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Abstract. Cardiac catheterization procedure produces ventriculograms
which have very low contrast in the apical, anterior and inferior zones of
the left ventricle (LV). Pixel-based classi�ers operating on these images
produce boundaries which have systematic positional and orientation
bias and have a mean error of about 10.5 mm. Using the LV convex
information, comprising of the apex and the aortic valve plane, this pa-
per presents a comparison of the linear and quadratic optimization algo-
rithms to remove these biases. These algorithms are named after the way
the coe�cients are computed: the identical coe�cient and the indepen-
dent coe�cient. Using the polyline metric, we show that the quadratic
optimization is better than the linear optimization. We also show that
the independent coe�cient method performs better than the identical co-
e�cient when the training data is large. The overall mean system error
was 2.49 mm while the goal set by the cardiologist was 2.5 mm.

1 Introduction

We need the boundaries of the LV chamber in LV projection images because they
help the cardiologists to �nd the volume of the LV chamber, which is helpful in
computing the ejection fraction of the heart. Researchers have tried modeling
the LV, its contraction and expansion process. The LV modeling can be more
accurately accomplished if the LV chamber boundaries are estimated reliably,
accurately and speedily. Dumesnil et al. [1] has tried to model the 3D LV using
several synthetic models like ellipsoidal, spheroid and cylindrical. Dumesnil et al.
then showed that the LV contraction is inversely related to the ratio of mid-wall
thickness (ES boundary to mid of ED-ES boundary) to thickness of wall (ED-ES
distance).

Cardiac catheterization (CC) is the most common used technique for study-
ing cardiac disorders. Though CC is economical and very informative, but the
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left ventriculograms have poor image quality. The main reasons of the poor qual-
ity in the LV apex is as follows: (i) The contrast agent is unable to reach the
apex zone of the LV. This is partially due to the curling of the catheter which
is necessary to avoid irritation to the patient. (ii) Large LV size with respect to
the catheter outlet source. (iii) Abnormality of the LV shape also contributes to
the poor propagation of the contrast agent towards apex. (iv) The dynamics of
blood-mixing with the contrast agent is not homogeneous in the LV chamber.
This is because of the muscle resistivity. Some boundary muscle tissue are thick
which resists the agent to penetrate towards the apex. Besides apex, the inferior
wall of the LV chamber is also of poor quality because of the superposition of
diaphragm over the LV. The projection of the ribs over the LV in the LVgrams
is another cause of the poor contrast. The motion artifacts and noise due to the
scattering of the X-ray radiation by tissue volumes which is not related to the
LV also contribute towards the low quality LVgrams.

