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Abstract

This paper presents two feature extraction methods and
two decision methods to retrieve images having some sec-
tion in them that is like the user input image. The features
used are variances of gray level co-occurrences and line-
angle-ratio statistics constituted by a 2-D histogram of an-
gles between two intersecting lines and ratio of mean gray
levels inside and outside the regions spanned by those an-
gles.

The decision method involves associating with any pair
of images either the class “relevant” or “irrelevant”. A
Gaussian classifier and nearest neighbor classifier are
used. A protocol that translates a frame throughout ev-
ery image to automatically define for any pair of images
whether they are in the relevance class or the irrelevance
class is discussed. Experiments on a database of 300 gray
scale images with 9,600 groundtruth image pairs showed
that the classifier assigned 80% of the image pairs we were
sure were relevant, to the relevance class correctly. The ac-
tual retrieval accuracy is greater than this lower bound of
80%.

1. Introduction

In recent years image database retrieval has received sig-
nificant attention due to the advances in computation power,
storage devices, scanning, networking, and the World Wide
Web. The image retrieval scenario addressed here begins
with a query expressed by an image. The user inputs an im-
age or a section of an image and desires to retrieve images
from the database having some section in them that is like
the user input image.

Texture has been one of the most important characteris-
tics which have been used to classify and recognize objects
and scenes. Also, many researchers [5, 8, 3, 7] used texture

in finding similarities between images in a database. In this
paper, we discuss two textural feature extraction methods to
represent images for content-based retrieval. In the first one,
texture is defined as being specified by the statistical distri-
bution of the spatial dependencies of gray level properties.
Variances of gray level co-occurrence matrices are used to
extract this information. This is consistent with [6], where
Haralicket al.used co-occurrence matrices to classify sand-
stone photomicrographs, panchromatic aerial photographs,
and ERTS multispectral satellite images. Comparative stud-
ies [10, 4] showed that gray level spatial dependencies are
more powerful than many other methods.

The second method uses spatial relationships between
lines as well as the properties of their surroundings and is
motivated by the fact that line content of an image can be
used to represent texture of the image [9]. An easy to com-
pute texture histogram method with the only assumption
that images have some line content is introduced. Also a
protocol to automatically construct groundtruth image pairs
to evaluate the performance of the algorithm is discussed.

The paper is organized as follows. First, textural features
are discussed in Section 2. Then, decision methods for simi-
larity measurement are described in Section 3. Experiments
and results are presented in Sections 4 and 5 respectively.
Finally, conclusions are discussed in Section 6.

2. Feature extraction

2.1. Variances of gray level spatial depen-
dencies

We define texture as being specified by the statistical dis-
tribution of the spatial relationships of gray level properties.
Coarse textures are ones for which the distribution changes
slightly with distance, whereas for fine textures the distri-
bution changes rapidly with distance. This information can
be summarized in gray level co-occurrence matrices that are



matrices of relative frequenciesP (i; j; d; �) with which two
neighboring pixels separated by distanced at orientation�
occur in the image, one with gray leveli and the other with
gray levelj. Resulting matrices are symmetric and can be
normalized by dividing each entry in a matrix by the num-
ber of neighboring pixels used in computing that matrix.

In order to use the information contained in the gray level
co-occurrence matrices Haralick [6] defined 14 statistical
measures. Since many distances and orientations result in a
very large number of values, computation of co-occurrence
matrices and extraction of many features from them become
infeasible for an image retrieval application which requires
fast computation. We decided to use only the variance

v(d; �) =

Ng�1X
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Ng�1X

j=0

(i� j)2P (i; j; d; �) (1)

which is a difference moment ofP that measures the con-
trast in the image. Rosenfeld [9] called this feature the
moment of inertia. It will have a large value for images
which have a large amount of local variation in gray lev-
els and a smaller value for images with uniform gray level
distributions. We compute this feature for five distances,
and for0�, 45�, 90�, and135� orientations to constitute a
20-dimensional feature vector. Details of this work can be
found in [1].

2.2. Line-angle-ratio statistics

Experiments on various types of images showed us that
one of the strongest spatial features of an image is the re-
lationship between its line segments. Therefore, an image
can be roughly represented by the lines extracted from it.

Before feature extraction, each image is processed of-
fline by an edge detector, edge linker, line selection opera-
tor and line grouping operator to detect line pairs. The goal
of the line selection operator is to perform hypothesis tests
to eliminate lines that do not have significant difference be-
tween gray level distributions on both sides, and the goal
of the line grouping operator is to find intersecting and/or
near-intersecting lines.

The features for each pair of intersecting and near-
intersecting line segments consist of the angle between two
lines and the ratio of mean gray level inside the region
spanned by that angle to the mean gray level outside that
region. An example for this region convention is given in
Figure 1.

