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Abstract

This contest involved the running and evaluation of com-
puter vision and pattern recognition techniques on differ-
ent data sets with known groundtruth. The contest included
three areas; binary shape recognition, symbol recognition
and image flow estimation. A package was made available
for each area. Each package contained either real images
with manual groundtruth or programs to generate data sets
of ideal as well as noisy images with known groundtruth.
They also contained programs to evaluate the results of an
algorithm according to the given groundtruth. These eval-
uation criteria included the generation of confusion matri-
ces, computation of the misdetection and false alarm rates
and other performance measures suitable for the problems.
This paper summarizes the data generation for each area
and experimental results for a total of six participating al-
gorithms.

1. Introduction

The contest home page and the packages are available
at http://isl.ee.washington.edu/IAPR/ICPR00. All the soft-
ware was written in C and developed in the Unix environ-
ment. The participants were allowed to use any set of pa-
rameters to generate test images for algorithm development.
A specific set of parameters were supplied to generate data
for the final experiments. The experiments were run by the
participants themselves and the final results that were the
output of the evaluation algorithms were submitted to the
contest organizers.

The following sections describe the data generation and
experimental results for the binary shape recognition, sym-
bol recognition and image flow estimation areas.

2. Binary Shape Recognition
2.1. Data Generation

This package was prepared by Michael L. Schauf and
Selim Aksoy. It was intended to provide a test data set
with known groundtruth to evaluate binary shape recogni-
tion algorithms. It included code for generation of prim-
itives and shape prototypes as the groundtruth model set,
and perturbed images containing translated and scaled pro-
totypes as the test data set.

The program started with the generation of shape mod-
els. A shape model was composed of a set of primitives.
Each primitive was mildly constrained so that its digital im-
age bore a reasonable resemblance to the ideal continuous
primitive. The primitives for this data set were lines, cir-
cles, triangles, sectors, and quadrilaterals. Each primitive
had some restriction on its free parameters in order to retain
its general properties. The different primitives were ran-
domly selected, generated and combined to form the differ-
ent shape models. Each shape model was constrained so
that each primitive slightly overlapped another.

Once the shape models were generated, they were ran-
domly selected to be placed in an image. Each selected
shape model was placed in the image at a random loca-
tion with a random scale with the only constraint that its
bounding box did not overlap with any other shape model’s
bounding box that was already in the image. Since we knew
the locations and scales of the models in all images, we had
the complete groundtruth.

Testing the robustness of recognition algorithms also re-
quires the design of images containing varying levels of
noise. For the addition of noise, the Document Degrada-
tion Model by Kanungo [4] was used. This model added
pepper noise in such a way that pixels around the borders of
the shape models had a higher probability of switching to
opposite values than those pixels farther away from the bor-
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der. Additional noise was added by generating non-relevant
shape models and scaling them smaller than the smallest
scale of the relevant models. Some example noisy images
are given in Figure 1. Model and image sizes, overlap be-
tween primitives in a model, range for the number of prim-
itives in a model, range for the number of models in an im-
age, range for the scales of models in an image, and noise
level were some of the parameters that were allowed to be
changed in the code.

(a) Original image (b) Noise level 2

(c) Noise level 3 (d) Noise level 5

Figure 1: Example shape images.

The package also included a program for performance
evaluation on a database of images with their groundtruth
and recognition algorithm results. The output of the pro-
gram was a confusion matrix and a success score for the
recognition algorithm. The program read the groundtruth
information for each image and compared it with the recog-
nition results. The success value was a linear combination
of the correct detection rate, incorrect detection rate, mis-
detection rate, false alarm rate, and the accuracy of the de-
tected location and scale.

2.2. Experiments
2.2.1. Schauf, Aksoy and Haralick Algorithm

The only result available for this package is the results of the
binary shape recognition algorithm by Michael L. Schauf,
Selim Aksoy and Robert M. Haralick from the Intelligent
Systems Laboratory, University of Washington, USA. The
algorithm [6] introduces a size invariant method to recog-
nize complex two-dimensional shapes using multiple gen-

eralized recursive erosion transforms. The method accom-
plishes the same kind of recognition that templates of each
shape at multiple scales would do, but the method takes
constant time per pixel regardless of the scale of the pro-
totype. The method workes on noisy images without re-
quiring noise removal as preprocessing.

Experiments were run on 100 noisy images having a to-
tal of 254 randomly translated and scaled models plus a
number of extraneous small shapes that might appear like
a model. The algorithm had 5 misdetections and 13 false
alarms. The confusion matrix is given in Table 1.

