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Abstract. Dimension reduction methods are often applied in machine
learning and data mining problems. Linear subspace methods are the
commonly used ones, such as principal component analysis (PCA), Fisher’s
linear discriminant analysis (FDA), et al. In this paper, we describe a
novel feature extraction method for binary classification problems. In-
stead of finding linear subspaces, our method finds lower-dimensional
affine subspaces for data observations. Our method can be understood
as a generalization of the Fukunaga-Koontz Transformation. We show
that the proposed method has a closed-form solution and thus can be
solved very efficiently. Also we investigated the information-theoretical
properties of the new method and study the relationship of our method
with other methods. The experimental results show that our method, as
PCA and FDA, can be used as another preliminary data-exploring tool
to help solve machine learning and data mining problems.

1 Introduction

Because of the curse of dimensionality and the concern of computational effi-
ciency, dimension reduction methods are often used in machine learning and
data mining problems. Examples are face recognition in computer vision [3, 20],
electroencephalogram (EEG) signal classification in Brain-Computer Interface
(BCI )[5, 16] and microarray data analysis [4]. Linear subspace methods have
been widely used for the purpose of dimension reduction. We give a brief review
of the most commonly used ones.

Principal component analysis (PCA) and independent component analysis
(ICA) are unsupervised linear subspace methods for dimension reduction. PCA
tries to find linear subspaces such that the variance of data are maximally pre-
served. ICA is a way of finding linear subspaces in which the second- and higher-
order statistical dependencies of the data are minimized; that is the transformed
variables are as statistically independent from each other as possible. Note that,
as unsupervised methods, neither PCA nor ICA use label information, which is
crucial for classification problems. Consequently, PCA and ICA are optimal for
pattern description, but not optimal for pattern discrimination.



Fisher’s discriminant analysis (FDA) finds linear subspaces in which the dis-
tance between the means of classes is maximized and the variance of each class
is minimized at the same time. An important drawback of FDA is that, for K-
class classification problems, it can only find K − 1 dimensional subspaces. This
becomes more serious when binary classification problems are considered, for
which FDA can only extract one optimal feature. Canonical correlation analysis
(CCA) is a method of finding linear subspaces to maximize the correlation of the
observation vectors and their labels. It has been known for a long time that FDA
and CCA indeed give identical subspaces for the dimension reduction purpose
[2].

Recently there has been some interest in partial least squares (PLS ) [18].
Only recently, it has been shown that PLS has a close connection with FDA [1].
PLS finds linear subspaces by iteratively maximizing the covariance of deflated
observation vectors and their labels. In one mode, PLS can be used to extract
more than one feature for binary classification. The main concern in PLS is the
efficiency issue, since in each iteration one has to subtract observation matrix
by its rank-one estimation found in the previous iteration, and generate deflated
observation vectors.

Linear subspaces are specific instances of affine subspaces. In this study, we
propose a novel affine feature extraction (AFE ) method to find affine subspaces
for classification. Our method can be seen as a generalization of the Funkunaga-
Koontz transformation (FKT ) [9]. We investigate the information-theoretical
properties of our method and study the relationship of AFE and other similar
feature extraction methods.

Our paper is organized as follows: in section 2, we present the main result
of our work: the motivation of the study, the AFE method and its closed-form
solutions. We investigated the information-theoretical properties of AFE and the
relationship of AFE with other linear subspace dimension reduction methods in
section 3. Experimental results are presented in section 4. We concludes this
study with the summary of our work, and possible future directions in section
5.