The features that are extracted from the image form a
two-dimensional space of angles and corresponding ratios.
This feature space is partitioned into a fixed set of Q non-
uniformly spaced cells. The feature vector is then the Q-
dimensional vector which has for itsq’th component the
number of angle-ratio pairs that fall into thatq’th cell. This

(a) Pairs of intersecting
lines.

(b) Regions used for
mean calculation.

Figure 1. Examples of region convention
for mean calculation. Light and dark
shaded regions show the in and out regions
respectively.

forms the texture histogram. Details of this work can be
found in [2].

Since our goal is to find a section in the database which
is relevant to the input query, before retrieval, each image in
the database is divided into overlapping sub-images using
the protocol which will be discussed in Section 3.1. Then
textural features are computed for each sub-image in the
database.

3. Decision methods

Given an image, we have to decide which images in the
database are relevant to it, and we have to retrieve the most
relevant ones as the results of the query. In our experiments
we use two different types of decision methods; a likelihood
ratio approach which is a Gaussian classifier, and a nearest
neighbor rule based approach.

3.1. Likelihood ratio

In the likelihood ratio approach, we define two classes,
namely the relevance class A and the irrelevance class B.
Given feature vectors of a pair of images, if these images
are similar, they should be assigned to the relevance class,
if not, they should be assigned to the irrelevance class.

Determining the parameters: The protocol for construct-
ing groundtruths to determine the parameters of the likeli-
hood ratio classifier involves making up two different sets
of sub-images for each image in the database. The first set
of sub-images begins in row 0 column 0 and partitions each
image into K�K sub-images. These sub-images are parti-
tioned such that they overlap by half the area. Partial sub-
images on the last group of columns and rows which cannot
make up the K�K sub-images are ignored. The second set
of sub-images are shifted versions of the ones in the first
set. They begin in row K/4 and column K/4 and partition
the image into K�K sub-images.



To construct the groundtruths, we record the relation-
ships of shifted sub-images with non-shifted sub-images
that were computed from the same image. Each shifted sub-
image is strongly related to four non-shifted sub-images in
which the overlap is 9/16 of the sub-image area. These pairs
calculated for all shifted sub-images constitute the rele-
vance class A. We assume that, in an image, two sub-images
that do not overlap are usually not relevant. From this as-
sumption, for each shifted sub-image, four non-shifted sub-
images that have no overlap with it are randomly selected.
These pairs constitute the irrelevance class B.

An example for the overlapping concept is given in Fig-
ure 2. Note that for any sub-image which is not shifted by
(K/4,K/4), there is a sub-image which overlaps more than
half the area. We will use this property to evaluate the per-
formance of our algorithm in Section 4.
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Figure 2. The shaded area shows the 9/16
overlapping between two 128�128 sub-
images. Sub-images relevant to the shifted
sub-image at (32,32) are at (0,0), (0,64),
(64,0) and (64,64). An example for an ir-
relevant sub-image is the one at (192,256).

In order to estimate the distribution of the relevance
class, we first compute the differencesd, d = x(n) �
y(m) ; (n;m) 2 A; x(n); y(m) 2 <Q where Q is the di-
mension of the feature vector andx(n) and y(m) are the
feature vectors of sub-imagesn andm respectively. We
assume that these differences have a normal distribution,
and compute the sample mean,�A, and sample covari-
ance,�A. Similarly, we compute the differencesd, d =
x(n) � y(m) ; (n;m) 2 B; then the sample mean,�B, and
sample covariance,�B, for the irrelevance class.

Making the decision: Suppose for the moment that the
user query is a K�K image. First, its feature vectorx is
determined. Then, the search goes through all the feature
vectorsy in the database. For each feature vector pair (x,

y), the differenced = x � y is computed. The probabil-
ity that the input image with feature vectorx, and a sub-
image in the database with feature vectory are relevant is
P (Ajd) = P (djA)P (A)=P (d): Similarly, the probability
that they are irrelevant isP (Bjd) = P (djB)P (B)=P (d):
Then, assuming the prior probabilities are equal, the likeli-
hood ratio can be defined as

r(d) =
P (djA)

P (djB)
=

1
(2�)Q=2j�Aj1=2

e�(d��A)
0��1
A
(d��A)=2

1
(2�)Q=2j�Bj1=2

e�(d��B)
0��1
B
(d��B)=2

:
(2)

If this ratio is greater than 1, the sub-image is considered
to be relevant to the input query image. After taking the
natural logarithm and eliminating constants, a new measure
r0 can be defined as

r0(d) = (d� �B)
0��1

B (d� �B)� (d� �A)
0��1

A (d� �A):
(3)

To find the sub-images that are relevant to an input query
image, sub-images are ranked by their likelihood values
in (3). Among them,k sub-images having the highestr0-
values are retrieved as the most relevant ones.