In an attempt to automatically estimate the accurate boundaries of the LV
chamber, several researchers have tried proposing their models in ventriculo-
grams and echocardiograms. Image processing techniques applied to these two
sets of images fall broadly in many classes but we will highlight the major and
directly related once. Van Bree et al. [2] estimated the LV borders using a combi-
nation of probability surfaces and dynamic programming in LVgrams. Cootes et
al. [3] attempted using an active shape model to infer the position of boundary
parts where there was missing data (top of the ventricle). Cootes et al. used the
knowledge of the expected shape combined with information from the areas of the
image where good evidence of the wall could be found. The least squares method
was used. Cootes et al. used weighted algorithm for �nal shape estimation where
the weights were proportional to the std. deviation of the shape parameter over
the training set. Lee [4] used a pixel-based Bayesian approach for the LV chamber
boundary estimation where the gray scale values of the location throughout the
cardiac cycle was taken as a vector. The above methods do produce boundaries
but due to the reasons stated above, the boundaries fall short, have jaggedness,
over estimation, under-estimation, irregularities and are not close to the ground
truth boundaries [4] thereby making the system incomplete and unreliable. In
the inferior wall region, the papillary muscles have a non-uniform structure un-
like the anterior wall region. This non-uniformity causes further variation in the
apparent boundary during the heart cycle. Because of this, the initial boundary
position of the inferior walls are sometimes over-estimated. In an attempt to
correct the initial image processing boundaries, Suri et al. [5] �rst attempted the
two linear calibration algorithms to estimate the LV boundaries without tak-
ing the apex information. For further improving the LV boundary error, Suri et
al. [6] presented a Greedy LV boundary estimation algorithm which fused the
boundaries coming from two di�erent techniques. To reduce further error in the
apex zone, Suri et al. [7] developed ES apex estimation technique using the ED
apex, so called dependence approach. This estimated ES apex was then used in
ES boundary estimation process. Using the WLS algorithm, Suri et al. [8] devel-
oped the apex estimation using the ruled surface model. Though the apex error
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did reduce but the inferior wall zone in many subjects could not be controlled
due to the large classi�er error, which was due to the overlap of the LV and the
diaphragm. This was validated by Suri et al. [9] using a training based system
which utilized the LV gray scale images and the estimated boundaries. Suri et
al. [10] then developed the surface �tting approach and mathematical morphol-
ogy to identify the diaphragm edges and separate the LV from diaphragm. Then
classi�er boundaries was merged with edge-based LV and better of the two was
taken for calibration. By penalizing the apex vertex in linear calibration, Suri
et al. [11] then forced the estimated curve to pass through the apex by drasti-
cally reducing the apex error given the mean system error to 2.89 mm. Recently
a further improvement was made by Suri, Haralick and Sheehan to develop a
Quadratic calibration scheme [12]. This paper compares the linear and quadratic
calibration schemes for LV boundary quanti�cation. This approach is di�erent
from the earlier approaches is that we use a training based optimization proce-
dure over the initial boundaries to correct its bias. This bias correction can be
thought as a calibration procedure where the boundaries produced by the image
processing techniques are corrected using the global shape information gathered
from the ideal database.

2 Two Linear and Two Quadratic Calibrators

This section gives the mathematical statements of the two calibration methods
used for estimation of the LV boundaries. Ground truth boundaries refer to the
hand delineated boundaries drawn by the cardiologist. Raw boundaries refer to
the boundaries produced by the initial pixel-based automated classi�cation pro-
cedure [4]. In the identical coe�cient (IdCM), each vertex is associated with a
set of coe�cients. The calibrated x-coordinate for that vertex is computed as
the linear combination of raw x-coordinates of the LV boundary using the coe�-
cients associated with that vertex. The calibrated y-coordinate of that vertex is
similarly computed as the same linear combination of raw y-coordinates of the
LV boundary. In the independent coe�cient (InCM), the calibrated x-coordinate
is computed as the linear combination of raw x-and raw y-coordinates of the LV
boundary, using the coe�cients associated with that vertex. The calibrated y-
coordinate of that vertex is computed with a di�erent linear combination of raw
x-and y-coordinates. The problem of calibration then reduces to a problem of
determining the coe�cients of the linear combination. This can be accomplished
by solving a regression problem. Since input raw and ground truth LV bound-
aries are initially in a 100 vertices polygon format with unit dimensions in mm,
we therefore resample and interpolate each of these polygons into equally spaced
vertices before it undergoes the calibration procedure discussed below.
Identical Coe�cient Method for any Frame of Cardiac Cycle: Let g

0

n

and h
0

n
be the row vectors of x-coordinates and y-coordinates respectively for

the ground truth boundaries for patient n. Let r
0

n
and s

0

n
be the row vectors

of x-coordinates and y-coordinates respectively for the classi�er boundary for

110 J.S. Suri, R.M. Haralick, and F.H. Sheehan



any patient n, where n = 1; :::; N . For the calibrated boundary estimation in
ventriculograms using the IdCM, we are:
{ Given: Corresponding pairs of ground truth boundary matrix R [2N � P ],

and the classi�er boundary matrix Q [2N � (P + k)], respectively as:
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where for linear calibration, r
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where (u1n; v1n), and

(u2n; v2n) are the anterior and inferior aspect of the AoV plane for patient n.
(pn; qn) represents the apex coordinates of the LV for patent n. Note k=4 for
linear identical coe�cient method (L-IdCM) and k=10 for quadratic identical
coe�cient method (Q-IdCM).

