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Abstract. Ca diac cathete ization p ocedu e p oduces vent iculog ams
which have ve y low cont ast in the apical, ante io and infe io zones of
the left vent icle (LV). Pixel-based classifie s ope ating on these images
p oduce bounda ies which have systematic positional and o ientation
bias and have a mean e o of about 10.5 mm. Using the LV convex
info mation, comp ising of the apex and the ao tic valve plane, this pa-
pe p esents a compa ison of the linea and quad atic optimization algo-
ithms to emove these biases. These algo ithms a e named afte the way
the coefficients a e computed: the identical coefficient and the indepen-
dent coefficient. Using the polyline met ic, we show that the quad atic
optimization is bette than the linea optimization. We also show that
the independent coefficient method pe fo ms bette than the identical co-
efficient when the t aining data is la ge. The ove all mean system e o

was 2.49 mm while the goal set by the ca diologist was 2.5 mm.

1 Int oduction

We need the boundaries of the LV chamber in LV projection images because they
help the cardiologists to find the volume of the LV chamber, which is helpful in
computing the ejection fraction of the heart. Researchers have tried modeling
the LV, its contraction and expansion process. The LV modeling can be more
accurately accomplished if the LV chamber boundaries are estimated reliably,
accurately and speedily. Dumesnil et al. [1] has tried to model the 3D LV using
several synthetic models like ellipsoidal, spheroid and cylindrical. Dumesnil et al.
then showed that the LV contraction is inversely related to the ratio of mid-wall
thickness (ES boundary to mid of ED-ES boundary) to thickness of wall (ED-ES
distance).

Cardiac catheterization (CC) is the most common used technique for study-
ing cardiac disorders. Though CC is economical and very informative, but the
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did reduce but the inferior wall zone in many subjects could not be controlled
due to the large classifier error, which was due to the overlap of the LV and the
diaphragm. This was validated by Suri et al. [9] using a training based system
which utilized the LV gray scale images and the estimated boundaries. Suri et
al. [10] then developed the surface fitting approach and mathematical morphol-
ogy to identify the diaphragm edges and separate the LV from diaphragm. Then
classifier boundaries was merged with edge-based LV and better of the two was
taken for calibration. By penalizing the apex vertex in linear calibration, Suri
et al. [11] then forced the estimated curve to pass through the apex by drasti-
cally reducing the apex error given the mean system error to 2.89 mm. Recently
a further improvement was made by Suri, Haralick and Sheehan to develop a
Quadratic calibration scheme [12]. This paper compares the linear and quadratic
calibration schemes for LV boundary quantification. This approach is different
from the earlier approaches is that we use a training based optimization proce-
dure over the initial boundaries to correct its bias. This bias correction can be
thought as a calibration procedure where the boundaries produced by the image
processing techniques are corrected using the global shape information gathered
from the ideal database.

2 Two Linear and Two Quadratic Calibrators

This section gives the mathematical statements of the two calibration methods
used for estimation of the LV boundaries. Ground truth boundaries refer to the
hand delineated boundaries drawn by the cardiologist. Raw boundaries refer to
the boundaries produced by the initial pixel-based automated classification pro-
cedure [4]. In the identical coefficient (IACM), each vertex is associated with a
set of coefficients. The calibrated z-coordinate for that vertex is computed as
the linear combination of raw x-coordinates of the LV boundary using the coeffi-
cients associated with that vertex. The calibrated y-coordinate of that vertex is
similarly computed as the same linear combination of raw y-coordinates of the
LV boundary. In the independent coefficient (InCM), the calibrated z-coordinate
is computed as the linear combination of raw z-and raw y-coordinates of the LV
boundary, using the coefficients associated with that vertex. The calibrated y-
coordinate of that vertex is computed with a different linear combination of raw
z-and y-coordinates. The problem of calibration then reduces to a problem of
determining the coefficients of the linear combination. This can be accomplished
by solving a regression problem. Since input raw and ground truth LV bound-
aries are initially in a 100 vertices polygon format with unit dimensions in mm,
we therefore resample and interpolate each of these polygons into equally spaced
vertices before it undergoes the calibration procedure discussed below.