3.2. Nearest neighbor rule

In the nearest neighbor approach we assume each sub-
image in the database is represented by its feature vectory
in the Q-dimensional feature space. Given the feature vector
x for the input query, goal is to find they’s which are the
closest neighbors ofx. Then, thek-nearest neighbors ofx
will be retrieved as the most relevant ones. For the distance
metric� we use Euclidean distance,�(x; y) = kx� yk; or
infinity norm,�(x; y) = maxi=1;::: ;Q jxi � yij:

4. Experimental set-up

To populate the database, we used 300 512�512 images
from the Fort Hood Data, supplied for the RADIUS pro-
gram. These images are visible light images of the Fort
Hood area at Texas. To construct the database, we parti-
tioned all images into 256�256 sub-images. Co-occurrence
variances and line-angle-ratio statistics each resulted in 20-
dimensional feature vectors. We also combined two feature
vectors into a 40-dimensional vector by appending.

To test the classification effectiveness of the features, the
likelihood ratio in (2) is used to classify each groundtruth
pair. Since we know which non-shifted sub-images and
shifted sub-images overlap, we also know which sub-image
pairs should be assigned to class A and which to class B.
So, to test the algorithm, we check whether each pair that
should be classified into class A or B is classified into class
A or B correctly.



Two traditional measures for retrieval performance are
precision and recall. Precision is the percentage of retrieved
images that are correct and recall is the percentage of cor-
rect images that are retrieved. Note that computation of
these measures requires prior goundtruthing of the database.
Since our automatically generated groundtruths are not the
ones required for precision and recall, these measures can
not be used directly. We use modified versions of them to
evaluate the performance of our algorithm. After manually
grouping a smaller set of sub-images in our database, we
will evaluate the performance using precision and recall too.

To test the retrieval performance, we use the following
procedure. Given an input query image of size K�K, im-
ages are retrieved in descending order of likelihood ratio (3)
or ascending order of distance for nearest neighbor rule. If
the correct image is retrieved as one of thek best matches,
it is considered a success. Average rank of the correct im-
age is also computed. This can also be stated as a nearest
neighbor classification problem where the relevance class is
defined to be the bestk matches and the irrelevance class is
the rest of the images. For this experiment, we use the non-
shifted sub-images to compute the best case performance
and the shifted sub-images to compute the worst case per-
formance. We call this the worst case because the shifted
sub-images overlap a sub-image in the database by only half
the area. All other possible sub-images have a sub-image in
the database which they overlap by more than half the area.
This experimental procedure is appropriate to our problem
of retrieving images which have some section in them that
is like the user input image.

5. Results

Classification effectiveness: In this experiment non-
shifted and shifted sub-image databases consist of 2,700
and 1,200 256�256 sub-images respectively. There are 4
relevant and 4 irrelevant non-shifted sub-images for each of
the 1,200 shifted sub-images, which make a total of 9,600
groundtruth sub-image pairs. As can be seen in Tables 1-
3, approximately 80% of the groundtruth A pairs were as-
signed to A with an overall success around 63%.

We can say that most of the groundtruth A pairs were as-
signed to A but the groundtruth B pairs seem to be split
between being assigned to A or B because although the
assumption that overlapping sub-images are relevant al-
most always holds, we can not always guarantee that non-
overlapping sub-images are irrelevant. Hence, some of the
assignments which we count as incorrect are not in fact in-
correct [2]. Thus the 80% relevance class identification rate
is a lower bound.

Retrieval performance: Results for the retrieval perfor-
mance experiments are presented in Tables 4-6. In all of
these experiments a success means the correct image is re-

Table 1. Classi�cation e�ectiveness test for
Co-occurrence Variances.

Assigned to A Assigned to B Success (%)

G.truth A 3,828 972 79.75
G.truth B 2,584 2,216 46.17
Overall 6,412 3,188 62.56

Table 2. Classi�cation e�ectiveness test for
Line-Angle-Ratio Statistics.

Assigned to A Assigned to B Success (%)

G.truth A 3810 877 81.29
G.truth B 2699 1974 42.24
Overall 6509 2851 61.79

Table 3. Classi�cation e�ectiveness test for
combined features.

