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1 Introduction 

Performance evaluation for document image processing has a different emphasis 
than performance evaluation in other areas of image processing. Other areas of 
image processing can tolerate some error. Because it is so easily done nearly per­
fectly by humans, document image processing must also be done nearly perfectly. 
So the first aspect of performance evaluation for document image processing is 
to determine the domain in which the performance is nearly perfect. Outside 
this domain, the algorithm makes errors. Such instances of errors need to be 
examined and classified and categorized so that the weaknesses of the algorithm 
can be characterized. 

A parametric aspect of performance evaluation for document image process­
ing is the determination of the performance as a function of increasing level of 
image perturbation. This perturbation is associated with the various kinds of 
noise that make a real document image page differ from the ideal. Since this 
aspect of performance evalution is associated with an explicit noise model, it is 
possible to do this evaluation by the generation of synthetic images which are 
perturbed by simulated noise in accordance with the noise perturbation model. 

The last category of performance evaluation for document image processing 
is the category of overall performance in a specific document image population. 
This requires an experiment to be done with a significant sized population of 
document images suitably randomly selected to be representative of some real 
application domain. 

Performance can be measured as a function of predefined categories of docu­
ments, as a function of noise perturbation parameters, or as a function of internal 
algorithm tuning parameters. To obtain a single number, the various different 
dimensions of performance must be weighted in an overall manner consistent 
with the application of interest. 

Because performance is an empirical measurement, and because the set of 
images used in making this empirical measurement is in effect only a small frac­
tion from a large population, a sample used in making the empirical measure­
ment one time to another time will differ and induce differences in performance. 
These differences are due to sampling variations. The sampling variations in­
duce variations in the estimated system parameters during training and induce 

Atul K. Chhabra and D. Dori (Eds.): GREC'99, LNCS 1941, pp. 315-323, 2000. 
©Springer-Verlag Berlin Heidelberg 2000 



316 Robert M. Haralick 

variations in the performance values during testing. Therefore, another aspect of 
performance evaluation must include the measuring of the variation of estimated 
system tuning parameters due to the sampling variations in the document image 
training sample as well as the variation in estimated system performance dues 
to sampling variations in the document image testing sample. 

Finally, there is the issue of testing the algorithm to determine if it meets its 
performance specifications. Being sure that an algorithm meets its specifications 
can require assessing its performance on a much larger sample than intuition 
might lead one to believe. And depending on what is meant by "meeting spec­
ifications" being sure that an algorithm meets its specification can require that 
its performance in an assessment be much better than intuition might lead one 
to believe. 

2 The Method of Performance Evaluation 

Performance evaluation uses the method of controlled experiment to measure 
the extent to which the algorithm segments recognizes, and locates the enti­
ties it is designed to handle. It must measure the sensitivity of performance ot 
changes in tuning parameter values, training set sampling variations and testing 
set sampling variations. It must have a protocol that permits the hypothesis to 
be tested that the system meets its requirement specifications. 

The controlled experiment requires an experimental protocol having a mea­
surement plan, a sampling design, and a statistical data analysis plan. The mea­
surement plan states what quantities will be measured, how they will be mea­
sured and the accuracy with which they will be measured. The sampling design 
defines the population of document images and describes how a suitable random 
independent set of document images will be sampled from the population. The 
statistical data analysis plan describes how the raw data gathered from the ex­
periment will be analyzed. The analysis itself consists of one part that estimates 
the performance statistic and another part that estimates the statistical devia­
tion of the true value of the performance statistic from the estimated value. The 
data obtained by the analysis must be complete enough so that the hypothesis 
that the system meets its stated requirements can be tested. And it must be 
supported by a theoretically developed statistical analysis which shows that an 
experiment carried out according to the measurement plan and sampling design 
and analyzed according to the statistical data analysis plan will produce a sta­
tistical test itself having the required accuracy. This analysis, if it is standard, 
can refer to statistical texts for the test used. 

3 Meeting Performance Requirements 

The requirement statement for a recognition task is a statement of the form: the 
probability that the algorithm fails to recognize an entity of interest (depending 
on the kind of algorithm, entities of interest might be zones, lines, words, tables, 
figures etc.) in the given population is less that fo. The experiment that is done 
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to determine whether an algorithm meets its performance is called an acceptance 
test. In this section we give a short review of acceptance tests. 

Any kind of acceptance test inevitably has two kinds of errors: the errors of 
omission and the errors of commission. A system may actually meet its require­
ments, but due to testing set sampling variations, there will be some probability 
that the hypothesis that the system meets the requirements will be rejected. 
This is an error of omission. As the sampling set size increases, this error will 
decrease. 

On the other hand, a system may not actually meet its requirements, but 
due to testing set sampling variations, there will be some probability that the 
hypothesis that the hypothesis that the system meets its requirements will not be 
rejected. This is an error of commission. Again as the sampling set size increases, 
this error will decrease. 

3.1 The Derivation 

Consider the case for omission errors. The case for commission errors is obviously 
similar. Let N, the sampling size, be the total number of entities observed and 
let K be the number of times that the algorithm fails to properly recognize the 
entity out of the N entities observed. 

The simplest intuitive way of making the comparison between fo and K is 
to use K in the natural manner to estimate the true probability rate f. The 
maximum likelihood estimate j of f based on K is j = K / N. If the estimate j 
off is less than fo, we judge that the algorithm passes the test. If the estimate 
j is greater than fo, we judge that the algorithm fails the acceptance test. The 
issue with such a procedure is how sure are we if we apply such a procedure that 
the judgment we make about the algorithm's performance is a correct judgment. 
To answer this issue we must estimate the performance of our judgment. We start 
from the beginning. 

