c)’s in
the interval [0,s,] belong to one curve / line segment. If L is such that the chosen value
sy is greater than L then there are no breaks in the entire interval and we terminate our
generation process.

o Given s,, we choose a value s, from an exponential distribution with rate parameter As.
The sequences of (r,c)’s in the interval [s;, s, + s;] are pixels that do not belong to the
output segment. That is, these pixels form the gap or the break between curve segments.
If (s, + s2) is greater than L, we terminate and we assume that there are no breaks.

o We continue in this fashion until the sum ¥, s; is greater than L which is the condition
for termination.

3.3 Probability Density Function of Interval between Two Breaks

Let X denote the random variable giving the distance between two successive starting
points of line segments generated by the perturbation process described in the previous
section. In this section we derive the expression for the probability density function for
the random interval X. We then derive the expression for the mean number of breaks
in a line/curve of length L in the subsequent section. Let X, be an exponential random
variable, E(]),), with rate parameter A;. Let X, be an exponential random variable with
rate parameter g, E(};). Since = corresponds to the mean gap length, A; >> A1, We know
that: X = X, + X,. The probability density function of X is therefore the convolution of
the individual probability densities of X; and X,. Therefore:

Prob(X = z) :f Are=Mv )\ e=da(z=1) gy
0

Simplifying, we can show that:

ProblX = %) = (¥R emiany (2)
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The probability distribution function for X can be shown to be:

1
Az — Ay

Prob(X < z) :1_( )(,\ge-w_,\le—*:r).
From this, we can determine that the mean number of breaks in a line is equal to the
ratio of the length of the entire line to the mean value of line segment length.

3.4 Edge Segment / Gap Distributions / Arc Lengths

In this section, we derive expressions for the probability distributions for the gap lengths
and edge segment lengths given sample image data. We assume that an edge operator is
applied to an input image and pixels in the output image are labelled edge pixels according
to some criterion. Often pixels are labelled edge pixels if the gradient magnitude at a pixel
is greater than a specified threshold or if the contrast at a pixel is greater than a specified
threshold. In general we assume that a pixel is labelled an edge pixel if g(r,e) > T where

g(r,c) is the result of applying some filter on the input image values f(r,c) and T is some
threshold. That is:

O(r,c) = { 1 if g(r,e)>T
0  otherwise
Since G = g(r,c) at a particular pixel (r,¢) is a random variable dependent on the input
image values, if we assume a noise model for the input then the functional form for the
distribution of G can be determined from first principles. Given that p(g) is the probability
density function for G, its distribution function P(g) is useful in describing our line breaking
process. The probability that a particular pixel (r,¢) is labelled an edge pixel is given by:

Prob(G>T)=1-P(G< T).
The probability that 5 adjacent pixels will be labelled edge pixels is given by:

H(l = P& 2 TY))
where G,...,G; are i.i.d random variables.

Assume that we have a model line of NV pixel length. Let p; = 1- P(G; < T'), denote the
probability that the sth pixel along the line gets labelled as an edge pixel. Imagine that one
starts from the left end of the line and walks until he/she encounters a break. Let g;+1 denote
the probability that the J + 1th pixel gets labelled as an non-edge pixel. The probability
that the break will be at location J,J + 1 is given by:

i
HP:‘%‘H
=1

We can therefore write the expression for the density function for the length of the
segment, z,(7), as:
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PT'Ob(.;Y]_ = ]) = 5'1 Hp{qj'.;_l

i=]
Here S; is a scale factor which is equal to:

1
E;o:l ngl Pidj+1

Note that from first principles we can derive the analytical expression for p; and ¢;.
As shown in the next section G is related to the non-central chi-square distribution. The
density function of p; is given by 1 —cdf(G;). Here cdf stands for the cumulative distribution
function. Since we can derive the functional form for the density function of p; we can find
the Laplace transform of the density function and derive the expression for the mean number

5h

of breaks.
The mean length of edge segments, p, would be given by:

j=oo

= jz(J)

j=1

and the variance is given by:

]

S (G- ))2a()

=1

The analysis to obtain the gap distribution proceeds in a similar fashion. A particular
pixel will be labelled a non-edge when G < T. This probability is given by: P(G < T), and
the probability that ¢ adjacent pixels will be Jabelled non-edge pixels is given by:

H(P(G,- o T
Let ¢ = P(G; <T). Then the gap length density function is given by z2(7):
j
Prob(X,=j) = S:[[ tPin
i=1
where S, is equal to: .
1
et [Ti=1 @iPj+1

The mean gap length ++ will then be given by:

52-_—'

] =
7\'1‘2332(])
ji=1
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3.5 Maximum-Likelihood-Estimates for Ar and A\,

In this section we derive the expression for the maximum likelihood estimate of the
parameters A; and A, from empirical observation of a sample of broken lines or curves. For
the purpose of this derivation, it is assumed that we are trying to estimate the parameters
given the sequence of edge segment lengths and gap lengths. Let a line be broken into n
segments and let ;, 2} give the ith segment width and the ith gap length respectively. Then
the likelihood function is given by:

n

II ()\l)\ge"“x'e"‘”:) .

=1

The log-likelihood function is therefore:
nin(A) + nin(A,) - A, Z‘T" — A, Z .
i=1 i=1

Taking partial derivatives with tespect to Ay and Ay and setting to zero gives:

and

Thus the maximum likelihood estimate of - is the mean of the observed edge segment
lengths. Similarly the maximum likelihood estimate of & is the mean of the observed gap

lengths. Thus:

£ _ 1
M= =

5 oy By
- 1

B %Z?:l ‘I":

3.6 Analysis of a Gap Filling Technique

Edge or gap filling can be thought of as a process that fills in gaps of lengths less than
some threshold, say L. For this analysis we assume that we have a broken line segment with
the gap length and line length parameters of A, and A1, respectively. We assume that the line
breaking process is a renewal process with event interval length density function as given in
equation(2). The problem we solve in this section is to characterize the random perturbation
of the output of a gap-filling process that simply fills gaps in the input of length less than
L. Let ¢ denote the probability that the gap length in the input is less than L. Then:

L
q :/ )\ge‘“ydy
0
=] =gt
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[f there are n gaps in the input then the probability that exactly 7 gaps will be filled jg
given by:

() a'(1 = g

and the mean number of gaps filled will be:

s iz' (?:) (1 - g)—+

i=0
o nq

=n(l - g=*aL),

The mean number of gaps that are not filled is then given by:

ne‘*?‘r‘.

We have already seen that the mean number of breaks in a line is dependent on the mean
line segment lengths and mean gap segment lengths. Here we have shown that given that
there are n breaks in the input the mean number of gaps that are filled just depends on the
mean gap segment length.

The input to the gap-filling procedure is 5 renewal process, and the output obtained from
the procedure is also g renewal process. We pow derive the expression for the probability
density function of the mterval times in the cutput renewal process. Consider ag interval
in the output process. This interval was obtained by deleting multiple events (filling gaps
of length less than some threshold) from the input process. The probability of a gap in the
input being filled was [ Lo e(=22L)) Let p = g=HoL Given that there are exactly 7 intervals in
the input process, the probability that exactly ¢ — 1 intervals vanish to produce the output
is given by:

p(1-p)-t.

Since the output process intervals are obtained by random convolution of the interval
times in the input process, the Laplace transform of the probability density function, (hy(s)),
for the interval time in the output process is related to the Laplace transform of the
probability density function for the input process, h(s). hs(s) is related to h(s) as follows:

(oo}

hi(s) =3 p(1 - p)i=1hi(s)

i=1
ph(s)

1 - (1-p)h(s)

_ AL Asp

TSR (A + Az)s + Adap’

The mean number of breaks in the output process can therefore be obtajned by using the
expression for A;(s). The Laplace transform of the expression for mean number of breaks
can be shown to be equal to:
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)\ /\")
M(s) = 1P
() s: s+ A+ Ay)

Taking inverse Laplace transforms we can show that the expression for the mean number
of breaks in the output of the gap filling procedure is given by:

(AL +Aq)2

Since Ay >> A, we can approximate the above expression by setting A, + X, ~ A, to:

My () = (_\izg_) (A + Aa)e = (1 - griutlainy

M(t) = (/\TIQB) ot = (1 = e=2a1)
= Agpk-- (%) (1 =e=?t),

[rom the above expression it can be seen that the Mean number of the gaps in the output
is related to the mean number of gaps in the input (A1t) and to the probability (p) of not
filling a gap. It can also be seen that if M(t) is the mean number of gaps in the input:

4. Errors, Error Propagation, Robustness, and Reliability

This section describes important dimensions that must be included in the performance
characterization of any vision module performing a parametric estimation such as object
pose, curve fit, or edge orientation estimation. There are seven basic issues:

1) If the input data/imagery has no random perturbations from the idealized model, how
far from the true or correct result is the answer provided by the vision module?