2 Affine Feature Extraction

Consider a binary classification problem, which is also called discriminant anal-
ysis in statistics. Let {(xj , gj) ∈ R

m × {1, 2}|j = 1, 2, · · · , N} be a training set.
xj and gj are the observation vector and the corresponding class label. For sim-
plicity, we assume the training set is permuted such that observations 1 to N1

have label 1, and observations N1 + 1 to N1 + N2 have label 2. Define a data
matrix as

X = (x1,x2, · · · ,xN ) = (X1,X2),

where Xi = (xk,xk+1, · · · ,xk+Ni
), and k =

∑i−1
j=1 Nj . For the convenience of

future discussion, we define augmented observation vectors as

yi =

(

xi

1

)

. (1)



We can similarly define an augmented data matrix Yi for class i as YT
i =

(XT
i ,1). Throughout this paper, we use the following conventions: (1) vectors

are column vectors; (2) 1 is a vector of all ones; (3) I is an identity matrix; (4)
�

T is the transpose of a vector or matrix �; and (5) tr(�) is the trace of a
matrix �.

2.1 Background

In this subsection, we give a brief introduction of dimension reduction for clas-
sical discriminant analysis. Due to the limitation of space, we cannot provide
complete details for classical discriminant analysis. We refer to section 4.3 of
[11] for a nice treatment on this topic. This subsection also serves as our moti-
vation to carry on this study.

Before going on further, let us define the sample mean, covariance and second-
moment for class i as follows:

mean µ̂i =
1

Ni

Xi1, (2)

covariance Σ̂i =
1

N i
Xi(I−

1

Ni

11T )2XT
i , (3)

second-moment M̂i =
1

N i
XiX

T
i . (4)

One essential assumption of classical discriminant analysis is that the proba-
bility density for each class can be modeled as a multivariate normal distribution,
i.e. N (µi,Σi) (i = 1, 2). Equations 2 and 3 can be seen as the empirical estima-
tions of classical density parameters µi and Σi, respectively. Without losing gen-
erality, let us consider how to find a one-dimensional linear subspace for classical
discriminant analysis; that is to find a linear transformation for observations:

zi = wTxi,

where wT is a m-dimensional vector.
When the two classes have a common covariance, i.e. Σ1 = Σ2 = Σ, the

problem is relatively easy. It is not hard to show that the optimal w∗ is the
eigenvector of Σ−1(µ2 − µ1)(µ2 − µ1)

T . FDA essentially capture this situation
by solving the following problem:

max
wT (µ̂2 − µ̂1)(µ̂2 − µ̂1)

T w

wT Σ̂w
, (5)

where NΣ̂ = N1Σ̂1 + N2Σ̂2.
When Σ1 6= Σ2, to find an optimal linear subspace is hard. The only known

closed-form solution is that w∗ is the eigenvector of Σ−1
1 Σ2 +Σ−1

2 Σ1, which has
the largest eigenvalue. It can be shown that, when µ1 = µ2 = 0, the solution
optimizes the Kullback-Leibler KL divergence and the Bhattacharyya distance,
(c.f. Section 10.2 of [8]). The KL distance and the Bhattacharyya distance are



approximations of the Chernoff distance, which is the best asymptotic error
exponent of a Bayesian approach. Therefore the optimizing of these distances
serves as the theoretical support to use it as a dimension reduction method.
Widely used in EEG classification problems, common spatial pattern (CSP)
solves the following problem:

max
wT Σ̂1w

wT Σ̂2w
or max

wT Σ̂2w

wT Σ̂1w
. (6)

Therefore CSP only works well when the difference of class means is small, i.e.
|µ2 − µ1| ≈ 0. For many classification problems, this restriction is unrealistic.
Furthermore, unlike FDA, CSP has no natural geometrical interpretation.

The FKT method can be seen as an extension of CSP by shrinking µ̂i to zero.
It can be seen as a rough shrinkage estimation of the mean for high dimensional
data. FKT solves the following problem:

max
wT M̂1w

wT M̂2w
or max

wT M̂2w

wT M̂1w
(7)

Taking a closer look at the criterion of FKT, we note that the criterion maxw
T
M̂1w

wT M̂2w

can be written as

min wTM̂2w

s.t. wT M̂1w = 1.

Note wTM̂iw = 1
Ni

∑k+Ni

j=k+1 z2
j , where k =

∑i−1
j=1 Nj and i = 1, 2. That is:

wT M̂iw is the mean of square transformed observations, i.e. z2
j , of class i.