To carry out the estimation, we suppose that, conditioned on the true error 
rate f, the algorithm's recognition failures are independent and identically dis­
tributed. Let Xn be a random variable taking the value 1 for an incorrect recog­
nition and taking a value 0 otherwise, when the algorithm is judging the nth 

entity. 1 In the maximum likelihood technique of estimation, we compute the 
estimate j as the value of f which maximizes 

Prob (t,Xn = K J f)= (~)fK(l- f)N-K 

Taking the partial derivative with respect to f and setting the derivative to zero 
results in j = KjN, the natural estimate of f. 

Suppose that we adopt the policy of accepting the algorithm if j ~ fo· To 
understand the consequences of this policy, consider the probability that the 
1 We assume the recognition incorrectness of the entities are statistically independent. 
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policy results in a correct acceptance decision. The probability that f < fo 
given that j s; fo needs to be computed. 

fo 

Prob (f s; fo I J s; fo) = J Prob (f I J s; fo) df 

f=O 

fo A 

J Prob (f s; fo I f) Prob (f) df 
f=O 

Prob (f s; fo) 

To make the mathematics simple, let fo be constrained so that there is some 
integer Ko such that fo = Ko/N. Then 

Prob 

fo ( N ) J Prob I: Xn s; Ko If Prob (f) df 
A f=O n=l 

(f s; fo I f s; fo) = '----1---N--------

J Prob ( L Xn s; Kolf) Prob(f) df 
f=O n=l 

The probability that the true value off is less than or equal to fo given that 
the observed value j is less than fo will depend, in general, on the testor's prior 
probability function Prob (f). So, depending on the acceptance testor's prior 
probability function Prob (f), there will besome smallest number F, 0 s; F s; 1, 
such that Prob (f) = 0 for all f > F. Here, the support for the prior probability 
function is the interval [0, F]. 

For example, an acceptance testor who has had successful experience with 
previous algorithms from the same company might have a prior probability func­
tion whose support is the interval [0, 2fo]· An acceptance testor who has had no 
previous experience with the company might have a prior distribution whose sup­
port is the interval [0, lOfo]· An acceptance testor who has had an )-lnsuccessful 
experience with a previous algorithm from the same company might have a prior 
distribution for f whose support is the interval [0, .5]. 

In each of the above cases, we assume that neither we nor the testor know 
anything more about the prior probability function than the interval of support 
[0, F], where we assume that F ~ fo, since if not, there would be no point to 
perform an acceptance test to establish something we already know. In this case, 
we take Prob (f) to be that probability function defined on the interval [0, F] 
having highest entropy. Such a Prob (f) is the uniform density on the interval 
[0, F]. Hence, we take Prob (f) = -Jc, 0 s; f s; F. Therefore 

fo Ko 
J I: (f.)Jk(l- nN-kdf!F 

A f=O k=O 
Prob (f s; fo I J s; fo) = ~F-K=o-------

J L (f.)Jk(l- J)N-kdf!F 
f=O k=O 
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Ko 
2: (~)B(k + 1, N + 1- k)IJo (k + 1, N + 1- k) 

k=O 
Ko 
2: (~)B(k+1,N+1-k)lp(k+1,N+1-k) 

k=O 
Ko 
2: IJo(k + 1,N + 1- k)j(N + 1) 

k=O 
Ko 
2: lp(k + 1,N + 1- k)j(N + 1) 

k=O 
Ko 
2: fJ

0
(k+1,N+1-k) 

k=O 
Ko 
2: lp(k + 1, N + 1- k) 

k=O 

where Ifo (k + 1, N + 1- k) is the incomplete Beta ratio function. 
In each of the above cases, we assume that neither we nor the testor know 

anything more about the prior probability function than the interval of support 
[0, F], where we assume that F 2:: fo, since if not, there would be no point to 
perform an acceptance test to establish something we already know. In this case, 
we take Prob (!) to be that probability function defined on the interval [0, F] 
having highest entropy. Such a Prob (!) is the uniform density on the interval 
[0, F]. Hence, we take Prob (!) = -fr, 0 :S f :S F. Therefore 

fo K 0 

f 2: (~)Jk(1- f)N-kdjjF 
A f=O k=O 

Prob (! :S fo I J :S fo) = '--::-F-K_o ______ _ 

f 2: (~)Jk(1- j)N-kdJjF 
f=O k=O 

Ko 
2: (~)B(k+1,N+1-k)IJJk+l,N+1-k) 

k=O 
Ko 
2: (~)B(k + 1, N + 1- k)lp(k + 1, N + 1- k) 

k=O 
Ko 
2: lJJk + 1,N + 1- k)j(N + 1) 

k=O 
Ko 
2: lp(k + 1,N + 1- k)j(N + 1) 

k=O 
Ko 
2: Jfo (k + 1, N + 1- k) 

k=O 
Ko 
2: lp(k + 1, N + 1- k) 

k=O 

where Ifo (k + 1, N + 1- k) is the incomplete Beta ratio function. 



320 Robert M. Haralick 

If Jo < < 1 and k ~ N Jo, then 2Jo([:_~~-k) = 2J0 N = 2K0 • Therefore 

( 
Jo(N+1-k)) ( ) 

Prob F2(k+1), 2(N+1-k) ~ (1 _ Jo)(k + 1) = Prob Xi(k+l) ~ 2Ko . 

