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Abstract 

This paper describes how to propagate approzimately additive random perturbations 
through any kind of vision algorithm step in which the appropriate random perturbation 
model for the estimated quantity produced by the vision step is also an additive random 
perturbation. We assume that the vision algorithm step can be modeled as a calculation 
{linear or non-linear) that produces an estimate that minimizes an implicit scaler function 
of the input quantity and the calculated estimate. The only assumption is that the scaler 
function have finite second partial derivatives and that the random perturbations are small 
enough so that the relationship between the scaler function evaluated at the ideal but un­
known input and output quantities and the observed input quantity and perturbed output 
quantity can be approzimated sufficiently well by a first order Taylor series ezpansion. 

The paper finally discusses the issues of verifying that the derived statistical behavior 
agrees with the ezperimentally observed statistical behavior. 

1 Introduction 

Each real computer vision problem begins with one or more noisy images and ha.s 
ma.ny algorithmic steps. Development of the best algorithm requires understanding how 
the uncertainty due to the random perturbation affecting the input ima.ge(s) propagates 
through the different algorithmic steps and results in a. perturbation on whatever quantities 
are finally computed. Perhaps a. more a.ccura.te statement would be tha.t the quantities 
finally computed must really be considered to be estimated quantities. 

Once we ha.ve the perspective tha.t wha.t we compute are estimates, then it becomes clear 
tha.t even though the different wa.ys of estimating the sa.me quantity typically yield the 
sa.me result if the input quantities are not affected by a. random perturbation, it is certainly 
not the ca.se tha.t the different wa.ys of estimating the sa.me quantities yield an estimate 
with the sa.me distribution when the input is perturbed by a random perturbation. It is 
clearly the ca.se tha.t the distribution of the estimate depends on the distribution of the 
input random perturbation and the method or type of estimate. 

With this in mind, it is then important to understand how to propagate a. random per­
turbation through any algorithm step in a. vision problem. The difficulty is tha.t the steps 
are not necessarily linear computations, the random perturbations are not necessarily ad­
ditive, and the appropriate kinds of perturbations change from algorithm step to algorithm 
step. Nevertheless, there are ma.ny computer vision a.nd image analysis algorithm steps in 
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which the appropriate kind of random perturbation is additive or approximately additive. 
And for these kinds of steps one basic measure of the size of the random perturbation is 
given by the covariance matrix of the estimate. 

In this paper, we describe how to propagate the covariance matrix of an input random 
perturbation through any kind of a calculation (linear or non-linear) that extremizes an 
implicit scaler function, with or without constraints, of the perturbed input quantity 
and the calculated output estimate. The only assumption is that the scaler function to 
be extremized have finite second partial derivatives and that the random perturbations 
are small enough so that the relationship between the scaler function evaluated at the 
ideal but unknown input and output quantities and the observed input quantity and 
perturbed output quantity can be approximated sufficiently well by a first order Taylor 
series expansion. The propagation relationships do not depend on what algorithm is used 
to extremize the given scalar function. 

As a related case, the given propagation relationships also show how to propagate the 
covariance of the coefficients of a function for which we wish to find a zero to the covariance 
of any zero we can find. 

The analysis techniques of propagation of errors is well known in the photogrammetry 
literature. The Manual of Photogrammetry (Slama, 1980) has a section showing how to 
determine the variance ofY where Y = F(X) from the variance of X. The generalization 
of this to find the covariance matrix for Y given the covariance matrix for X is rather 
straightforward. Just expand F around the mean of X in a first order Taylor expansion and 
consider that Y is a linear function T of X. Once the coefficients of the linear combination 
is known, so that the randomness ofY can be approximated by Y -p.y = T(X -p.x ), then 
the covariance matrix :Ey of Y is easily seen to be given in terms ofT and the covariance 
matrix :Ex of X by :Ey = T:ExT' (Mikhail, 1976; Koch, 1987). This only works well for 
cases where the function F can be given explicitly. The problem we discuss here is one in 
which the function F is not given explicitly, but Y is related to X in a specific way. The 
techniques we employ are well-known in statistical and engineering communities. There 
is nothing sophisticated in the derivation. However, this technique is perhaps not so well 
known in the computer vision community. There are many recent vision-related papers 
that could be cited to illustrate this. See for example Weng, Cohen and Herniou (1992), 
Wu and Wang (1993), or Williams and Shah (1993). 