Identical Coefficient Method for any Frame of Cardiac Cycle: Let g;l
and hln be the row vectors of z-coordinates and y-coordinates respectively for
the ground truth boundaries for patient n. Let rln and sln be the row vectors
of z-coordinates and y-coordinates respectively for the classifier boundary for
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any patient n, where n = 1,...,N. For the calibrated boundary estimation in
ventriculograms using the IdCM, we are:
— Given: Corresponding pairs of ground truth boundary matrix R [2N x P],
and the classifier boundary matrix Q [2N x (P + k)], respectively as:
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(uan, va2n) are the anterior and inferior aspect of the AoV plane for patient n.
(pn, qn) Tepresents the apex coordinates of the LV for patent n. ote k=4 for
linear identical coefficient method (L-IdCM) and k=10 for quadratic identical
coefficient method (Q-IACM).

— Let A [(P + k) x P] be the unknown coefficient matrix.

— The problem is to estimate the coefficient matrix A, to minimize || R — Q A ||2.
Then for any classifier boundary matrix Q, the calibrated vertices of the
boundary are given by QA, where A is the estimated coefficients.

ote that from the problem formulation, the coefficients that multiply g;l also
multiply h’n, hence the name identi al oeffi ient . Also note that the new z-
coordinates for the n!” boundary only depend on the old z-coordinates from the
nt? boundary, and the new y-coordinates from the n'” boundary only depend
on the old y-coordinates from the n*” boundary.
Independent Coefficient Method for any Frame of Cardiac Cycle: As
before, let g;l and h’n be the row vectors of - and y- coordinates for any patient
n. Let r, and s, be the row vectors of z-and y-coordinates of the classifier
boundary. For the calibrated boundary estimation in ventriculograms using the
independent oeffi ient method, we are:

— Given: Corresponding ground truth boundary matrix R [N x 2P], classifier
boundary matrix Q [N x (2P + k)] respectively as:
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are the coordinates of the anterior aspect and inferior aspect of the AoV plane
of the LV. (pn,q,) are the apex coordinates of the left ventricle for patent n.
Note k=7 for L-InCM and k=15 for Q-InCM.

— Let A [(2P + k) x 2P] be unknown coefficient matrix.

— The problem is to estimate the coefficient matrix A, to minimize || R — Q A
Then for any classifier boundary matrix Q, the calibrated vertices of the
boundary are given by QA where A is the estimated coefficients.

7.

Note that the new (z,y)-coordinates of the vertices of each boundary is a differ
ent linear combination of the old (z,y)-coordinates for the polygon, hence the
name independent coefficient method.

Cla ifier Matrix: The above two methods are different in the way the calibra-
tion model is set up. In linear calibration (L-IdCM) Q is of size 2N x (P + 4),
while in L-InCM is N x (2P + 7). The classifier boundary matrix Q in Q-IdCM
is of size 2N x (P + 10) while in Q-InCM is of size N x (2P + 15).

Number of Coefficient : In linear calibration (L-IdCM), the number of coetfi-
cients estimated in the A matrix is (P +4) x P, while the number of coefficients
in L-InCM are: (2P + 7) x 2 P, while for Q-IdCM, the number of coefficients
estimated in the A matrix is (P 4+ 10) x P. For Q-InCM, the number of coef-
ficients estimated is (2 P + 15) x 2 P. Thus the independent coefficient method
requires around four times the number of coefficients of the identical coefficient
method to be estimated, and this difference represents a significant factor in the
ability of the technique to generalize rather than memorize for our data size.

3 Traii ga d O -Li e System

Suri [11] presented a two stage training-based cardiovascular imaging system
for clinical cardiology and its research as shown in fig. 1 (left). LV classifica-
tion boundaries are produced on-line (right half) using the training parameters
produced off-line. Stage-II (lower half) is the calibration process which cali-
brates out the bias errors of the raw boundaries using the training based system.
The training parameters are applied on-line to estimate the accurate boundaries
(right half). Generalizing for any frame ¢, the minimizing A;, and estimated
boundaries ﬁte on the test set (Qqe) as:

Atr - (QZ;- Qtr )71 Q,t];- R7 I“{te - Qte Atr (]-)
~ ~ oo~ ~ P’
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Si gular value decompositio was used for solvi g for A,,. The calibratio pro-
cedure discussed i this paper removes all systematic positio , orie tatio ,a d
shape errors from the i itial classifier bou daries by taki g the co vexi forma-
tio of LV {(u1,v1), (u2,v2), (p1,q1)}-

Cross-Validation Optimization Algorithm: The CV tech ique is used i
estimati g the accuracy of the calibratio procedure that takes a database of NV
patie ts a d partitio s it i to K equal sized subsets. The for all K choose L
combi atio s, we estimate the calibratio tra sformatio wusi g L subsets. Us-
i g the estimated tra sformatio o the remai i g K—L subsets, we estimate
the mea error of the tra sformed bou dary. We employ two differe t calibra-
tio tech iques: the identical coefficient a d the independent coefficient . Each
method produces estimates for the vertices of the polygo bou di g the LV.
Because of the small umber of patie t studies, N=377 a d large umber of
parameters (about 00 times N) i the tra sformatio , there is a da ger of
memorizatio rather tha generalizationi the estimatio of the transformation
parameters. Therefore, the umber of vertices, P i the LV polygo must be
carefully chose . As P decreases, the ge eralizatio will be better but the rep-
rese tatio of the true shape will get worse, thereby causi g higher error with
respect to the grou d truth. As P i creases, ge eralizatio will be lost but the
represe tatio of the true shape will get better. With the other parameters K, L
a d N fixed, there will be a optimal umber of bou dary vertices bala ci g the
represe tatio error with the memorizatio error. Our protocol fi ds this optimal
number. Rotati g through all L choose K combi atio s, we measure the accuracy
of the results o the remai i g K—L subsets usi g the polyline distance metric.
The mea a dsta dard deviatio of the resulti gset of NV x F'x P X ( K(fi_fl))!! Ll

umbers is the used to estimate the overall performa ce.

The polyli e dista ce Dy(Bj; : Bs) betwee two polygo s represe ti gbou dary
By a d B, is symmetrically defi ed as the average dista ce betwee a vertex
of o e polygo to the bou dary of the other polygo . To defi e this measure
precisely, first requires havi g defi ed a dista ce d(v,s) betwee apoi t va d
a li e segme t s. The dista ce d(v,s) betwee a poi t v havi g coordi ates
(T0,90), & dali esegme t havi ge d poi ts (xz1,y1) a d (z2,y2) is:

_ mi {dl,dg}; Zf /\<0,A>1
d(”’s)‘{ldH; if 0<A<1, O

where

di = \/(»To —a1)” + (yo — 1)’

dy = \/(1’0 - 1’2)2 + (Yo — y2)2 3)
\ = (y2—vy1)(yo—y1)+(z2—z1)(T0—21)

B (z2—21)2+(y2—y1)?
dt = w2—y)(@i—zo)+(e2—21)(yo—y1)

\/(12*11)2+(y2*y1)2
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2 STAGE TRAINING - BASED BOUNDAR' Quadratic Calibration: CV vs. TT
ESTIMATION SYSTEM
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Fig. 1. Two stage system for LV boundary estimation. Stage I (upper half, shown black
in color) consists of three approaches: Pixel-classification approach, edge detection ap-
proach and the classification-edge fusion approach. Stage II (lower half, shown white in
color), consists of the calibration stage which smoothes the raw boundaries produced
in stage I. Left Half: Off-line training system, Right Half: On-line boundary estima-
tion Right: The cross wvalidation protocol consists of calibration parameters: N=377,
K=188, L=187, F'=2, P,=100, P,=100. Note the optimized points 20 are interpolated
back to 100 points for polyline metric computation.

The distance dj(v, B2) measuring the polyline distance from vertex v to the
boundary B, is defined by:

(v, B2) = min = d(v,s) (4)
The distance d,,(B;, B2) between the vertices of polylgon B; and the sides of

polygon Bs is defined as the sum of the distances from the vertices of the polygon
Bj to the closest side of Bs.

dvb(Bl,Bg) = Z d(’U,Bg)

vE vertices By

On reversing the computation from By to By, we can similarly compute d; (B2, B1).
Using Eq. 4, the polyline distance between polygons, Ds(Bj : Bs) is defined by:
dyy(B1, B dyy (B2, B
D,(By : By) = vb( 1, Ba) + dyp( 2, 1) (5)
(#verti es € By + #verti es € Bs)

Using the above definition, the overall mean error e;;i of the calibration system
can be given as:

SV > Sy PN (AN e 6
NEP FxN

where, Dy(G i, Cpyt) is the polyline distance between the ground truth G,; and
calibrated polygons C),; for patient study n and frame number ¢.