Since 
00 

Prob ( X:i(k+1) ~ 2Ko) = L e-Ko (Ko)i /i! 
i=k+1 

(Johnson and Kotz 1969, p. 114) we may use tables of the cumulative Poisson 
distribution (Pearson and Hartley 1958) and there results 

Ko ( 00 ) Ko ( 00 ) 
Prob (f ~ Jo I J ~ Jo) = L L e-Ko K~ji! / L L e-K1 K1/i! 

k=O i=k+ 1 k=O i=k+ 1 

where K1 = FN. When F >> ~~~'the value of lp(k + 1, N + 1- k) = 1 since 
the variance of a Beta ( k + 1, N + 1 - k) random variable will be smaller than 
(N!t2k)2 << F for large N. In this case, the denominator is only a few percent 
smaller than Ko + 1. l,From the form of the Poisson approximation, it is apparent 
that IJ(k, N + 1- k) depends only on the product JN when N >> 1, k ~JoN 
and J < < 1. This can also be seen directly from the formula. 

Under the particular conditions we are interested in, N >> 100, J << 0.1, 
and k << N. Hence I1(k + 1, N + 1- k) ~ IJ(k + 1, N). This can be observed 
from the recurrence relation 

Ix(a, b) = xlx(a- 1, b)+ (1- x)Ix(a, b- 1). 

Now when a+ b > 6 and x << 1, Ix(a, b)~ </J(y) where 

3 { (bx)i(l-1j9b)- [a(1- x)]i(1-1/9a)} 
y= 1 

[ (b~)! + (a(1-:x)]! J 2 

and <P is the cummulative normal (0,1) distribution function (Abramovitz and 
Steger, 1972). From this approximation it follows that when JoN > 1, x << 
1, Jomk << 1, ~ >> 1, and m > 1; then 

lJJk + 1 N + 1- k) ~ IJJk + 1, N) 

N 
~ ImJ0 (k + 1, m) 

N 
~fmJ(k+1, -+1-k). 

o m 

This means that instead of having to parametrize by Jo and N independently, we 
can create tables parametrized by the product J0 N. 

For example, if Jo = 0.0001,F ~ lOJo and N = 104, then Ko = 1 and 
Prob (f ~ Jo I J ~ Jo) = ![0.6321 + 0.2642] = 0.4481. If Jo = .0001, F ~ 10Jo 
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Ko 
2: (~)B(k + 1, N + 1 - k)Ito (k + 1, N + 1 - k) 

k=O 
Ko 
2: (~)B(k + 1, N + 1- k)Ip(k + 1, N + 1 - k) 

k=O 

Ko 
2: Ito(k+1,N+1-k)/(N+1) 
k=O 
Ko 
2: Ip(k + 1,N + 1- k)/(N + 1) 
k=O 

Ko 
2: ItJk + 1, N + 1- k) 
k=O 
Ko 
2: Ip(k + 1, N + 1- k) 
k=O 

where Ito (k + 1, N + 1- k) is the incomplete Beta ratio function. 
In each of the above cases, we assume that neither we nor the testor know 

anything more about the prior probability function than the interval of support 
[0, F], where we assume that F ~ fo, since if not, there would be no point to 
perform an acceptance test to establish something we already know. In this case, 
we take Prob (f) to be that probability function defined on the interval [0, F] 
having highest entropy. Such a Prob (f) is the uniform density on the interval 
[0, F]. Hence, we take Prob (f)= -j,, 0 ~ f ~F. Therefore 

to Ko 
f 2: (~)fk(1- f)N-kdf/F 

, t=O k=O 
Prob (! ~ fo I f ~ fo) = ~F-K_o ______ _ 

f 2: (~)Jk(1- j)N-kdf!F 
t=O k=O 

Ko 
2: (~)B(k + 1,N + 1- k)ItJk + 1,N + 1- k) 

k=O 
Ko 
2: (~)B(k + 1, N + 1 - k)!p(k + 1, N + 1 - k) 

k=O 

Ko 
2: ItJk + 1,N + 1- k)/(N + 1) 
k=O 
Ko 
2: Ip(k + 1,N + 1- k)/(N + 1) 
k=O 

Ko 
2: Ito (k + 1, N + 1- k) 
k=O 
Ko 
2: Ip(k + 1, N + 1- k) 
k=O 

where Ito (k + 1, N + 1- k) is the incomplete Beta ratio function. 
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If Jo << 1 and k ~ NJo, then 2fo(~~!-k) = 2JoN = 2K0 • Therefore 

( 
Jo(N+1-k)) ( ) 

Prob .F2(k+l), 2(N+l-k) ~ (1 _ Jo)(k + 1) = Prob X:f(k+l) ~ 2Ko . 

Since 
00 

Prob ( X:f(k+l) ~ 2Ko) = L e-Ko(Ko)iji! 
i=k+l 

(Johnson and Kotz 1969, p. 114) we may use tables of the cumulative Poisson 
distribution (Pearson and Hartley 1958) and there results 

Prob (f ~ Jo I J ~ Jo) = L L e-Ko K~ji! / L L e-K1 KUi! 
Ko ( 00 ) Ko ( 00 ) 

k=O i=k+l k=O i=k+l 

where K 1 = FN. When F >> ~-;..~,the value of lp(k + 1, N + 1- k) = 1 since 
the variance of a Beta (k + 1, N + 1- k) random variable will be smaller than 
(N!i~k)2 << F for large N. In this case, the denominator is only a few percent 
smaller than K 0 + 1. l,From the form of the Poisson approximation, it is apparent 
that It(k, N + 1- k) depends only on the product J N when N >> 1, k ~JoN 
and J < < 1. This can also be seen directly from the formula. 