3. Symbol Recognition
3.1. Data Generation

This package was prepared by Ming Ye, Mingzhou
Song, Yalin Wang and Selim Aksoy. It was intended to
provide a test data set with known groundtruth to evalu-
ate binary symbol recognition algorithms. The symbol li-
brary consisted of electrical symbols as the model set and
noisy versions of randomly translated and scaled symbols
as the test data set. The symbol library contained 25 electri-
cal symbols where each ideal symbol image was 512x512
pixels. The symbols were all line drawings with a 30 pixel
line width.

An instantiation of a symbol was obtained by scaling the
symbol image down to a certain size between 40 and 160
pixels. Because of the high resolution of the library sym-
bols, the observed symbol had a thick enough line width
so that it was very unlikely that broken lines existed after
denoising. The observed symbols might also have a small
rotation angle.

In order to generate test data, an empty image was first
partitioned into square patches, each of which had the same
size. A randomly selected symbol was randomly scaled and
put into each of the patches, with the centroid of the sym-
bol lying at the patch center. No symbol occluded others.
Since we knew the locations and scales of the symbols in
all images, we had the complete groundtruth. It is worth
mentioning that such symbol arrangement was just for syn-
thesis convenience, but not for the ease of recognition.

There were three major types of noise perturbing the ob-
servations: quantization error, replacement noise, and salt-
and-pepper noise. Quantization error came from scaling the
library symbol, because the scaling factor could be any real
value while the pixel positions had to be integers. Salt-and-
pepper noise flipped the pixel values by a certain proba-
bility. Replacement noise flipped the pixel values as to a
more complex probability model. The chance of a pixel be-
ing flipped increased as the pixel was closer to areas of the
opposite value and as such areas increased. Replacement
noise was common to documents which have been manip-
ulated quite a few times by facsimiling, copying and so on.
Some noisy images are given in Figure 2.

Proceedings of the International Conference on Pattern Recognition (ICPR'00)
1051-4651/00 $10.00 @ 2000 IEEE



Table 1: Confusion matrix for Schaufet al.’s binary shape recognition algorithm. Rows represent correct models and columns
represent detected models. Performance measures include misdetection (MD), average location error (ALE), average scale
error (ASE) and false alarm (FA).

Assigned Models MD ALE ASE

32 0 0 0 0 0 0 0 0 0 0 2.6939 0.0109
0 28 0 0 0 0 0 0 0 0 0 2.2733 0.0081
0 0 30 0 0 0 0 0 0 0 3 3.3781 0.0124
0 0 0 30 0 0 0 0 0 0 0 3.1621 0.0120

Original 0 0 0 0 16 0 0 0 0 0 0 4.1056 0.0191
Models 0 0 0 0 0 22 0 0 0 0 0 2.7724 0.0111

0 0 0 0 0 0 20 0 0 0 0 2.1297 0.0117
0 0 0 0 0 0 0 21 0 0 0 1.4366 0.0054
0 0 0 0 0 0 0 0 27 0 1 1.9564 0.0073
0 0 0 0 0 0 0 0 0 28 1 2.5694 0.0119

FA 0 0 0 0 0 11 2 0 0 0

(a) Original image (b) Noise level 1

(c) Noise level 2 (d) Noise level 3

Figure 2: Example symbol images.

The package also included a program for performance
evaluation. The program read the groundtruth information
for each image, compared it with the recognition results and
output a confusion matrix. For convenience of comparison,
we summarized the confusion matrices of all sizes and noise
levels by the number of wrong assignments, misdetections,
false alarms, average location errors and average scale er-
rors.

3.2. Experiments
First, 50 images that contain 25 symbols with sizes “all

75x75”, “all 50x50” and “all random” were generated. This

made up 150 images with 25 symbols in each image. Then
each image was perturbed with three levels of noise sepa-
rately. This made up an additional of 450 images.

3.2.1. Ye and Haralick Algorithm

Two algorithms were submitted to this contest. The first
one is by Ming Ye and Robert M. Haralick from the Intelli-
gent Systems Laboratory, University of Washington, USA.
This is a segmentation-free symbol recognition algorithm
[8] purely using mathematical morphology. Given a page of
symbols, the algorithm simultaneously determines the po-
sitions and scaling factors of all the symbols which come
from the given symbol library. Each symbol has a feature
set composed of the relative maxima of the recursive ero-
sion transforms from a few structural elements. The feature
set has the property that the distance between any two fea-
tures within the set is proportional to their scales. Given
an observed feature, the algorithm decides whether it has
come from a hypothesized symbol by examining if it estab-
lishes a similar proportional relationship with its neighbor-
ing observations to that of the symbol. For a given image,
the algorithm starts from the feature observation with the
largest value and works till all feature points are assigned to
certain symbols. Before extracting feature points from the
image, morphological closing and opening operations are
conducted to reduce noise impact.