2) If the input data/imagery has small random perturbations affecting most of the data,
how well can these perturbations be reasonably characterized by a variance statistic or

a covarlance matrix? _

3) How do the small randorm perturbations which affect most of the data propagate through
the vision module and affect the output answer? -

4) How can those very large random perturbations, which might affect a small portion of
the data, be characterized?
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6) How statistically efficient is the computation of the vision module? What is the ratio of
a measure of the error of the output result using input data having both large and small
random perturbations to the measure of the error of the output result using input data
having only small random perturbations? .

) How reliable is the answer provided? Does the vision module expect that the input data
provided to it meet the model assumptions it used in processing the data and therefore

-1

believes the output it produced to be reliable? Or does it have a reason for believing
that the input data did not meet the assumptions required by the processing algorithm
and the answer it produced cannot, therefore, be believed?

4.1 A General Parametric Mode]

To answer the questions raised in the beginning of this section, we must pose them in
the setting of a general model for parameter estimation which is what a substantial fraction
of vision modules do. The general model we explore here has three components: a relational
model; a noise model; and a computational estimation model. The relational model specifies
the relationships between the unobserved and unknown parameters § and the unobserved
and unknown quantities z; whose noisy realizations will be observed. We can compactly
write this as

fz’(-'ri,g)_—“o, RS (.

The noise model specifies the relationship between the observed noisy realization Z; and the
unobserved and unknown z;. We can compactly write this as

a:l‘{-*—‘f]i, 2:1,,1

where 7; is the additive random noise. The computational estimation model specifies how
the noisy realization 7} is used to calculate an estimate 8 of §. We can compactly write this
a8 0 =g(Z:,..., 7).

4.2 Exterior Orientation

0 vepresents the unknown translation and rotation parameters that transform the object
coordinate system to the camera coordinate system. Each z; is the ideal noiseless 2D
perspective projection of the it* 3D object vertex. The function f; gives the constraint
between the rotation and translation parameters, the 3D vertex position, and the ideal 2D
perspective projection of the it vertex:

fi(z:,0) =0, i1=1,...,1.

The 3D vertex positions are built implicitly into the relation by having the function f be
indexed by 7. Each 7 represents the noisy observation of the 2D perspective projection
of the 7** vertex. The noisy observation 7; of the 2D perspective projection comes from an
additive perturbation 7; of the idealized 2D perspective projection w;, T; = z;47;,1 = | B— 2
Then given the noisy observed 2D perspective projections Z,...,Z; and the corresponding
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known 3D positions of the object vertices in the object coordinate system, an estimate
0 = 9(Z1,...,T7) of the unknown rotation and translational parameters is determined. Here
the known 3D position of the object vertices in the object coordinate system are built into
the function g and are not expressed explicitly in the argument of qg.

4.3 Curve Fitting

0 represents the unknown parameters of the curve whose form is known. FEach z; is
the ideal noiseless position of a. point on the curve and, therefore, satisfies flz:,0) =0,i =
1,...,1. Each 77 is an observed noisy realization of the point z; which lies on the curve;
T = By Fapt = Lo oLy whete 5 55 the addifive random perturbation affecting the 7t
point. The unknown curve paramecters ¢ are then estimated by § on the basis of the noisy
observations; § = ¢(a7,. .., T7).

4.4 Edge Detection

0 represents the unknown parameters (position, orientation, contrast) of an edge pixel.
Z represents the n-tuple of all the ideal brightnesses of pixels in the neighborhood about the
given edge pixel. The edge parameters and the ideal neighborhood brightnesses are related
by f(x,0) = 0. The observed noisy neighborhood brightnesses # are related to the ideal
brightnesses & by & = @+, where 7 is the random noise. On the basis of the observed Z, the
edge detection operator calculates § which is an estimate of the edge parameters 0; 8 = g().