The paper concludes with a discussion of how to validate that the software which we use 
to accomplish the calculation we desire actually works. We argue that this validation can 
be done by comparing the predicted statistical behavior with the experimentally observed 
statistical behavior in a set of controlled experiments. 

2 The Abstract Model 

The abstract model has three kinds of objects. The first kind of object relates to the 
measurable quantities. There is the unobserved N x 1 vector X of the ideal unperturbed 
measurable quantities. We assume that each component of X is some real number. Added 
to this unobserved ideal unperturbed vector is an N x 1 unobserved random vector D.X 
of noise. The observed quantity is the randomly perturbed vector X+ D.X. 

The second kind of object relates to the unknown parameters. There is the unobserved 
K X 1 vector 0. We assume that each component of 0 is some real number. Added to this 
ideal unperturbed vector is a K X 1 unobserved vector 60 that is the random perturbation 
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on 0 induced by the random perturbation b.X on X. The calculated quantity is the 
randomly perturbed parameter vector 0 = 0 + b.0. 

The third kind of object is a continuous scaler valued function F which relates the 
vectors X and 0 and which relates the vectors X+ b.X and 0 + b.0. The function F 
has finite first and second partial derivatives with respect to each component of 0 and X, 
including all second mixed partial derivatives taken with respect to a component of 0 and 
with respect to a component of X. 

The basic problem is: given X = X+ b.X, determine a 0 = 0 + b.0 to minimize 
F(X, 0) given the fact that 0 minimizes F(X, 0). 

Of course, if 0 is computed by an explicit function h, so that 0 = h(X), the function F 
is just given by F(X, 0) = (0- h(X))'(0- h(z)). However, our development can handle 
as well the determining of the covariance of a 0 which is known to minimize F(X, 0), 
without requiring any knowledge of how the minimizing 0 was computed. 

3 Example Computer Vision Problems 

There is a rich variety of computer vision problems which fit the form of the abstract 
model. In this section we outline a few of them, specifically: curve fitting, coordinated 
curve fitting, local feature extraction, exterior orientation, and relative orientation. Other 
kinds of calculations in computer vision such as calculation of curvature, invariants, van­
ishing points, or points at which two or more curves intersect, or problems such as motion 
recovery are all examples of problems which can be put in the abstract form as given 
above. 

3.1 Curve Fitting 

In the general curve fitting scenario, there is the unknown free parameter vector, 0, 
of the curve and the set of unknown ideal points on the curve { Zt, ... , ZN }, Each of the 
ideal points is then perturbed. H b.z,. is the random noise perturbation of the nth point, 
then the observed point nth point is :i:,. = z,. + b.z,.. The form of the curve is given by a 
known function f which relates a point on the curve to the parameters of the curve. That 
is, for each ideal point z,. we have f(z,., 0) = 0. We also assume that the parameters of 
the curve satisfy its own set of constraint equations: h(0) = 0. The curve fitting problem 
is then to find an estimate 0 to minimize E!f:d2(:i:,., 0) subject to h(0) = 0. To put this 
problem in the form of the abstract problem we let 

X (zl> ... ,zN) 

X = (zl+b.zl>····z,.+b.zN) 
F(X, 0,A) E!f:d2(z,.,.,P) + h(0)'A 

Then the curve fitting problem is to find 0 and A to minimize F(X, 0, A) where F(X, 0, A)= 
o. 

3.2 Coordinated Curve Fitting 

In the coordinated curve fitting problem, multiple curves have to be fit on independent 
data, but the fitted curves have to satisfy some joint constraint. We illustrate the discus-
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sion in this section with a coordinated fitting of two curves and a constraint that the two 
curves must have some common point at which they are tangent. 

Let ( Zt, ... , z 1) be the ideal points which are associated with the first curve whose 
parameters are .,P1 and whose constraint is h1 ('1/Jt) = 0. Each point z, satisfies ft(z,,..Pt) = 
O,i=l, ... ,J. 

Likewise, let (Yt, ... , YJ) be the ideal points which are associated with the second curve 
whose parameters are .,P2 and whose constraint is h2( ..P2) = 0. Each point Yi satisfies 
h(y;,'I/J2)=0, j=l, ... ,J. 