Therefore FKT can be interpreted as finding a linear subspace in which one
can maximize the distance of the means of square transformed observations.
However FKT may ignore important discriminant information for some cases,
for example, the one proposed in [7].

2.2 Method

Let zi = v0 + vT
1 xi be an affine transformation for observations xi, where v1

is a m dimensional vector. Linear transformations are a special form of affine
transformations, where v0 = 0. Now denoting wT = (vT

1 , v0), we have zi = wT yi.
Note that we have abused the notation of w. From now on, we shall use w for
affine transformations unless specified otherwise. Define a sample augmented
second moment matrix as

Ξ̂i =
1

Ni

YiY
T
i . (8)

The relation of augmented second moment matrix, covariance matrix and mean
can be found in appendix A. Motivated by FKT, we use the following objective
function to find the optimal one-dimensional affine subspace

max ξ
wT Ξ̂1w

wT Ξ̂2w
+ (1− ξ)

wT Ξ̂2w

wT Ξ̂1w
, (9)



where 0 ≤ ξ ≤ 1. We use the sum of ratios to measure the importance of w

instead of two separated optimization problems in FKT. And ξ can be used to
balance the importance of different classes and thus is useful for asymmetric
learning problems.

Now let us consider how to find higher dimensional affine subspaces. Let
W = (w1,w2, · · · ,wd) ∈ R

(m+1)×d be a low-rank affine transformation matrix.
Let zi be the lower-dimensional representation of xi, i.e. zi = WTyi. We propose
the following optimization problem to find W:

max ξ
∑d

i=1
w

T

i
Ξ̂1wi

wT

i
Ξ̂2wi

+ (1− ξ)
∑d

i=1
w

T

i
Ξ̂2wi

wT

i
Ξ̂1wi

s.t. wT
i Ξ̂twj = δij ,

where NΞ̂t = N1Ξ̂1 + N2Ξ̂2, and δij is 1 if i = j, and 0 otherwise. Let

Π̂i = WT Ξ̂iW. It is easy to recognize that Π̂i’s are indeed the second mo-
ment matrices in the lower dimensional space. Now we can write the problem
more compactly:

max ξtr(Π̂−1
1 Π̂2) + (1− ξ)tr(Π̂−1

2 Π̂1)

s.t WT Ξ̂tW = I,

Generally speaking, we want to generate compact representations of the origi-
nal observations. Therefore it is desirable to encourage finding lower dimensional
affine subspaces. Motivated by the Akaike information criterion and Bayesian
information criterion, we propose the following objective function that is to be
maximized:

C(W; ξ, d) = ξtr(Π̂−1
1 Π̂2) + (1− ξ)tr(Π̂−1

2 Π̂1)− d, (10)

where 0 ≤ ξ ≤ 1, d (1 ≤ d ≤ m) is the number of features we want to gen-
erate. We see that high dimensional solutions are penalized by the term −d.
Hyperparameter ξ may be tuned via standard cross-validation methods [11]. In
principal, the optimum d can also be determined by cross-validation procedures.
However such a procedure is often computationally expensive. Therefore we pro-
pose the following alternative: define C0(ξ) = C(I; ξ, m); we select the smallest
d such that C is large enough, i.e. d∗ = inf{d|C(W; ξ, d) ≥ βC0}, where β is a
constant.

Constraint WT Ξ̂tW = I is necessary in our generalization from one dimen-
sional to high dimensional formulation, but it does not generate mutually or-
thogonal discriminant vectors. Obtaining orthogonal discriminant vectors basis
is geometrically desirable. Therefore we introduce another orthogonality con-
straint WTW = I. We refer to [6] for a geometrical view of the roles of the two
constraints in optimization problems. To summarize, we are interested in two
different kinds of constraints as follows:

1. Ξ̂t-orthogonal constraint: WT Ξ̂tW = I;
2. Orthogonal constraint: WTW = I.