4.5 The Questions

Now we ask in a more precise way the questions we asked in the beginning of this section
relative to the general model

f::l‘i-’-ﬁg, Z:l,,.lr,

V== By gBF )

Question 1: If the input data is noiseless, how far from the true or correct result is the
estimate 67 That is, if z; satisfies filzi,8),i=1,...,] and 0 = g(z1,...,2;), then how far is
|0 - 0| from zero?

Question 2: If 7, is a small random perturbation and not a contaminating outlier
perturbation, then is it reasonable to model the statistics of n: by its covariance matrix

b

Question 3: What is the covariance matrix of §?

Assuming 0 = g(z,...,2;), and that 7,,... ;N1 are independent and small enough that a
first order multi-dimensional Taylor series expansion of ¢ around (z,... ,Zr) Is accurate,
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Hence, we can compute the covariance matrix of § by

£ = E((D - 0)(D - o))

|y

Question 4: How can those 5, which are outliers be characterized? Those n; can be modeled
as coming from a distribution having large or thick tails.

Question 5: What is the influence of one or many outlier 7;’s on the estimate 8?7 Since an
outlier n; can be a large value, we can determine the influence by examining

e(A) = max 10— g(z1, ..., Tier, & + 0, Tigsy - - -, 21|
fimll=2
If €(A) grows unbounded as A grows unbounded, a single outlier 7; can influence the resulting
estimate in an arbitrarily large way.
To determine the influence of multiple outlier 7;’s, we can determine the breakdown point,
which is the smallest {raction of the I noise perturbations that have to grow arbitrarily large
in order to cause the estimate § to be arbitrarily different from 4.

Question 6: What is the statistical efficiency of the estimate? Suppose that n,,...,n; are
small perturbations and n; + 1,...,7; are outlier perturbations. The best we can hope for

the estimate ; produced from the general model "

Ti=zitm, 1=1,...,1

aq;:gf(ﬂ)'--):’c}-)
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involving the good point and the outliers is for this estimate not to be too different from the
estimate produced from the general model

fi(ﬂfi,g)‘——ﬂ, E- % PRI |

C’UT:".C.;-I-??,', E:]_,j
E:gj(ﬂg--'1f})‘

which involves only the good points. So we can examine E10; - 05)17] and examine the ratio
trace B / tra,ce/ng«! as a measure of the efficiency.
J

Question 7: How reliable is the estimate? To answer this questions, we reason as follows:

Once an estimate @ has been calculated, estimates Z for the ideal quantization z; can
be determined by

i = argfnin |z — T3]
J(z,8)=0

The difference between the observed Z; and the estimates z are the residuals, r; = 7; — ’i-:
It is important to determine the extent to which a noise perturbation n; affects the residual
ri. Those points for which a significant fraction of the magnitude of the noise perturbation
results in the magnitude of »; are points for which errors in the observed 7; caused by n;
are detectable. Points for which only an insignificant fraction of the magnitude of the noise
perturbation results in the magnitude of r; are points for which errors in the observed z;
caused by n; are not detectable. Situations having points associated with undetectable errors
are precisely situations in which the reliability is suspect.

5. Conclusion

In this paper we illustrated how random perturbation models and propagation of random
errors can be set up for a vision algorithm involving edge detection, edge linking, arc
segmentation and line fitting. We also discussed important dimensions that must be included
in the performance characterization of any vision model performing a parametric estimation.
Almost all existing vision algorithms can be categorized into an algorithm class based on
the type of input information they use and the output they produce. For example, there are
many edge linkers and line finders that use directional information in conjunction with the
positional information of line segments. These algorithms are very similar in principle and
hence their performance could be analyzed by formulating a common algorithmic model. In
our approach we are currently investigating the performance of classes of these algorithms by
using analytical models. Since the outputs obtained from a particular algorithm for various
inputs depend on the algorithm parameters chosen, there is a relationship between the
algorithm parameters and the performance of the algorithm. We are interested in building
a system that would use these relationships to select the optimal algorithm parameters for
a vision sequence.
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