Under the particular conditions we are interested in, N >> 100, J << 0.1, 
and k << N. Hence It(k + 1, N + 1- k) ~ It(k + 1, N). This can be observed 
from the recurrence relation 

Ix(a, b)= xlx(a- 1, b)+ (1- x)Ix(a, b- 1). 

Now when a+ b > 6 and x << 1, Ix(a, b)~ cp(y) where 

3 { (bx)t(l-1/9b)- [a(1- x)]t(l-1/9a)} 
y= 1 

[ (b~~ + [a(l-:x)]~ r 
and ¢ is the cummulative normal (0,1) distribution function (Abramovitz and 
Steger, 1972). From this approximation it follows that when JoN > 1, x << 
1, Jomk << 1, lJ;, >> 1, and m > 1; then 

ItJk + 1 N + 1- k) ~ ltJk + 1, N) 
N 

~ ImtJk + 1, m) 

N 
~ ImtJk + 1, m + 1- k). 

This means that instead of having to parametrize by Jo and N independently,we 
can create tables parametrized by the product J0 N. 

For example, if Jo = 0.0001, F ~ 10Jo and N = 104 , then Ko = 1 and 
A 1 

Prob (f ~ Jo I J ~ Jo) = 2 [0.6321 + 0.2642] = 0.4481. If Jo = .0001, F ~ 10Jo 
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and N = 2 X 104
, then Ko = 2 and Prob (! :::;; fo I j :::;; fo) = ~[0.8647 + 

0.5940 + 0.3233] = 0.5940. This means that with 2 or fewer observed incorrect 
recognitions out of 20,000 observations, the probability is only 0.5940 that the 
true false alarm rate is less than 0.0001. 

It seems that such a policy does not provide very certain answers. Perhaps 
more observations would be helpful. If N = 105 , then Ko = 10. In this case 

' 1 
Prob (f:::;; fo I f:::;; fo) = U[10.0000 + 0.9995 + 0.9972 + 0.9897 

+ 0.9707 + 0.9329 + 0.8699 + 0.7798 + 0.6672 

+ 0.5461 + 0.4170] 

= 0.8332 

Thus, with 10 or fewer observed incorrect recognitions out of 100,000 observa­
tions, the probability is 0.8336 that the incorrect recognition rate is less than 
0.0001. This is certainly better, but depending on our own requirement for cer­
tainty in our judgment it may not be sure enough. 

Thus the acceptance test itself has a requirement: the probability with which 
we wish the acceptance test itself to yield correct judgement. 

If we adopt a different policy, we can be more sure about our judgment of 
the true false alarm rate. Suppose we desire to perform an acceptance test which 
guarantees that the probability is a that the machine meets specifications. In 
this case, we adopt the policy that we accept the machine if j :::;; f* where f* is 
chosen so that for the fixed probability a(!*), Prob (! :::;; fo I J:::;; f*) =a(!*). 
This means to accept if K :::;; K*, where K* = N f*. Proceeding as before to 
find K*, we have 

fo K* 

I 2:: (~)Jk(l- nN-kdJ 
a(K*) = Prob (! :::;; fo I j:::;; f*) = 1'-=F..,...o_k=_o _____ _ 

K• 
I E (~)Jk(1- J)N-kdf 

f=O k=O 
K* 

_ L:k=oltJk+ 1,N + 1- k) 
- K• 

E lp(k + 1, N + 1- k) 
k=O 
K* 

Ek=O E:k+l e-Ko K~ji! 
K• oo 

I: 2:: e-Ko K~ji!. 
k=O i=k+l 

Then if fo = .0001, F 2: 10fo, N = 105 , and K* = 8, there results 

1 
a (K*) = 9 [1.000 + .9995 + .9972 + .9897 + .9707 + .9329 + .8699 

= +.7798+ .6672] 

= .9119 
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So if j::; 8/105
, the probability will be .9119 that the true incorrect recognition 

is less .0001. 
In summary, we have obtained that Prob (! ::; fo and K ::; K*) = 

N~l ~~~0 Ito (k + 1, N + 1 - k) and Prob (K ::; K*) = ~t/. Since 
Prob (f) is uniform, Prob (! ::; fo) = fo· These three probabilities deter­
mine the missed acceptance rate Prob (! ::; fo I K > K*), the false accep­
tance rate Prob (K ::; K* I f > fo), the error rate Prob (! ::; fo and 
K > K*)+Prob (! > fo and K::; K*), the identification accuracy Prob (!::; fo 
and K ::; K*) + Prob (! > fo and K > K*), the acceptance capture rate 
Prob (K ::; K* I f ::; fo), and the capture certainty rate P(f ::; fo I K ::; K*). 
Thus, the complete operating characteristics can be determined of the accep­
tance policy we have discussed. 