2.3 Algorithms

In this subsection, we show how to solve the proposed optimization problems.
Define function f as:

f(x; ξ) = ξx + (1− ξ)
1

x
. (11)

Let 0 < a ≤ x ≤ b. Note f is a convex function, and thus achieves its maximum
at the boundary of x, i.e. either a or b.

Define Λ = diag(λ1, λ2, · · · , λm+1), and λi’s are the eigenvalues of (Ξ̂1, Ξ̂2)

(i = 1, 2, · · · , m+1), i.e. Ξ̂1ui = λiΞ̂2ui. Let λi(ξ)’s be the ordered eigenvalues of

(Ξ̂1, Ξ̂2) with respect to f(λ; ξ). That is: define fi(ξ) = f(λi(ξ); ξ), then we have
f1(ξ) ≥ f2(ξ) ≥ · · · ≥ fm+1(ξ). The following lemma for nonsingular symmetric

Ξ̂1 and Ξ̂2 can be found in [10]:

Lemma 1. There exists nonsingular matrix U ∈ R
(m+1)×(m+1) such that

UT Ξ̂2U = I , UT Ξ̂1U = Λ.

In Appendix C, we show that:

C(W; ξ, d) ≤
d

∑

i=1

fi(ξ)− d, (12)

Note that: if W1 maximizes C(W; ξ, d), then W1R also maximizes C(W; ξ, d),
where R is a nonsingular matrix. The proof is straight forward and therefore is
omitted.

Proposition 1. Let Uξ = (uξ
1,u

ξ
2, · · · ,u

ξ
d), where u

ξ
i is the eigenvector of (Ξ̂1, Ξ̂2)

and has eigenvalue λi(ξ). Let R be a nonsingular matrix. Then W = UξR max-
imize C(W; ξ, d).

Proof. It is enough to prove Uξ maximizes C(W; ξ, d). Note UT
ξ Ξ̂2Uξ = I and

UT
ξ Ξ̂1Uξ = diag(λ1(ξ), λ2(ξ), · · · , λd(ξ)). Then it is easy to affirm the proposi-

tion.

Let Uξ = QR, where Q and R are the thin QR factorization of Uξ; then
W1 = UξR

−1 maximizes C(W; ξ, d) and satisfies the orthogonal constraint. Let

W2 = UξΓ
−

1

2 , where

Γ =
1

N
diag(N1λ1(ξ) + N2, N1λ2(ξ) + N2, · · · , N1λd(ξ) + N2). (13)

It can be easily shown that W2 maximize C(W; ξ, d) and satisfies the Ξ̂t-
orthogonal constraint. In practice, we only need to check the largest d and the
smallest d eigenvalues and eigenvectors of (Ξ̂1, Ξ̂2) in order to generate d fea-
tures. The pseudo-code of the algorithm is given in Table 1. Practically, we may
need to let Ξ̂i ← Ξ̂i + αiI to guarantee the positive definiteness of Ξ̂i, where αi

is a small positive constant.



Algorithm for feature extraction

Input: Data sample x1,x2, · · · ,xn

Output: Transformation matrix W

1. Calculate the augment second moment matrices Ξ̂1, and Ξ̂2 ;

2. Compute the largest d and the smallest d eigenvalues and eigenvectors of (Ξ̂1, Ξ̂2);
3. Sort 2d eigenvalues and eigenvectors with respect to Eq. 11;
3. Selected the largest d eigenvectors to form Uξ;
4∗. (For orthogonal constraint) apply the thin QR factorization on Uξ, i.e. Uξ = QR;
5∗. (For orthogonal constraint) Let W = Q;

6∗∗. (For Ξ̂t-orthogonal constraint), calculate Γ as Eq. 13;

7∗∗. (For Ξ̂t-orthogonal constraint), Let W = UξΓ
−

1

2 ;
6. Return W.

Table 1. Pseudo-code for feature extraction

3 Discussion

In this section, we investigate the properties of our proposed method, and study
the relationship of the new proposed method with other dimension reduction
methods. For simplicity, we assume that Ξ̂i’s are reliably estimated. Therefore
we shall use Ξi in our discussion directly.