A very simple version of this recognition system was im-
plemented. The overall confusion matrix is given in Table
2. The errors are mainly due to two reasons. First, as math-
ematical morphology operations are fragile to holes, this
system breaks down when the noise level is high. Second,
because only three features are used for each symbol, this
system is not discriminative enough. The first problem can
be alleviated by using non-morphological denoising meth-
ods and the second can be improved by developing more
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Table 2: Confusion matrix for Ye and Haralick’s symbol recognition algorithm when the results for all noisy images are com-
bined. Rows represent correct models and columns represent detected models. Performance measures include misdetection
(MD), average location error (ALE), average scale error (ASE), false alarm (FA) and wrong scale detection (WSD).

Assigned Models MD ALE ASE

230 0 37 0 0 0 0 0 0 0 0 0 19 14 0 8 64 0 0 0 0 13 0 0 29 66 7.4208 2.0471
5 202 134 0 0 0 0 0 0 0 0 38 93 0 0 0 9 0 0 0 0 4 0 0 1 129 1.8423 1.0724
1 0 334 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 129 3.1368 1.3732
0 0 0 8 0 0 0 0 0 0 0 0 56 0 0 0 0 0 0 24 0 0 0 0 5 126 0.0358 0.0882
18 0 56 0 1 0 0 0 0 0 0 0 46 0 0 5 7 15 0 0 42 9 0 0 9 245 0.1633 0.0267
14 0 105 0 0 45 0 0 5 0 0 0 5 0 0 2 0 0 0 0 0 1 0 0 10 206 0.9131 0.2900
0 0 0 1 5 0 44 5 0 0 0 0 133 0 0 0 0 0 0 6 0 0 0 0 0 259 0.3733 0.2990
35 0 8 0 0 0 0 66 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 371 0.7509 0.3584
10 0 153 0 0 0 0 0 133 0 0 0 17 0 0 0 11 0 0 0 0 0 0 0 0 150 0.9366 0.4326
72 0 34 0 0 0 0 1 0 112 0 0 23 2 5 10 5 0 0 0 0 2 0 0 0 175 1.5702 0.8116
2 0 18 0 0 0 0 0 0 41 57 0 106 0 0 0 3 0 0 0 0 0 0 0 4 72 0.9324 0.1622
89 0 14 0 0 0 0 0 0 0 0 184 25 2 0 0 24 0 0 0 0 0 0 0 4 216 2.2608 0.8462
6 0 28 0 0 0 0 0 0 0 0 0 238 0 0 19 15 0 0 0 0 102 0 0 0 276 2.8707 1.3403
5 0 7 0 0 0 0 0 0 0 0 0 0 102 1 0 0 0 0 0 0 0 0 0 0 71 4.2794 1.1383
0 0 21 0 0 0 0 0 0 0 0 0 0 0 85 0 0 0 0 0 0 0 0 0 0 158 4.0596 1.6531
47 0 26 0 0 0 0 0 0 0 0 0 16 3 0 73 35 0 0 0 0 77 0 0 4 142 4.0397 1.5101
162 0 36 0 0 0 0 5 0 0 0 0 36 5 0 0 183 0 0 0 0 13 0 0 96 19 7.1570 2.7056
33 0 59 0 0 9 0 0 0 0 5 0 22 5 0 15 10 48 0 0 3 3 0 0 33 244 2.4146 0.7739
7 0 24 0 0 14 0 1 6 15 4 0 6 0 0 0 8 0 42 0 0 8 0 20 0 145 0.7890 0.2737
14 0 64 0 0 0 0 5 0 0 0 0 76 0 0 0 14 0 0 237 0 16 0 0 5 160 2.1797 1.1420
8 0 14 0 0 0 0 0 0 0 0 0 41 0 0 0 0 0 0 0 60 0 0 0 4 59 0.8312 0.2647
55 4 30 0 0 0 0 0 0 0 0 0 0 0 0 0 63 0 0 0 0 37 0 0 30 255 0.4408 0.0913
6 2 190 0 0 0 0 0 87 5 5 0 13 0 0 0 9 0 0 0 0 0 166 0 6 243 1.8791 1.1622
26 0 33 0 0 0 0 3 0 0 0 0 102 0 0 18 55 4 0 0 0 10 0 160 17 199 1.9390 0.8208
111 0 19 0 0 0 0 0 0 0 0 0 22 0 0 12 60 0 0 0 0 17 0 0 39 86 1.9237 0.4960

FA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WSD 20 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 14 0 0 3 0 0 0 0 0

refined features.