€
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5 Quad atic Vs. Linea Optimization Results

Suri et al. showed the linear calibration with convex information [5] [6] [7] [9] [10]
for different data sets (IV) ranging from 245 to 377. Using the cross validation
protocol discussed in section 3, the polyline mean error in linear calibrator for
InCM was 3.47 mm when N=291. Corresponding estimated boundaries are
shown in fig. 2. We here show results for the quadratic calibration under InCM
conditions. The optimization curve for cross-validation is shown in fig. 1 (right)
with a dip when P=20. The corresponding mean error e];;ypz2.49 mm. The
calibration parameters were: N=377, F'=2, K=188, P =100, P =100. The mean
error when patient boundary lies both in training and testing data (TT case)
condition is below 2 mm. The mean error for InCM technique under 4 conditions
are: Without apex: 4.09 mm, with apex alone: 3.59 mm, with apex and AoV
(linear): 2.97 mm, with apex and AoV (quadratic): 2.49 mm.

6 Diagnostic Clinical Acceptance and Discussions

The mean error over ED and ES frames using a cross validation protocol and
polyline distance metric was 2.49 mm over the database of 377 patient studies.
The goal of the diagnostic system was 2.5 mm.

InCM vs. IdCM: We also observed that when the training data was less
(around 245 patient studies) then the IdCM technique was performing better
than the InCM technique, and when the data was larger than 291 patient stud-
ies then the InCM technique was performing better than the IdCM technique.
One reason of large error in IdCM with low data was due to the large number of
coefficients it had to compute. Also we used the singular value decomposition to
evaluate the classifier matrix, Q, which is very critical in inverse computations,
a full rank matrix in InCM was more superior to a full rank matrix in IdCM
with large data size.

Dynamics and Apparatus Design: Though we are able to obtain a goal on
the cost of the heavy data processing, it may be worth while to discuss if com-
puter processing of huge data is the only approach to handle the poor quality
data sets (LVgrams). If careful analyzation is done, we find that there can be
less complexity in computer processing (LV classification, edge detection, cali-
bration) if the LV chamber would receive enough contrast agent (dye). How can
we improve the apparatus setup to inject dye in apical zone ? One way would
be to bring a change in curvature of the catheter for handling variability of the
LV’s. If the LV is more longitudinal we should be able to change the curvature
of the catheter to let dye flow towards the apex. On the contrary if the heart is
very wide or huge, can a dual catheter facing opposite walls be a good choice
? One catheter can be used for filling the anterior side while the other catheter
can be used to fill the inferior side. Another possibility would be to look over
the lateral movement of the catheter during the motion of the LV . If we can
detect the crests and troughs of the LV border muscles, we can then fill the
apical zone using computer control. Careful design is feasible by controlling the
fluid dynamics inside the LV chamber to improve the quality of the LVgrams.



116

J.S. Suri, R.M. Haralick, and F.H. Sheehan

7 Conclusions & Acknowledgements

We compared the two training-based linear and quadratic calibration algorithms:
the identical coefficient and the independent coefficient We showed that the
mean boundary error under quadratic calibration is better than the linear cal-
ibration with convex information of the LV The mean error over end diastole
and end systole frames using a cross validation protocol and polyline distance
metric is 2.49 mm over the database of 377 patent studies The goal of the diag-
nostic system is 2.5 mm The software runs on PC and SUN work stations and
written in C language The authors thank Professors Linda G Shapiro, Dean
Lytle, Arun K Somani, D D Meldrum, Werner Stuetzle, and Dr Ajit Singh,
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Fig. 2. Upper (left & right): ED nput and output to the Quadratic Calibration S s-
tem along with the ground truth boundar . Bottom: ES nput and output. Calibra-
poly

tion Parameters: N=377, K=188, L=187, F'=2, P =100, P =20, Mean error (e, )
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