3.1 Information theoretical property of the criterion

The KL divergence of two multivariate normal distribution pi and pj has a closed
expression as:

Lij =
1

2
{log(|Σ−1

i Σj |) + tr(ΣiΣ
−1
j ) + (µi − µj)

T Σ−1
j (µi − µj)−m}; (14)

where pi = N (µi,Σi). The symmetric KL divergence is defined as Jij = Lij+Lji.
It is easy to obtain

J12 =
1

2
{tr(Σ−1

2 Σ1) + tr(Σ−1
1 Σ2) + tr[(Σ−1

1 +Σ−1
2 )(µ2 −µ1)(µ2 −µ1)

T ]− 2m}.

(15)
Using formulas in Appendix A, one can easily get that

J12 = C0(
1

2
)− 1; (16)

That is, when ξ is 1/2, C0 is equivalent to the symmetric KL divergence (up to
a constant) of two normal distributions. The solution of maximizing C can be
seen as finding an affine subspace that maximally preserves C0, i.e. an optimal
truncated spectrum of J12.



The KL divergence can be seen as a distance measure between two distribu-
tions, and therefore a measure of separability of classes. Traditional viewpoints
aim at maximizing the KL divergence between classes in lower dimensional lin-
ear subspaces, see [8] for an introduction and [14] for the recent development. It
is easy to show that maximizing the lower-dimensional KL divergence in [14] is
equivalent to our proposed problem with an additional constraint

WT = (VT , e) (17)

where V ∈ R
m×d, and eT = (0, 0, · · · , 1). With the additional constraint, a

closed-form solution cannot be found. By relaxing e ∈ R
m×1, we can find closed-

form solutions.

3.2 Connection to FDA and CSP

Without losing generality, let us consider the one dimensional case in this sub-
section. Let wT = (vT

1 , v0). Then we have Z = vT
1 X + v0, where X and Z are

random covariate in higher- and lower-dimensional spaces. Displacement v0 is
the same for both classes, and therefore plays no important role for final clas-
sifications. In other words, the effectiveness of the generated feature is solely
determined by v1. Let v∗

1 be an optimal solution.
Consider maximizing C(W; 1/2, d). We know that w∗ is the eigenvector of

Ξ−1
1 Ξ2 + Ξ−1

2 Ξ1 with the largest eigenvalue.
First, let us consider µ1 = µ2 = µ. Using formulas in Appendix A, we can

simplify Ξ−1
1 Ξ2 + Ξ−1

2 Ξ1 as

Ξ−1
1 Ξ2 + Ξ−1

2 Ξ1 =

(

Σ−1
1 Σ2 + Σ−1

2 Σ1 0
2µT − µT (Σ−1

1 Σ2 + Σ−1
2 Σ1) 1

)

Then by simple linear algebra, we can show that v∗

1 is also the eigenvector of
Σ−1

1 Σ2 + Σ−1
2 Σ1 with the largest eigenvalue.

Second, let us consider Σ1 = Σ2 = Σ. In this case, it is easy to verify the
following:

Ξ−1
2 Ξ1 − I =

(

Σ−1(µ1 − µ2)µ
T
1 Σ−1(µ1 − µ2)

µT
1 − µT

2 − µT
2 Σ−1(µ1 − µ2)µ

T
1 −µT

2 Σ−1(µ1 − µ2)

)

Ξ−1
1 Ξ2 − I =

(

Σ−1(µ2 − µ1)µ
T
2 Σ−1(µ2 − µ1)

µT
2 − µT

1 − µT
1 Σ−1(µ2 − µ1)µ

T
2 −µT

1 Σ−1(µ2 − µ1)

)

Then we have

Ξ−1
1 Ξ2 + Ξ−1

2 Ξ1 =

(

A 0
0 B

)

+ 2I,

where A = Σ−1(µ1−µ2)(µ1−µ2)
T and B = (µ1−µ2)

T Σ−1(µ1−µ2)
T . It is then

not hard to show that v∗

1 is the eigenvector of A with the largest eigenvalue.
In summary, we show that FDA and CSP are special cases of our proposed

AFE for normally distribute data. Therefore, theoretically speaking AFE is more
flexible than FDA and CSP.