3.2.2. Parker, Pivovarov and Royko Algorithm

The second submission is by J. R. Parker, J. Pivovarov and
D. Royko from the Department of Computer Science, Uni-
versity of Calgary, Canada. The algorithm [5] first ex-
tracts the unknown symbol into a bilevel image which is
called imageA. Then a scaled vector template is plot-
ted into a blank image with the same size bounding box
as the unknown image, which is called imageB. Thick
lines are plotted in this image, based on the measured “es-
timated pen width” of imageA. Next, the algorithm iter-
ates through all pixels ofA and measures how far the near-
est matching pixel is inB, i.e. if A(i; j) is a foreground
pixel, finds the 8-distance to the nearest foreground pixel
in B, if A(i; j) is a background pixel, finds the 8-distance
to the nearest background pixel inB. This gives a dis-
tance map,M = map(A;B) whereM(i; j) is the dis-
tance from pixelA(i; j) to the nearest matching pixel in
B. Then, the squares of all the entries inmap(A;B) and
map(B;A) are summed. This is the measure of goodness-
of-fit of the particular orientation of the template plotted in
imageB to the object in imageA. A small set of orienta-
tions,�3Æ; : : : ;+3Æ, are used and the one with minimum

distance is found. This is stored as the distance fromA

to that particular template. This can be implemented effi-
ciently through the use of dynamic programming, and re-
quires a constant (small) number of image passes. Two
passes of noise removal consisting of an averaging filter
followed by an edge-cleaning filter are performed. A final
smoothing is performed along the bounding boxes of each
extracted symbol.

This algorithm achieved a recognition rate of 100% on
all test data with an unoptimized execution time of approx-
imately 5 symbols per second on an Intel Celeron 400MHz
PC. The confusion matrix is given in Table 3.

4. Image Flow Estimation
4.1. Data Generation

This package included synthetic and real image se-
quences and their optic flow groundtruth generation for per-
formance evaluation in terms of false alarm rate, misdetec-
tion rate and average error vector magnitude. The two syn-
thetic image sequences were rot and div. They were gen-
erated using a ray-tracing method which traced each ray
passing through the camera and an image pixel, and found
out if it touched the surface of the 3D object. If it did, the
surface intensity was recorded for that pixel, otherwise a
background value was recorded. For accuracy of the inten-
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Table 3: Confusion matrix for Parkeret al.’s symbol recognition algorithm when the results for all noisy images are combined.
Assigned Models MD ALE ASE

480 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7248 0.7846
0 615 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0456 1.3737
0 0 489 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9917 0.6351
0 0 0 219 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8746 2.1794
0 0 0 0 453 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9401 2.0193
0 0 0 0 0 393 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9213 3.0666
0 0 0 0 0 0 453 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8852 2.5840
0 0 0 0 0 0 0 495 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0261 0.9972
0 0 0 0 0 0 0 0 474 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9627 1.5840
0 0 0 0 0 0 0 0 0 441 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0177 1.6244
0 0 0 0 0 0 0 0 0 0 303 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8461 1.1549
0 0 0 0 0 0 0 0 0 0 0 558 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8632 1.2364
0 0 0 0 0 0 0 0 0 0 0 0 684 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8734 0.7166
0 0 0 0 0 0 0 0 0 0 0 0 0 186 0 0 0 0 0 0 0 0 0 0 0 0 0.8547 3.3598
0 0 0 0 0 0 0 0 0 0 0 0 0 0 264 0 0 0 0 0 0 0 0 0 0 0 0.7557 2.4719
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 423 0 0 0 0 0 0 0 0 0 0 1.2268 0.2076
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 555 0 0 0 0 0 0 0 0 0 0.6594 0.9158
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 488 0 0 0 0 0 0 0 0 1.3944 0.6332
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 300 0 0 0 0 0 0 0 1.1690 0.4996
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 591 0 0 0 0 0 0 0.8583 0.4768
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 186 0 0 0 0 0 1.3291 0.3490
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 474 0 0 0 0 1.0470 3.6406
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 732 0 0 0 0.9582 0.7132
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 627 0 0 0.8403 0.6434
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 366 0 0.7517 0.4322

FA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WSD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

sity values, a sinusoidal function was used as the 3D surface
pattern. Example frames and flow field groundtruth for the
synthetic image sequences are given in Figure 3. Three real
image sequences, Taxi, Rubik and SRI were obtained from
Barronet al. [1]. Examples are given in Figure 4.