Assigned to A Assigned to B Success (%)

G.truth A 3,985 815 83.02
G.truth B 2,589 2,211 46.06
Overall 6,574 3,026 64.54

trieved as one of the best 20 matches among a total of 2,700.
In the best case performance tests with 2,700 queries, all
features had a success between 93-100%. Nearest neigh-
bor approach performed better than likelihood ratio. In the
worst case performance tests with 1,200 queries, line-angle-
ratio statistics had a success around 70% which was better
than co-occurrence variances which had 57%. All decision
methods performed almost equally. To illustrate the bounds
found in these experiments, the database was queried with
500 randomly extracted 256�256 sections from images in
the database.

In general, line-angle-ratio statistics performed better
than co-occurrence variances. Experimenting on sub-image
size showed that smaller sub-images give better results for
co-occurrence features, which is a measure of micro tex-
ture, because texture tends to be more homogeneous. Larger
sub-images favor line-angle-ratio features because they in-
clude more line information. Among the decision meth-
ods, Euclidean distance performed slightly better than the
rest. Also, it retrieved the correct image at a higher rank
which was around 5.5 on the average at the worst case.
For the combined features case, it seems worse perform-
ing features dominated the distance computation and per-
formance although Table 3 shows that adding more features
increases classification effectiveness. The solution we pro-
pose to this problem is to sort individual components of the
40-dimensional feature vector according to their distances
and to use only then-best components to measure “simi-
larity according to at leastn features” instead of “similarity
according to all features”.



Table 4. Retrieval performance tests for Co-occurrence Variances.
Original sub-images (2,700 tests)

Likelihood Euclidean Infinity
Ratio Distance Norm

# successes 2,536 2,683 2,684
% success 93.93 99.37 99.41
avg. rank 4.0430 2.0078 2.0138

Shifted sub-images (1,200 tests)
Likelihood Euclidean Infinity

Ratio Distance Norm

683 701 681
56.92 58.42 56.75
6.1830 5.5706 5.5727

Random sub-images (500 tests)
Likelihood Euclidean Infinity

Ratio Distance Norm

326 330 325
65.20 66.00 65.00
5.7301 4.2576 4.2523

Table 5. Retrieval performance tests for Line-Angle-Ratio Statistics.
Original sub-images (2,700 tests)

Likelihood Euclidean Infinity
Ratio Distance Norm

# successes 2,665 2,696 2,696
% success 98.70 99.85 99.85
avg. rank 3.3989 1.0308 1.0308

Shifted sub-images (1,200 tests)
Likelihood Euclidean Infinity

Ratio Distance Norm

829 866 667
69.08 72.17 55.58
6.2979 4.2517 5.1049

Random sub-images (500 tests)
Likelihood Euclidean Infinity

Ratio Distance Norm

398 422 359
79.60 84.40 71.80
5.3166 2.8436 4.0334

Table 6. Retrieval performance tests for combined features.
Original sub-images (2,700 tests)

Likelihood Euclidean Infinity
Ratio Distance Norm

# successes 2,540 2,685 2,685
% success 94.07 99.44 99.44
avg. rank 4.0449 1.9966 1.9966

Shifted sub-images (1,200 tests)
Likelihood Euclidean Infinity

Ratio Distance Norm

683 702 682
56.92 58.50 56.83
6.1654 5.5769 5.5865

Random sub-images (500 tests)
Likelihood Euclidean Infinity

Ratio Distance Norm

325 330 325
65.00 66.00 65.00
5.7354 4.2909 4.2831

6. Conclusions

In this paper, we presented two feature extraction meth-
ods and two decision methods that allow a user to input an
image or a section of an image and to retrieve all images
from a database having some section in them that is like the
user input image.

Feature extraction methods used are the variances
of gray level spatial dependencies computed from co-
occurrence matrices, and the line-angle-ratio statistics con-
stituted by a 2-D histogram of the angles between two lines
and the ratio of mean gray levels inside and outside the re-
gions spanned by those angles.

A likelihood ratio is defined to measure the relevancy
of two images one being the query image and one being a
database image so that image pairs which had a high like-
lihood ratio were classified as relevant and the ones which
had a lower likelihood ratio were classified as irrelevant.
Also k-nearest neighbor rule is used to retrievek images
which have the closest feature vector to the feature vector
of the query image in the high dimensional feature space.

To evaluate the performance, we discussed a protocol
that translates a frame throughout every image to automat-
ically construct groundtruth image pairs for the relevance
and irrelevance classes. Results of the classification effec-
tiveness tests showed that the algorithm assigned 80% of
the sub-image pairs we were sure were relevant, to the rele-
vance class correctly. A total of 13,200 queries showed that
all of our methods retrieved correct images successfully as
one of the best 20 matches, which is less than 1 percent of
the total 2,700, in more than 94% and 57% of the exper-
iments for the best and worst case analysis of the nearest
neighbor classifier respectively. A method for performance

characterization will be to plot classification success as a
function of the number of images retrieved.
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