4 Experiments

(a) PCA (b) FDA (c) AFE

Fig. 1. Comparision of features found by PCA, FDA, and Our method. Star and circle
points belong to different classes.

In order to compare our method with PCA and FDA, a 7-dimensional toy
data set has been generated. The toy data set contains 3-dimensional relevant
components, while the others are merely random noise. The 3 relevant compo-
nents form two concentric cylinders. The generated data are spread along the
surfaces of the cylinders. Figure 1 illustrates the first two features found by PCA,
FDA and our new approach AFE. As a result of preserving the variance of data,
PCA projects data along the surfaces, and thus does not reflect the separation
of the data (Figure 1(a)). Figure 1(b) shows that FDA fails to separate the two
classes. On the other hand, Figure 1(c) shows that our method correctly captures
the discriminant information in the data.

We selected three benchmark data sets: German, Diabetes and Waveform.
The dimensionality of these data sets are 20, 8, and 21 respectively. They can be
freely downloaded from http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm.
The data sets had been preprocessed and partitioned into 100 training and test
sets (about 40% : 60%). They have been used to evaluate the performance of
kernel FDA [15], kernel PLS [19] and soft-margin AdaBoost [17].

We compared our new approach with FDA, CSP, and FKT. For convenience,
AFE1 and AFE2 are used for orthogonal and Ξt-orthogonal AFE algorithms.
We used FDA, CSP, FKT, AFE1 and AFE2 to generate lower-dimensional fea-
tures; the features are then used by linear support vector machines (SVM ) to
do classifications. To measure the discriminant information of the data set, we
also classified the original data set via linear SVMs, which we denote FULL in
the reported figures. Feature extraction and classification are trained on training
sets, and test-set accuracy (TSA) are calculated with predictions on test sets.
Statistical boxplots of TSAs are shown in Figures 2, 3 and 4 for the three chosen
data sets. The poor performance of FDA, CSP and FKT affirms that first-order
or second-order statistics alone cannot capture discriminant information con-
tained in the data sets. By comparing AFE1 and AFE2 with FULL, we see that
AFE1 and AFE2 are capable of extracting the discriminant information of the
chosen data. AFE1 and AFE2 can be used to generate much compact discrimi-



nant features, for example, the average dimensionality of extracted features for
German, Diabetes and Waveform are 8.16, 3.18 and 1.2, respectively.

Fig. 2. Test set accuracy for German data set

We conducted preliminary experiments with AFE1 and AFE2 on data sets
Tübingen:1a and Berlin:IV from BCI competition 2003 1. We used AFE1 and
AFE2 to generate low-dimensional representations and then apply logistic re-
gression on the extracted features. For data set Tübingen:1a, we obtained TSA
as 77.13% and 85.32% for AFE1+ and AFE2+logistic regression, respectively.
The results are comparable with the ones of rank 11 and rank 4 of the compe-
tition, correspondingly. For data set Berlin:IV, we obtained TSA 71% for both
AFE1+ and AFE2+logistic regression, which are comparable with rank 8 of the
competition.

5 Conclusions

In this study, we proposed a novel dimension reduction method for binary clas-
sification problems. Unlike traditional linear subspace methods, the new pro-
posed method finds lower-dimensional affine subspaces for data observations.
We presented the closed-form solutions of our new approach, and investigated
its information-theoretical properties. We showed that our method has close con-
nections with FDA, CSP and FKT methods in the literature. Numerical exper-
iments show the competitiveness of our method as a preliminary data-exploring
tool for data visualization and classification.