{ Let A [(P + k)� P ] be the unknown coe�cient matrix.
{ The problem is to estimate the coe�cient matrixA, to minimize k R�QA k2.

Then for any classi�er boundary matrix Q, the calibrated vertices of the
boundary are given by QÂ, where Â is the estimated coe�cients.

Note that from the problem formulation, the coe�cients that multiply g
0

n also
multiply h

0

n, hence the name identical coe�cient . Also note that the new x-
coordinates for the nth boundary only depend on the old x-coordinates from the
nth boundary, and the new y-coordinates from the nth boundary only depend
on the old y-coordinates from the nth boundary.
Independent Coe�cient Method for any Frame of Cardiac Cycle: As
before, let g

0

n and h
0

n be the row vectors of x- and y- coordinates for any patient
n. Let r

0

n and s
0

n be the row vectors of x-and y-coordinates of the classi�er
boundary. For the calibrated boundary estimation in ventriculograms using the
independent coe�cient method, we are:

{ Given: Corresponding ground truth boundary matrix R [N �2P ], classi�er
boundary matrix Q [N � (2P + k)] respectively as:
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where, for linear calibration, (r
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, (u1n; v1n), and (u2n; v2n)

are the coordinates of the anterior aspect and inferior aspect of the AoV plane
of the LV. (pn; qn) are the apex coordinates of the left ventricle for patent n.
Note k=7 for L-InCM and k=15 for Q-InCM.

{ Let A [(2P + k)� 2P ] be unknown coe�cient matrix.

{ The problem is to estimate the coe�cient matrixA, to minimize k R�QA k2.
Then for any classi�er boundary matrix Q, the calibrated vertices of the
boundary are given by QÂ where Â is the estimated coe�cients.

Note that the new (x; y)-coordinates of the vertices of each boundary is a di�er-

ent linear combination of the old (x; y)-coordinates for the polygon, hence the
name independent coe�cient method.
Classi�er Matrix: The above two methods are di�erent in the way the calibra-
tion model is set up. In linear calibration (L-IdCM) Q is of size 2N � (P + 4),
while in L-InCM is N � (2P +7). The classi�er boundary matrix Q in Q-IdCM
is of size 2N � (P + 10) while in Q-InCM is of size N � (2P + 15).
Number of Coe�cients: In linear calibration (L-IdCM), the number of coe�-
cients estimated in the Â matrix is (P +4)�P , while the number of coe�cients
in L-InCM are: (2P + 7) � 2P , while for Q-IdCM, the number of coe�cients
estimated in the Â matrix is (P + 10) � P . For Q-InCM, the number of coef-
�cients estimated is (2P + 15)� 2P . Thus the independent coe�cient method
requires around four times the number of coe�cients of the identical coe�cient

method to be estimated, and this di�erence represents a signi�cant factor in the
ability of the technique to generalize rather than memorize for our data size.

3 Training and On-Line System

Suri [11] presented a two stage training-based cardiovascular imaging system
for clinical cardiology and its research as shown in �g. 1 (left). LV classi�ca-
tion boundaries are produced on-line (right half) using the training parameters
produced o�-line. Stage-II (lower half) is the calibration process which cali-
brates out the bias errors of the raw boundaries using the training based system.
The training parameters are applied on-line to estimate the accurate boundaries
(right half). Generalizing for any frame t, the minimizing Âtr and estimated
boundaries R̂te on the test set (Qte) as:

Âtr = (QT
trQtr )