The coordinated constraint is that for some unknown z, 

ft(z,..Pt) = 0 
!2(z,.,P2) = 

oft 
a;(z,..Pt) = 

The observed points :e, and Yi are related to the corresponding ideal points by 

Zi =Xi+ .6:z:1 

Yi = Yi + .6y; 
To put this problem in the framework of the abstract model, we take 

x = (:ilt. ... ,:ilr,Y!, ... ,yJ) 

0 = (~.~2,z) 
A = ( >.11 >.2, X a, 5.4, 5.s) 

and define 

F(x,0,A) I 2·. J 2 •• • • = E~=.tft (:z:,, '1/Jt) + E;=d2 (y;, t/J2) + Atht(..Pt) + A2h2(..P2) 
. . . . . oft oh 

+ Aaft(z, ..Pt) + A4!2(z, ..P2) +As[ a;(z, ..Pt)- a;(z, ..P2)] 

The coordinated curve fitting problem is then to determine a 0 and A to minimize 
F(X, 0, A), where the perturbed 0 is considered related to the ideal 0 by 0 = 0 + .60. 

3.3 Local Feature Extraction 

There are a variety of local features that can be extracted from an image. Examples 
include edges, corners, ridges, valleys, flats, saddles, slopes, hillsides, saddle hillsides, 
etc. Each local feature involves the calculation of some quantities assuming that the 
neighborhood has the feature and then a detection is performed based on the calculated 
quantities. For example, in the simple gradient edge feature, the quantity calculated is the 
gradient ma,gnitude and the edge feature is detected if the calculated gradient magnitude 
is high enough. Here we concentrate on the calculation of the quantities associated with 
the feature and not the detection of the feature itself. 

To put this problem in the setting of the abstract problem, we let 0 be the vector of 
unknown free parameters of the feature and X be the unobserved neighborhood array of 
noiseless brightness values. We let X be the perturbed observed neighborhood array of 
brightness values, X= X+ .6X, and 0 be the calculation of the required quantities from 
the perturbed brightness values X. The form the offeature is given by the known function 
f which satisfies that f(X, 0) = 0. The feature extraction problem is then to find the 
estimate 0 to minimize F(X, 0) = J2(X, 0). 
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3.4 Exterior Orientation 

In the exterior orientation problem, there is a known 3D object model having points 
( z,., y,., z,.), n = 1, ... , N. The unobserved noiseless perspective projection of the point 
( z,., y,., z,.) is given by ( u,., v,.). The relationship between a 3D model point and its 
corresponding perspective projection is given by a rotation and translation of the object 
model point, to put it in the reference frame of the camera, followed by a perspective 
projection. So if 't/J represents the triple of tilt angle, pan angle, and swing angle of the 
rotation, t represents the x-y-z-translation vector, and k represents the camera constant 
(the focal length of the camera lens), we can write: 

= !:_(Pn, q,.,)' where 
r,. 

= R( .,P )( Zn, 1/n, Zn)' + t 
and where R('t/J) is the 3 X 3 rotation matrix corresponding to the rotation angle vector 't/J. 

The function to be minimized can then be written as: 

• fn( u,., v.., 't/J, t) = f( u,., v,., z,., y,., z,., 't/J, t) where 

= (u,. _ k(1,0,0)(R('t/J)(z,.,y,.,z,.)' + t)J2 

(0, 0, 1)(R( 't/J)(z,., y,., z,.)' + t) 

+ [u _ k (0, 1, O)(R( 't/J )(z,., y,., z,.)' + t)J2 

n (0, 0, 1)(R('t/J )(z,., y,., z,.)' + t) 
To put this problem in the form of the abstract description we take 

and define 

X 

x 
0 = 

( 1L1J VlJ ••• , u,., v,.) 

(ill> 111, •.• u,., 11,.) 
( 't/J, t) 

0 = (~,i) 

F(X, 0) = E~d~(il,., 11,., 0) 

The exterior orientation problem is then to find a 0 to minimize F(X, 0), given that 
F(X, 0) = 0. And because F is non-negative it must be that 0 minimizes F(X, 0). 