1 see http://ida.first.fraunhofer.de/projects/bci/competition ii/results/index.html



Fig. 3. Test set accuracy for Diabetes data set

Fig. 4. Test set accuracy for Waveform data set



Though we focus on binary classification problems in this study, it is always
desirable to handle multi-class problems. One can extend AFE to multi-class
problems by following the work presented in [5]. Here we proposed another way
to extend AFE to multi-class. Let Jij be the symmetric KL distance of classes
i and j, and assume class i, (i = 1, 2, · · · , K), can be modeled by multivariate
normal distribution. Then we have

K
∑

i=1

Ξ−1
i Ξt ∝

K
∑

i,j=1

Jij ,

where Ξi is the augmented second moment matrix for class i and NΞt =
∑K

i=1 NiΞi. Therefore we may calculate the truncated spectrum of
∑K

i=1 Ξ−1
i Ξt

for the lower-dimensional representations.
Another more important problem is to investigate the relationship of our new

proposed method with quadratic discriminant analysis (QDA). It has long been
known that FDA is an optimal dimension reduction method for linear discrim-
inant analysis (LDA) [11]. But there is no well-accepted dimension reduction
method for QDA in the literature. Recently, Hou et al. proposed the FKT might
be seen as an optimal one for QDA under certain circumstance [13]. Our future
work will be dedicated to finding the relationship of AFE and QDA.
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Appendix A

Let X be a random covariate which has probability distribution p. So we have

µ = EX∼pX,

Σ = EX∼p(X − µ)(X − µ)T ,

Ξ = EX∼p

{(

X
1

)

(XT , 1)

}

,

where µ, Σ and Ξ are, respectively, the mean, covariance and augmented second
moment of X . When µ and Σ are finite, i.e. ‖µ‖ <∞ and ‖Σ‖ <∞, we have

Ξ =

(

Σ + µµT µ
µT 1

)

Assuming Σ is positive definite, we have the inverse of Ξ as follows:

Ξ−1 =

(

Σ−1 −Σ−1µ
−µTΣ−1 1 + µTΣ−1µ

)

.



Appendix B

Lemma 2. Let A be an r × s matrix, (r ≥ s), and ATA = I. Let Λ be a
diagonal matrix. Then

ξtr(AT ΛA) + (1− ξ)tr([AT ΛA]−1) ≤
s

∑

i=1

fi(ξ);

Proof. By the Poincaré separation theorem (c.f. [12] P190), we know the eigen-
values of AT ΛA interlaces with those of Λ. That is, for each integer j, (1 ≤ j ≤
s), we have

λj ≤ τj ≤ λj+r−s,

where τj is the eigenvalue of ATΛA. Then it is obvious that

ξtr(ATΛA) + (1− ξ)tr([AT ΛA]−1)
=

∑s

i=1[ξτi + (1− ξ) 1
τi

]

≤
∑s

i=1 fi(ξ);

Appendix C

Proof. Let U be a nonsingular matrix such that UT Ξ̂2U = I and UT Ξ̂1U = Λ.
Then we have

Π̂2 = WT (U−1)T UT Ξ̂2UU−1W = VT V

Π̂1 = WT (U−1)T UT Ξ̂1UU−1W = VT ΛV,

where V = U−1W ∈ R
(m+1)×k. Then we can get

C(W; ξ, d) = ξtr[(VT V)−1VTΛV] + (1 − ξ)tr[(VT ΛV)−1VT V].

Applying SVD on V, we get V = ADBT . Here A and B are (m + 1) × d
and d × d orthogonal matrices, i.e. BTB = I, BBT = I, and AT A = I. D is a
d× d diagonal matrix. Therefore we have:

tr[(VT V)−1VT ΛV] = tr[V(VT V)−1VT Λ]

= tr(AATΛ)

= tr(AT ΛA).

tr[(VT ΛV)−1VT V] = tr[V(VT ΛV)−1VT ]

= tr[A(AT ΛA)−1AT ]

= tr[(AT ΛA)−1].

Thus by Lemma 2, we know that

C(W; ξ, d) = tr[ξAT ΛA + (1− ξ)(AT ΛA)−1]− d

≤
d

∑

i=1

fi(ξ)− d.
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