4 Sampling Variations 

Most recognition algorithms have their internal tuning parameters set to a value 
based on a training set. A training set consists of the images or subimages 
of the entities of interest along with their correct identifications. If the entire 
population of entities could be sampled and used for training, the value of the 
tuning parameter would be 8. However, due to the finite sampling of the training 
set, the value obtained by training is e. By sampling the exact same size sample 
another time, the value obtained by training would differ from e. This issue of 
sampling variations is exactly put by asking how much variation will there be 
in the value e due to the finite sample size, if we were to repeat the training 
process many independent times. For example, if we were to repeat the training 
process N times, and observe tuning parameter values e1 , ... , eN, we could 
obtain a reasonable estimate of the covariance matrix E for e by 

N 

E = ~ 2)en- 8*)'(en- 8*) 
n=l 

where 
N 

8* =~I: en 
n=l 

'L'hen we could estimate the probability P(c5) that e will lie within an hyper­
ellipsoid of parameter c5 

by simply counting: 

For any interval Ll, we could then compute the fraction f of time that the training 
sample would yield a tuning parameter value in the hyperellipsoid annulus of 



Performance Evaluation of Document Image Algorithms 323 

width Ll around the point 8. 

f(8; Ll) = P(8 + Ll/2)- P(8- Ll/2) 

Associated with the subset 

is the corresponding set of tuning parameter values. 

T={E>nl nES} 

Now consider taking group of Q testing samples for which we test the algo­
rithm when the tuning parameter values are set to a value in T. For each of the 
Q#T combinations, there will be an observed incorrect recognition rate. Thus 
for a given 8 and Ll, there will be a distribution of observed incorrect recogni­
tion rates and an associated mean J.L incorrect recognition rate and variance a 2 

of incorrrect recognition rate. As we change 8 we can observe the dependency 
of J.L on 8. From this dependency we can determine the variation in performance 
due to testing set sampling variation. 

If in doing this kind of analysis we find that the variation in the system tuning 
parameters caused by training set sampling variations induces large changes 
in recognition accuracy, then it suggests that the algorithm is not robust and 
probably undertrained. Such a finding would lead us to more carefully inspect 
the reasons for the failures and we would take pains to redesign the algorithm 
as well as use larger sample size for training. 
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1 Introduction

Performance evaluation for document image processing has a differ-
ent emphasis than performance evaluation in other areas of image
processing. Other areas of image processing can tolerate some error.
Because it is so easily done nearly perfectly by humans, document
image processing must also be done nearly perfectly. So the first as-
pect of performance evaluation for document image processing is to
determine the domain in which the performance is nearly perfect.
Outside this domain, the algorithm makes errors. Such instances of
errors need to be examined and classified and categorized so that
the weaknesses of the algorithm can be characterized.

A parametric aspect of performance evaluation for document im-
age processing is the determination of the performance as a function
of increasing level of image perturbation. This perturbation is asso-
ciated with the various kinds of noise that make a real document
image page differ from the ideal. Since this aspect of performance
evalution is associated with an explicit noise model, it is possible to
do this evaluation by the generation of synthetic images which are
perturbed by simulated noise in accordance with the noise pertur-
bation model.

The last category of performance evaluation for document image
processing is the category of overall performance in a specific docu-
ment image population. This requires an experiment to be done with
a significant sized population of document images suitably randomly
selected to be representative of some real application domain.

Performance can be measured as a function of predefined cate-
gories of documents, as a function of noise perturbation parameters,
or as a function of internal algorithm tuning parameters. To obtain a



single number, the various different dimensions of performance must
be weighted in an overall manner consistent with the application of
interest.

Because performance is an empirical measurement, and because
the set of images used in making this empirical measurement is in
effect only a small fraction from a large population, a sample used in
making the empirical measurement one time to another time will dif-
fer and induce differences in performance. These differences are due
to sampling variations. The sampling variations induce variations in
the estimated system parameters during training and induce varia-
tions in the performance values during testing. Therefore, another
aspect of performance evaluation must include the measuring of the
variation of estimated system tuning parameters due to the sampling
variations in the document image training sample as well as the vari-
ation in estimated system performance dues to sampling variations
in the document image testing sample.

Finally, there is the issue of testing the algorithm to determine
if it meets its performance specifications. Being sure that an algo-
rithm meets its specifications can require assessing its performance
on a much larger sample than intuition might lead one to believe.
And depending on what is meant by “meeting specifications” being
sure that an algorithm meets its specification can require that its
performance in an assessment be much better than intuition might
lead one to believe.

2 The Method Of Performance Evaluation

Performance evaluation uses the method of controlled experiment
to measure the extent to which the algorithm segments recognizes,
and locates the entities it is designed to handle. It must measure the
sensitivity of performance ot changes in tuning parameter values,
training set sampling variations and testing set sampling variations.
It must have a protocol that permits the hypothesis to be tested that
the system meets its requirement specifications.

The controlled experiment requires an experimental protocol hav-
ing a measurement plan, a sampling design, and a statistical data
analysis plan. The measurement plan states what quantities will be
measured, how they will be measured and the accuracy with which



they will be measured. The sampling design defines the population of
document images and describes how a suitable random independent
set of document images will be sampled from the population. The
statistical data analysis plan describes how the raw data gathered
from the experiment will be analyzed. The analysis itself consists of
one part that estimates the performance statistic and another part
that estimates the statistical deviation of the true value of the per-
formance statistic from the estimated value. The data obtained by
the analysis must be complete enough so that the hypothesis that
the system meets its stated requirements can be tested. And it must
be supported by a theoretically developed statistical analysis which
shows that an experiment carried out according to the measurement
plan and sampling design and analyzed according to the statistical
data analysis plan will produce a statistical test itself having the
required accuracy. This analysis, if it is standard, can refer to sta-
tistical texts for the test used.