3.5 Relative Orientation 

The relative orientation problem can be put into the form of the abstract problem in a 
similar way to the exterior orientation problem. We let the perspective projection of the 
nth point on the left image be ( UnL, VnL) and the perspective projection of the nth point 
on the right image be (UnR, vnR)· Then we can write that 

( 'UnR, VnR)' 
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where (p,., q .. , rn) is the rotated and translated model point as given in the description of 
the exterior orientation problem. 

The observed perspective projection of the nth model point is noisy and represented as 
( i£,., fin) = ( u,.. + ~u .. , v,. + ~v .. ). Then taking 

X = ( 'UlL> V}L, 'UlR, 111R, ••• , 'UNL, 11NL! 'UNR, 11NR) 

X = ( U}L, VtL, UlR, V}R, •.• , UNL, VNL, UNR, VNR) 

0 = (:tl>Yl!Z1 1 ••• 1 XN 1 YN 1 ZN1 1/J,t) 
0 (x11 Y11 z1, ... , XNYN, zN, ~. i) 

the relative orientation problem is to find 0 to minimize 

F(X, 0) = ~~d(UnR, 11nR1 :t,., Yn 1 Zn 1 1/J, t) + J( 'Unl 1 11nL1 :t,., Yn 1 z,., 0, 0) 

4 Zero Finding 

Zero finding such as finding the zero of a polynomial in one or more variables occurs 
in a number of vision problems. Two examples are the three point perspective resection 
problem and some of the techniques for motion recovery. The zero finding problem is 
precisely in the form required for computing the covariance matrix ~LI.e as described in 
the solution section. Let X be the ideal input vector and X be the observed perturbed 
input vector. Let 0 be a K X 1 vector zeroing the K X 1 function g(X, 0); that is, 
g(X, 0) = 0. Finally, let 0 be the computed vector zeroing g(X, 0); that is, g(X, 0) = 0. 

5 Solution: Unconstrained Case 

For the purpose of covariance determination of the computed 0 = 0+~0, the technique 
used to solve the extremization problem is not important, provided that there are no 
singularities or near singularities in the numerical computation proceedure itself. 

To understand how the random perturbation ~X acting on the unobserved vector X 
to produce the observed vector X = X+ ~X propagates to the random perturbation ~0 
on the true but known parameter vector 0 to produce the computed parameter vector 
0 = 0+~0, we can take partial derivatives ofF with respect to each of the K components 
of 0 forming the gradient vector goff. The gradient g is a K X 1 vector function. 

8F 
g(X,0) = 

80
(X,0) 

The solution 0 = 0 + ~0 extremizing F(X +~X, 0 + ~0), however it is calculated, 
must be a zero of g(X +~X, 0 + ~0). Now taking a Taylor series expansion of g around 
(X, 0) we obtain to a first order approximation: 

8g I KxN 8g' KxK 
gKxl(X +~X, 0 + ~0) = gKxl(X, 0) + 8X(X, 0)~XNxl + 80 (X, 0)~0Kxl 
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But since e + .6.e extremizes F(X + .6.X, e + .6.e), g(X + .6.X, 9 + .6.e) = 0. Also, 
since e extremizes F(X, e), g(X, 9) = 0. Thus to a :first order approximation, 

O= :i
1

(X,e).6.X+ :~
1

(X,e).6.e 
Since the relative extremum of F is a relative minimum, the K x K matrix 

ag ap 
ae(x,e) = a2e(x,e) 

must be positive definite for all (X, e). This implies that 3!(X, 9) is non-singular. Hence 
( 3! )-1 exists and since it is symmetric we can write: 

.6.e = -{:~cx,en-1 :i
1

(X,e).6.x 

This relation states how the random perturbation .6.X on X propagates to the random 
perturbation .6.e on e. If the expected value of .6.X, E(.6.X], is zero, then from this 
relation we see the E(.6.e] will also be zero, to a first order approximation. 

This relation also permits us to calculate the covariance of the random perturbation 
.6.e. 