4.2. Experiments
4.2.1. Ye and Haralick Algorithm

Three algorithms were submitted to this contest. The first
one is by Ming Ye and Robert M. Haralick from the Intelli-
gent Systems Laboratory, University of Washington, USA.
The algorithm [9] forms a set of constraint equations from
the first and second order derivatives for each pixel, and
solves a combined set of equations from a neighborhood for
the image flow at the central pixel by assuming a constant
local motion model. The derivatives are estimated from a
3D cubic facet model. This image flow estimation scheme
has shown generally good results. Besides it provides a co-
variance matrix with each estimate as a reliable error mea-
surement, which can help subsequent applications make ju-
dicious use of the image flow estimates. The covariance ma-
trix is obtained from propagating image noise through the
facet model and the image flow constraint equation, consid-
ering the correlation of the constraints. Its effectiveness has
been verified by a successful�2 hypothesis testing based
selection scheme.

The false alarm rate, misdetection rate and the average
absolute error vector magnitude for the synthetic image se-

quences are given in Table 4. The optical flow fields for the
real image sequences are given in Figure 4.

4.2.2. Sun Algorithm

The second submission is by Changming Sun from CSIRO
Mathematical and Information Sciences, Australia. The al-
gorithm [7] uses fast area cross correlation and 3D shortest-
path techniques to obtain a dense optical flow field. Fast
correlation is achieved by using the box filtering technique
which is invariant to the size of the correlation window. The
motion for each scan line of the input image is obtained
from the correlation coefficient volume by finding the best
3D path using dynamic programming techniques rather than
simply choosing the position that gives the maximum cross
correlation coefficient. Sub-pixel accuracy is achieved by
fitting the local correlation coefficients to a quadratic sur-
face. Currently only two images are used for the optical
flow estimation. Typical running time for a 256x256 image
is in the order of a few seconds.

The correlation window sizes were in the range of 15x15
and 19x19. The matching search range was from -3 to +3
pixels in both thex and they directions. The algorithm only
used two frames in an image sequence for the flow estima-
tion (the middle ones were used, usually frames 9 and 10).
The running time of the algorithm was 14.35s for an image
of size 316x252 on a 85MHz SUN SPARCserver1000. The
false alarm rate, misdetection rate and the average absolute
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error vector magnitude for the synthetic image sequences
are given in Table 4. The optical flow fields obtained for the
real image sequences are given in Figure 4.

4.2.3. Farnebäck Algorithm

The third submission is by Gunnar Farneb¨ack from the
Computer Vision Laboratory, Link¨oping University, Swe-
den. The algorithm [2, 3] starts by computing 3D spatiotem-
poral orientation tensors from the image sequence. This is
done by a method based on carefully weighted least squares
approximations of signal neighborhoods by quadratic poly-
nomials. Then the orientation tensors are combined under
the constraints of a parametric motion model, in this case
just a translation, to produce velocity estimates. This is
done locally in each neighborhood, without regard to pos-
sible discontinuities in the velocity field, but with a Gaus-
sian weighting of the points in the neighborhood. Computa-
tionally the weighted least squares approximations are most
demanding, but since these can be computed efficiently by
a hierarchical scheme of separable convolutions, the algo-
rithm is very fast.

The algorithm used filters of effective size 9x9x9 and
the tensors were combined over local neighborhoods of size
15x15. On a Sun Ultra 30, this took 2 seconds for each se-
quence (velocities were computed only for the frame where
we had groundtruth). The algorithm was implemented as
Matlab m-files, except for the convolutions which were
computed by a Matlab mex-file implemented in C. The false
alarm rate, misdetection rate and the average absolute er-
ror vector magnitude for the synthetic image sequences are
given in Table 4. The optical flow fields obtained for the
real image sequences are given in Figure 4.

5. Conclusions
Because it takes a considerable amount of effort to pre-

pare ground truthed data sets and evaluation software for
pattern recognition processing algorithms, it was hoped that
there would be many researchers who would participate in
the contests. Unfortunately, this was not the case. We will
keep the data sets and evaluation software out on the web
so that by next ICPR more researchers will have tried their
hand at these tasks and a more comprehensive discussion
and comparison of techniques can be made.
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