3 Meeting Performance Requirements

The requirement statement for a recognition task is a statement of
the form: the probability that the algorithm fails to recognize an
entity of interest (depending on the kind of algorithm, entities of
interest might be zones, lines, words, tables, figures etc.) in the given
population is less that f◦. The experiment that is done to determine
whether an algorithm meets its performance is called an acceptance
test. In this section we give a short review of acceptance tests.

Any kind of acceptance test inevitably has two kinds of errors:
the errors of omission and the errors of commission. A system may
actually meet its requirements, but due to testing set sampling vari-
ations, there will be some probability that the hypothesis that the
system meets the requirements will be rejected. This is an error of
omission. As the sampling set size increases, this error will decrease.

On the other hand, a system may not actually meet its require-
ments, but due to testing set sampling variations, there will be some
probability that the hypothesis that the hypothesis that the sys-
tem meets its requirements will not be rejected. This is an error of
commission. Again as the sampling set size increases, this error will
decrease.



3.1 The Derivation

Consider the case for omission errors. The case for commission errors
is obviously similar. Let N , the sampling size, be the total number
of entities observed and let K be the number of times that the al-
gorithm fails to properly recognize the entity out of the N entities
observed.

The simplest intuitive way of making the comparison between
f◦ and K is to use K in the natural manner to estimate the true
probability rate f . The maximum likelihood estimate f̂ of f based
on K is f̂ = K/N. If the estimate f̂ of f is less than f◦, we judge that
the algorithm passes the test. If the estimate f̂ is greater than f◦,
we judge that the algorithm fails the acceptance test. The issue with
such a procedure is how sure are we if we apply such a procedure that
the judgment we make about the algorithm’s performance is a correct
judgment. To answer this issue we must estimate the performance
of our judgment. We start from the beginning.

To carry out the estimation, we suppose that, conditioned on the
true error rate f, the algorithm’s recognition failures are independent
and identically distributed. Let Xn be a random variable taking the
value 1 for an incorrect recognition and taking a value 0 otherwise,
when the algorithm is judging the nth entity.1 In the maximum like-
lihood technique of estimation, we compute the estimate f̂ as the
value of f which maximizes

Prob (
N∑

n=1

Xn = K | f) =

(
N

K

)
fK(1− f)N−K

Taking the partial derivative with respect to f and setting the deriva-
tive to zero results in f̂ = K/N, the natural estimate of f .

Suppose that we adopt the policy of accepting the algorithm if
f̂ ≤ f◦. To understand the consequences of this policy, consider the
probability that the policy results in a correct acceptance decision.
The probability that f ≤ f◦ given that f̂ ≤ f◦ needs to be computed.

Prob (f ≤ f◦ | f̂ ≤ f◦) =

fo∫
f=0

Prob (f | f̂ ≤ f◦) df

1 We assume the recognition incorrectness of the entities are statistically independent.



=

fo∫
f=0

Prob (f̂ ≤ f◦ | f) Prob (f) df

Prob (f̂ ≤ f◦)

To make the mathematics simple, let f◦ be constrained so that
there is some integer K◦ such that f◦ = K◦/N. Then

Prob (f ≤ f◦ | f̂ ≤ f◦) =

fo∫
f=0

Prob
( N∑
n=1

Xn ≤ K◦ | f
)
Prob (f) df

1∫
f=0

Prob
( N∑
n=1

Xn ≤ K◦|f
)
Prob(f) df

The probability that the true value of f is less than or equal to f◦
given that the observed value f̂ is less than f◦ will depend, in general,
on the testor’s prior probability function Prob (f). So, depending on
the acceptance testor’s prior probability function Prob (f), there will
besome smallest number F , 0 ≤ F ≤ 1, such that Prob (f) = 0 for
all f > F. Here, the support for the prior probability function is the
interval [0, F ].

For example, an acceptance testor who has had successful expe-
rience with previous algorithms from the same company might have
a prior probability function whose support is the interval [0, 2f◦].
An acceptance testor who has had no previous experience with the
company might have a prior distribution whose support is the in-
terval [0, 10f◦]. An acceptance testor who has had an unsuccessful
experience with a previous algorithm from the same company might
have a prior distribution for f whose support is the interval [0, .5].

In each of the above cases, we assume that neither we nor the
testor know anything more about the prior probability function than
the interval of support [0, F ], where we assume that F ≥ f◦, since if
not, there would be no point to perform an acceptance test to estab-
lish something we already know. In this case, we take Prob (f) to be
that probability function defined on the interval [0, F ] having high-
est entropy. Such a Prob (f) is the uniform density on the interval



[0, F ]. Hence, we take Prob (f) = 1
F
, 0 ≤ f ≤ F. Therefore

Prob (f ≤ f◦ | f̂ ≤ f◦) =

f◦∫
f=0

K◦∑
k=0

(
N
k

)
fk(1− f)N−kdf/F

F∫
f=0

K◦∑
k=0

(
N
k

)
fk(1− f)N−kdf/F

=

K◦∑
k=0

(
N
k

)
B(k + 1, N + 1− k)If◦(k + 1, N + 1− k)

K◦∑
k=0

(
N
k

)
B(k + 1, N + 1− k)IF (k + 1, N + 1− k)