Thus to the extent that the first order approximation is good, (i.e. E(.6.e] = 0), then 

E~ = ELl.e 

The way in which we have derived the covariance matrix for .6.e based on the covariance 
matrix for .6.X requires that the matrices 

ag ag 
ae (X, e) and ax(X, 9) 

be known. But X and e are not observed. X + .6.X is observed and by some means 
e + .6.e is then calculated. So if we want to determine an estimate E~ for the covariance 
matrix E~, we can proceed by expanding g(X, e) around g(X + .6.X, e + .6.e). 

a I a I 

g(X, e)= g(X +.6.X,e+.6.9)-ai (X +.6.X, e+.6.e).6.X- a~ (X +.6.X, 9+.6.e).6.e 

Here we find in a similar manner, 

.6.e = -( ag (X+ .6.X e + .6.e))-1 ag (X+ .6.X e + .6.e)oX 
ae ' ax ' 



This motivates the estimator :E.o.e for :E.o.e defined by 

So to the extent that the first order approximation is good, :E~ = :E.o.e· 
The relation giving the estimate :E~ in terms of the computable 

8g • • 8g •• 
80 (X,0) and ax(X,0) 
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means that an estimated covariance matrix for the computed 0 = 0 + ~0 can also be 
calculated at the same time that the estimate 0 of 0 is calculated. 

As a special and classic case, we consider the regression problem of finding 0 to minimize 
F(X, 0) = (X- J0)':Ei1(X- J0). For this F, 

8F 
g(X,_0) = 

80 
= -2J':EiJ0 

Hence, 

and 

Then, 

:Ee (2J':Ei J)-1( -2:Ei1 J):Ex( -2:Ei J)'(2J':Ei J)-1 

= (J':EiJ)-1 

As another important case, we consider the general line-fitting problem. Assume that 
the unobserved points unperturbed points (zn, Yn), n = 1, ... , N, lie on a line Zn cos 9 + 

· 1/n sin 9- p = 0. In the line-fitting problem, we observe ( z"n, Yn), noisy instances of ( Zn, Yn)· 
(:in, Yn) are related to ( Zn, Yn) by the noise model: 

where ~n are independent and identically distributed as N(O, u 2). 

To estimate the best fitting line parameters (B, p) using the least squares method, we 
use the criterion function: 

N 

F(X, 0) = L:; (zn cos 9 + 1/n sin 9- p)2 

n=1 

where X= (z1,1/t, ... ,zN,1/N) and 0 = (9,p). 
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Now, 

oF (:) g2xl(X 0) _ _ ' - ae-

Letting 

1 N 

P.:s: N :Ezn 
n=l 

1 N 

ll!J = N :EYn 
n=l 

N 
q2 

"' 
:E(zn- p.,)2 

n=l 

N 
q2 

II :E(Yn- ll!J)2 

n=l 

N 

Uz!J = :E(zn- P.:s:)(Yn- ll!J)i 
n=l 

we can compute 

~ = (u~- u; + N(p.~- p.~)) sin 28 + 2(u,11 + N p.,p.11 ) cos 28 + 2N p(p., sin8- ll!JCOs8) 

~ = -2N(p.,cos8 + lliJSin8- p) 

Then, 

where 

Og2X2 

ae 

~ = 2[u~- u; + N(p.~- p.~)) cos 28- 4(u,11 + N P.o:ll!J) sin 28 + 2N p(p., cos 8 + lliJ sin 8) 

s::;, = ~ = 2N (p., sin 8 - lliJ cos 8) 

And, 

( 
8 2F 8 2 F 82 F a•F 8 2F .fk) og I 2X2N ~ ~ ~ ~ ~ 

ax 8 2F 82 F 82 F 8 2 F 82 F 82 F 
~ 8p8y1 1fiilfZ2 ~ lfi&ii 8p8,jii 

(1) 

2x2N 



where 

a~~Z: .. = 2[(Yn- p.y) cos 29- (zn- p.,) sin 29 + [p.y cos 29- J.l.z sin 29 + psin9)] 

8~~~ .. = 2[(:t:n- p..,) cos 29 + (Yn- p.y) sin 29 + (p.., cos 29 + p.y sin 29- p cos 9)] 

82
F = -2cos9 
~ 

82
F = -2sin9 
~ 

For the given noise model, the covariance matrix Ex is given by: 

cos2 9 sin 9 cos 9 0 0 0 

sin 9 cos 9 sin2 9 0 0 0 

0 0 cos2 9 sin9 cos9 0 

0 0 sin9 cos 9 0 

0 0 0 cos2 9 sin 9 cos 9 

0 0 0 sin 9 cos 9 sin2 9 

Using these expressions, the covariance matrix of 0, Ee, can be computed as: 