�1QT
trR

| {z }

; R̂te = Qte Âtr
| {z }

(1)
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Singular value decomposition was used for solving for Âtr. The calibration pro-
cedure discussed in this paper removes all systematic position, orientation, and
shape errors from the initial classi�er boundaries by taking the convex informa-
tion of LV f(u1; v1); (u2; v2); (p1; q1)g.
Cross-Validation Optimization Algorithm: The CV technique is used in
estimating the accuracy of the calibration procedure that takes a database of N
patients and partitions it into K equal sized subsets. Then for all K choose L

combinations, we estimate the calibration transformation using L subsets. Us-
ing the estimated transformation on the remaining K{L subsets, we estimate
the mean error of the transformed boundary. We employ two di�erent calibra-
tion techniques: the identical coe�cient and the independent coe�cient . Each
method produces estimates for the vertices of the polygon bounding the LV.
Because of the small number of patient studies, N=377 and large number of
parameters (about 200 times N) in the transformation, there is a danger of
memorization rather than generalization in the estimation of the transformation

parameters. Therefore, the number of vertices, P in the LV polygon must be
carefully chosen. As P decreases, the generalization will be better but the rep-
resentation of the true shape will get worse, thereby causing higher error with
respect to the ground truth. As P increases, generalization will be lost but the
representation of the true shape will get better. With the other parameters K;L
and N �xed, there will be an optimal number of boundary vertices balancing the
representation error with the memorization error. Our protocol �nds this optimal

number. Rotating through all L chooseK combinations, we measure the accuracy
of the results on the remaining K{L subsets using the polyline distance metric.

The mean and standard deviation of the resulting set of N�F �P � (K�1)!
(K�L�1)!L!

numbers is then used to estimate the overall performance.

4 Polyline Distance Measure

The polyline distance Ds(B1 : B2) between two polygons representing boundary
B1 and B2 is symmetrically de�ned as the average distance between a vertex
of one polygon to the boundary of the other polygon. To de�ne this measure
precisely, �rst requires having de�ned a distance d(v; s) between a point v and
a line segment s. The distance d(v; s) between a point v having coordinates
(xo; yo), and a line segment having end points (x1; y1) and (x2; y2) is:

d(v; s) =

�
minfd1; d2g; if � < 0; � > 1
jd?j; if 0 � � � 1;

(2)

where

d1 =

q
(x0 � x1)

2
+ (y0 � y1)

2

d2 =

q
(x0 � x2)

2
+ (y0 � y2)

2

� = (y2�y1)(y0�y1)+(x2�x1)(x0�x1)
(x2�x1)2+(y2�y1)2

d? = (y2�y1)(x1�x0)+(x2�x1)(y0�y1)p
(x2�x1)2+(y2�y1)2

(3)
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Fig. 1. Two stage system for LV boundary estimation. Stage I (upper half, shown black
in color) consists of three approaches: Pixel-classi�cation approach, edge detection ap-
proach and the classi�cation-edge fusion approach. Stage II (lower half, shown white in
color), consists of the calibration stage which smoothes the raw boundaries produced
in stage I. Left Half: O�-line training system, Right Half: On-line boundary estima-
tion Right: The cross validation protocol consists of calibration parameters: N=377,
K=188, L=187, F=2, P

1
=100, P

2
=100. Note the optimized points 20 are interpolated

back to 100 points for polyline metric computation.

The distance db(v;B2) measuring the polyline distance from vertex v to the
boundary B2 is de�ned by:

db(v;B2) = min
s2 sides B2

d(v; s) (4)

The distance dvb(B1; B2) between the vertices of polylgon B1 and the sides of
polygon B2 is de�ned as the sum of the distances from the vertices of the polygon
B1 to the closest side of B2.

dvb(B1; B2) =
X

v2 vertices B1

d(v;B2)

On reversing the computation fromB2 toB1, we can similarly compute dvb(B2; B1).
Using Eq. 4, the polyline distance between polygons, Ds(B1 : B2) is de�ned by:

Ds(B1 : B2) =
dvb(B1; B2) + dvb(B2; B1)

(#vertices 2 B1 +#vertices 2 B2)
(5)