=

K◦∑
k=0

If◦(k + 1, N + 1− k)/(N + 1)

K◦∑
k=0

IF (k + 1, N + 1− k)/(N + 1)

=

K◦∑
k=0

If◦(k + 1, N + 1− k)

K◦∑
k=0

IF (k + 1, N + 1− k)

where If◦(k + 1, N + 1− k) is the incomplete Beta ratio function.
In each of the above cases, we assume that neither we nor the

testor know anything more about the prior probability function than
the interval of support [0, F ], where we assume that F ≥ f◦, since if
not, there would be no point to perform an acceptance test to estab-
lish something we already know. In this case, we take Prob (f) to be
that probability function defined on the interval [0, F ] having high-
est entropy. Such a Prob (f) is the uniform density on the interval
[0, F ]. Hence, we take Prob (f) = 1

F
, 0 ≤ f ≤ F. Therefore

Prob (f ≤ f◦ | f̂ ≤ f◦) =

f◦∫
f=0

K◦∑
k=0

(
N
k

)
fk(1− f)N−kdf/F

F∫
f=0

K◦∑
k=0

(
N
k

)
fk(1− f)N−kdf/F

=

K◦∑
k=0

(
N
k

)
B(k + 1, N + 1− k)If◦(k + 1, N + 1− k)

K◦∑
k=0

(
N
k

)
B(k + 1, N + 1− k)IF (k + 1, N + 1− k)



=

K◦∑
k=0

If◦(k + 1, N + 1− k)/(N + 1)

K◦∑
k=0

IF (k + 1, N + 1− k)/(N + 1)

=

K◦∑
k=0

If◦(k + 1, N + 1− k)

K◦∑
k=0

IF (k + 1, N + 1− k)

where If◦(k + 1, N + 1− k) is the incomplete Beta ratio function.

If fo << 1 and k ≤ Nfo, then 2fo(N+1−k)
1−fo = 2foN = 2Ko. There-

fore

Prob

(
F2(k+1), 2(N+1−k) ≤

fo(N + 1− k)

(1− fo)(k + 1)

)
= Prob

(
X 2

2(k+1) ≤ 2K◦
)
.

Since

Prob
(
X 2

2(k+1) ≤ 2K◦
)

=
∞∑

i=k+1

e−K◦(K◦)
i/i!

(Johnson and Kotz 1969, p. 114) we may use tables of the cumulative
Poisson distribution (Pearson and Hartley 1958) and there results

Prob (f ≤ f◦ | f̂ ≤ f◦) =
K◦∑
k=0

 ∞∑
i=k+1

e−K◦Ki
◦/i!

 / K◦∑
k=0

 ∞∑
i=k+1

e−K1Ki
1/i!


where K1 = FN. When F >> k+1

N+2
, the value of IF (k + 1, N +

1 − k) = 1 since the variance of a Beta (k + 1, N + 1 − k) random
variable will be smaller than k+1

(N+1−k)2 << F for large N . In this
case, the denominator is only a few percent smaller than K◦ + 1.
¿From the form of the Poisson approximation, it is apparent that
If (k, N + 1 − k) depends only on the product fN when N >>
1, k ≤ foN and f << 1. This can also be seen directly from the
formula.

Under the particular conditions we are interested in, N >>
100, f << 0.1, and k << N. Hence If (k + 1, N + 1 − k) ≈
If (k + 1, N). This can be observed from the recurrence relation

Ix(a, b) = xIx(a− 1, b) + (1− x)Ix(a, b− 1).



Now when a+ b > 6 and x << 1, Ix(a, b) ≈ φ(y) where

y =
3
{

(bx)
1
3 (1− 1/9b)− [a(1− x)]

1
3 (1− 1/9a)

}
[
(bx)

2
3

b
+ [a(1−x)]

2
3

a

] 1
2

and φ is the cummulative normal (0,1) distribution function (Abramovitz
and Steger, 1972). From this approximation it follows that when
foN > 1, x << 1, fomk << 1, N

m
>> 1, and m > 1; then

Ifo(k + 1 N + 1− k)≈ Ifo(k + 1, N)

≈ Imfo(k + 1,
N

m
)

≈ Imfo(k + 1,
N

m
+ 1− k).

This means that instead of having to parametrize by fo and N in-
dependently,we can create tables parametrized by the product foN.

For example, if f◦ = 0.0001, F ≥ 10f◦ and N = 104, then K◦ = 1
and Prob (f ≤ f◦ | f̂ ≤ f◦) = 1

2
[0.6321 + 0.2642] = 0.4481. If

f◦ = .0001, F ≥ 10f◦ and N = 2× 104, then K◦ = 2 and Prob (f ≤
f◦ | f̂ ≤ f◦) = 1

3
[0.8647 + 0.5940 + 0.3233] = 0.5940. This means

that with 2 or fewer observed incorrect recognitions out of 20,000
observations, the probability is only 0.5940 that the true false alarm
rate is less than 0.0001.

It seems that such a policy does not provide very certain answers.
Perhaps more observations would be helpful. If N = 105, then K◦ =
10. In this case

Prob (f ≤ f◦ | f̂ ≤ f◦) =
1

11
[10.0000 + 0.9995 + 0.9972 + 0.9897

+ 0.9707 + 0.9329 + 0.8699 + 0.7798 + 0.6672

+ 0.5461 + 0.4170]

= 0.8332

Thus, with 10 or fewer observed incorrect recognitions out of 100,000
observations, the probability is 0.8336 that the incorrect recognition
rate is less than 0.0001. This is certainly better, but depending on
our own requirement for certainty in our judgment it may not be
sure enough.