We will find that 

4u2 (u~ cos2 9 + u~ sin2 9- u.,11 sin 29) 

(2NT)2 

-4u2[(p.., sin 9- p.y cos 9)( u~ cos2 9 + u~ sin2 9 - u"''l sin 29)] 
= u p8 = (2NT)2 
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O"pp = 4u2[(p.., sin 9- p.11 cos 9)2 (u~ cos2 9 + u~ sin2 9- u"''l sin 29) + N((p.., sin 9- p.y cos 9)2 - T)2] 

(2NT) 2 

where 

T = u~ ~ u~ cos 29 -
2
;;11 sin 29 - (p.11 sin 9 + p.., cos 9? + p(p.y sin 9 + p. .. cos 9) 
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The geometry of this result can be made easier to understand by re-expressing it. If 
(z, y) is a point on the line z cos 9 + y sin 9- p = 0 and k is the signed distance of (z, y) 
to the point on the line closest to the origin, then 

k={ 
It is not hard to show that 

Let 

then it follows that 

+Jz2 + y2- p2 if ycos9 ~ ysin9 
-Jz2 + y2- p2 otherwise 

z = -ksin9+pcos9 

y kcos9 + psin9 

1 N 
1-'lc NLkn 

n=l 

N 

u~ = E<k .. - ~-'")2 
n=l 

1-'o: = pcos9 -J'/csin9 

1-'v = p sin 9 + J'/c COB 9 
0"2 

"' = u~sin2 9 
0"2 

II = u~cos2 9 

0""'11 = -u~ sin 9 cos 9 

Substituting the above expressions in the covariance matrix results in 

This result has a simple geometric interpretation. In the coordinate system of the line 
where 0 is the point on the line closest to the origin, J'/c is the mean position of the points 
and O"/c is the scatter of the points. 1-'lc acts like a moment arm. If the mean position of 
the points on the line is a distance of ll-'1cl from the origin on the line, then the variance 
of the estimated p increases by 1-'lu2 / u~. This says that the estimate p is not invariant to 
the translation of the coordinate system. 

6 Solution: Constrained Case 

In the case of the constrained optimization, the function to be minimized is F(X, 0) + 
s(0)'A. As before, we define g(X,0) = ~F(X,0). We must have at the minimizing 

(X,0), 

8~ (F(X, 0) + s(0)' A)= 0 
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And in the case of no noise with the squared criterion function as we have been considering, 
F~X, 0) = 0. And this is the smallest F can be. Hence it must be that g(X, 0) = 
h(X, 0) = 0. This implies that &-(0)A = 0, which will only happen when A=O since 
we expect &-, a K X L matrix where K > L, to be of full rank. 

Define 

S(X 0 A)= ( g(X, 0 )+ &-A) 
' ' s{0) 

Taking a Taylor series expansion of S, 

as' as' as' 
S(X, 0, A)= S(X + f:::.X, 0 + !:::.0, A+ f:::.A)- ax f:::.X- a

0 
!:::.0- a A f:::.A 

Because g(X, 0) = 0, A= 0, and s{0) = 0, it follows that S(X, 0, A)= 0. Furthermore, 
at the computed 0 = 0 + !:::.0 and A= A+ !:::.A, S(X + f:::.X,0 + f:::.0,A +!:::.A)= 0. 
Hence, 

as' as' as' 
-8X f:::.X= 80 !:::.0 + 8A f:::.A 

Writing this equation out in terms of g and s, and using the fact that A= 0, there results 

( I ' ) ( ~~ ) = ( - f ) f:::.X 

From this it follows that 

where 

A=( 

and 

B=- 11X ( ~) 0 

and all functions are evaluated at 0 and X. For the estimated value E.t~.eLl.A of E.t~.eLl.A, 
we evaluate all functions at 0 and A. 