Using the above de�nition, the overall mean error e
poly

NFP
of the calibration system

can be given as:

e
poly

NFP
=

PF

t=1

PN

n=1
Ds(Gnt; Cnt)

F �N
(6)

where, Ds(Gnt; Cnt) is the polyline distance between the ground truth Gnt and
calibrated polygons Cnt for patient study n and frame number t.
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5 Quadratic Vs. Linear Optimization Results

Suri et al. showed the linear calibration with convex information [5] [6] [7] [9] [10]
for di�erent data sets (N) ranging from 245 to 377. Using the cross validation

protocol discussed in section 3, the polyline mean error in linear calibrator for
InCM was 3.47 mm when N=291. Corresponding estimated boundaries are
shown in �g. 2. We here show results for the quadratic calibration under InCM
conditions. The optimization curve for cross-validation is shown in �g. 1 (right)

with a dip when P=20. The corresponding mean error e
poly

NFP
=2.49 mm. The

calibration parameters were:N=377, F=2,K=188, P1=100, P2=100. The mean
error when patient boundary lies both in training and testing data (TT case)
condition is below 2 mm. The mean error for InCM technique under 4 conditions
are: Without apex: 4.09 mm, with apex alone: 3.59 mm, with apex and AoV
(linear): 2.97 mm, with apex and AoV (quadratic): 2.49 mm.

6 Diagnostic Clinical Acceptance and Discussions

The mean error over ED and ES frames using a cross validation protocol and
polyline distance metric was 2.49 mm over the database of 377 patient studies.
The goal of the diagnostic system was 2.5 mm.
InCM vs. IdCM: We also observed that when the training data was less
(around 245 patient studies) then the IdCM technique was performing better
than the InCM technique, and when the data was larger than 291 patient stud-
ies then the InCM technique was performing better than the IdCM technique.
One reason of large error in IdCM with low data was due to the large number of
coe�cients it had to compute. Also we used the singular value decomposition to
evaluate the classi�er matrix, Q, which is very critical in inverse computations,
a full rank matrix in InCM was more superior to a full rank matrix in IdCM
with large data size.
Dynamics and Apparatus Design: Though we are able to obtain a goal on
the cost of the heavy data processing, it may be worth while to discuss if com-
puter processing of huge data is the only approach to handle the poor quality
data sets (LVgrams). If careful analyzation is done, we �nd that there can be
less complexity in computer processing (LV classi�cation, edge detection, cali-
bration) if the LV chamber would receive enough contrast agent (dye). How can
we improve the apparatus setup to inject dye in apical zone ? One way would
be to bring a change in curvature of the catheter for handling variability of the
LV's. If the LV is more longitudinal we should be able to change the curvature
of the catheter to let dye ow towards the apex. On the contrary if the heart is
very wide or huge, can a dual catheter facing opposite walls be a good choice
? One catheter can be used for �lling the anterior side while the other catheter
can be used to �ll the inferior side. Another possibility would be to look over
the lateral movement of the catheter during the motion of the LV . If we can
detect the crests and troughs of the LV border muscles, we can then �ll the
apical zone using computer control. Careful design is feasible by controlling the
uid dynamics inside the LV chamber to improve the quality of the LVgrams.
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7 Conclusions & Acknowledgements

We compared the two training-based linear and quadratic calibration algorithms:

the identical coe�cient and the independent coe�cient . We showed that the

mean boundary error under quadratic calibration is better than the linear cal-

ibration with convex information of the LV. The mean error over end diastole

and end systole frames using a cross validation protocol and polyline distance

metric is 2.49 mm over the database of 377 patent studies. The goal of the diag-

nostic system is 2.5 mm. The software runs on PC and SUN work stations and

written in C language. The authors thank Professors Linda G. Shapiro, Dean

Lytle, Arun K. Somani, D. D. Meldrum, Werner Stuetzle, and Dr. Ajit Singh,
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