Thus the acceptance test itself has a requirement: the probabil-
ity with which we wish the acceptance test itself to yield correct
judgement.

If we adopt a different policy, we can be more sure about our
judgment of the true false alarm rate. Suppose we desire to perform
an acceptance test which guarantees that the probability is α that
the machine meets specifications. In this case, we adopt the policy
that we accept the machine if f̂ ≤ f ∗ where f ∗ is chosen so that for
the fixed probability α(f ∗), P rob (f ≤ f◦ | f̂ ≤ f ∗) = α(f ∗). This
means to accept if K ≤ K∗, where K∗ = Nf ∗. Proceeding as before
to find K∗, we have

α(K∗) = Prob (f ≤ f◦ | f̂ ≤ f ∗) =

f◦∫
f=0

K∗∑
k=0

(
N
k

)
fk(1− f)N−kdf

F∫
f=0

K∗∑
k=0

(
N
k

)
fk(1− f)N−kdf

=

∑K∗

k=0 If◦(k + 1, N + 1− k)
K∗∑
k=0

IF (k + 1, N + 1− k)

=

∑K∗

k=0

∑∞
i=k+1 e

−K◦Ki
◦/i!

K∗∑
k=0

∞∑
i=k+1

e−K◦Ki
◦/i!.

Then if f◦ = .0001, F ≥ 10f◦, N = 105, and K∗ = 8, there results

α (K∗) =
1

9
[1.000 + .9995 + .9972 + .9897 + .9707 + .9329 + .8699

= +.7798 + .6672]

= .9119

So if f̂ ≤ 8/105, the probability will be .9119 that the true incorrect
recognition is less .0001.

In summary, we have obtained that Prob (f ≤ f◦ and K ≤
K∗) = 1

N+1

∑K∗

k=0 If◦(k + 1, N + 1 − k) and Prob (K ≤ K∗) =
K∗+1
N+1

. Since Prob (f) is uniform, Prob (f ≤ f◦) = f◦. These three
probabilities determine the missed acceptance rate Prob (f ≤ f◦ |
K > K∗), the false acceptance rate Prob (K ≤ K∗ | f > f◦),
the error rate Prob (f ≤ f◦ and K > K∗) + Prob (f > f◦ and



K ≤ K∗), the identification accuracy Prob (f ≤ f◦ and K ≤
K∗) + Prob (f > f◦ and K > K∗), the acceptance capture rate
Prob (K ≤ K∗ | f ≤ f◦), and the capture certainty rate P (f ≤
f◦ | K ≤ K∗). Thus, the complete operating characteristics can be
determined of the acceptance policy we have discussed.

4 Sampling Variations

Most recognition algorithms have their internal tuning parameters
set to a value based on a training set. A training set consists of the
images or subimages of the entities of interest along with their correct
identifications. If the entire population of entities could be sampled
and used for training, the value of the tuning parameter would be
Θ. However, due to the finite sampling of the training set, the value
obtained by training is Θ̂. By sampling the exact same size sample
another time, the value obtained by training would differ from Θ̂.
This issue of sampling variations is exactly put by asking how much
variation will there be in the value Θ̂ due to the finite sample size,
if we were to repeat the training process many independent times.
For example, if we were to repeat the training process N times,
and observe tuning parameter values Θ̂1, . . . , Θ̂N , we could obtain a
reasonable estimate of the covariance matrix Σ for Θ̂ by

Σ =
1

N

N∑
n=1

(Θ̂n −Θ∗)′(Θ̂n −Θ∗)

where

Θ∗ =
1

N

N∑
n=1

Θ̂n

Then we could estimate the probability P (δ) that Θ̂ will lie within
an hyperellipsoid of parameter δ

(Θ̂n −Θ∗)′Σ−1(Θ̂n −Θ∗) ≤ δ

by simply counting:

P (δ) =
1

N
#{n | (Θ̂n −Θ∗)′Σ−1(Θ̂n −Θ∗) ≤ δ}



For any interval ∆, we could then compute the fraction f of time
that the training sample would yield a tuning parameter value in the
hyperellipsoid annulus of width ∆ around the point δ.

f(δ;∆) = P (δ +∆/2)− P (δ −∆/2)

Associated with the subset

S = {n | δ −∆/2 ≤ (Θ̂n −Θ∗)′Σ−1(Θ̂n −Θ∗) ≤ δ +∆/2}

is the corresponding set of tuning parameter values.

T = {Θn | n ∈ S}

Now consider taking group of Q testing samples for which we test
the algorithm when the tuning parameter values are set to a value
in T . For each of the Q#T combinations, there will be an observed
incorrect recognition rate. Thus for a given δ and ∆, there will be
a distribution of observed incorrect recognition rates and an associ-
ated mean µ incorrect recognition rate and variance σ2 of incorrrect
recognition rate. As we change δ we can observe the dependency of
µ on δ. From this dependency we can determine the variation in
performance due to testing set sampling variation.

If in doing this kind of analysis we find that the variation in
the system tuning parameters caused by training set sampling varia-
tions induces large changes in recognition accuracy, then it suggests
that the algorithm is not robust and probably undertrained. Such a
finding would lead us to more carefully inspect the reasons for the
failures and we would take pains to redesign the algorithm as well
as use larger sample size for training.
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