As a special but classic case of this consider the constrained regression problem to find 
0 minimizing 

F(X, 0) =(X- J0)'(X- J0) 

subject to H'0 = 0. In this case, 

and 
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Then 

_1 _ ( (2J' J)-1[1- H(H'(2J' J)-1 H)-1 H'(2J J')-1] (2J 1 J)-1 H(H'(2J' J)-1 H)-1 ) 
A - (H'(2J' J)-1 H)-1 H'(2J' J)-1 -(H'(2J' J)-1 H)-1 

and 

_ 1 _ ( (2J'J)- 1 [I- H(H'(2J'J)- 1H)- 1H'(2JJ')- 1 ]2J') 
A B - - ( H'(2J' J)-1 H)-1 H'(2J' J)-12J' 

From this it directly follows that if I; X = u 2 I, then 

7 Validation 

There are two levels of validation. One level of validation is for the software. This 
can be tested by a large set of Monte-Carlo experiments off-line where we know what the 
correct answers are. 

Another level of validation is on-line reliability. Here all that we have is the computed 
estimate and estimated covariance matrix for the estimate. 

7.1 Software and Algorithm Validation 

Software for performing the optimization required to compute the estimate 0 is often 
complicated and it is easy for there to be errors that are not immediately observable (like 
optimization software that produces correct answers on a few known examples but fails in 
a significant fraction of more difficult cases). One approach in testing that the software 
is producing the right answers is to test the statistical properties of the answers. That 
is, we can statistically test whether the statistical properties of its answers are similar 
to the statistical properties we expect. These expectations are whether the mean of the 
computed estimates is sufficiently close to the population mean and whether the estimated 
covariance matrix of the estimates is sufficiently close to the population covariance matrix. 
Rephrasing this more precisely the test is whether the computed estimates could have 
arisen from a population with given mean and covariance matrix. 

Consider what happens in a hypothesis test: a significance level, a, is selected. When 
the test is run, a test statistic, say ¢, is computed. The test statistic is typically designed 
so that in the case that the hypothesis is true, the test statistic will tend to have its values. 
distributed around zero, in accordance with a known distribution. If the test statistic has 
a value say higher than a given if>o, we reject the hypothesis that the computed estimate 
is statistically behaved as we expected it to be. If we do not reject, then in effect, we are 
tentatively accepting the hypothesis. The value of if>o is chosen so that the probability that 
we reject the hypothesis, given that is the hypothesis is true is less than the significance 
level a. 

The key in using this kind of testing is that we can set up an experiment in which we 
know what the correct answer for the no noise ideal case would be. Then we can additively 
perturb the input data by a normally distributed vector from a population having zero 
mean and given covariance matrix. Then using the analytic propagation results derived 
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earlier in the paper, we can derive the covariance matrix of the estimates produced by 
software. 

If we repeat this experiment many times just changing the perturbed realizations and 
leaving everything else the same, the experiment produces estimates e11 .•• , eN that will 
come from a normal population having mean e, the correct answer for the ideal no noise 
case, and covariance matrix E, computed from the propagation equations. Now the hy­
pothesis test is whether the observations el, ... ' eN come fron a Normal population with 
mean e and covariance matrix E. For this hypothesis test, there is a uniformly most 
powerful test. Let 

Define 

,X (e/N)PN/21BE-11N/2 

x ezp( -~[tr(BE-1 ) + N(B- e)'E-1(8- e)]) 

The test statistic is: 
T = -2log.X 

Under the hypothesis, T is distributed as: 

x!<p+l)/2+p 
where pis the dimension of e. 

So to perform a test that the program's behavior is as expected we repeatedly gen­
erate the T statistic and compute its empirical distribution function. Then we test the 
hypothesis that T is distributed as the x.2 variate using a Kolmogorov-Smirnov test. 

7.2 On-line Reliability 

For the on-line reliablity testing, the estimate is computed by minimizing the scalar 
objective function. Then based on the given covariance matrix of the input data, an 
estimated covariance matrix of the estimate is computed using the linearization around 
the estimate itself. Here a test can be done by testing whether the each of the diagonal 
entries of the estimated covariance matrix is sufficiently small. 

8 Conclusion 

Making a successful vision system for any particular application typically requires many 
steps, the optimal choice of which is not always apparent. To understand how to do the 
optimal design, a synthesis problem, requires that we first understand how to solve the 
analysis problem: given the steps of a particular algorithm, determine how to propagate 
the parameters of the perturbation process from the input to the parameters describing 
the perturbation process of the computed output. The first basic case of this sort of 
uncertainty propagation is the propagation of the covariance matrix of the input to the 
covariance matrix of the output. This is what this paper has described. 

This work does not come near to solving what is required for the general problem, 
because the general problem involves perturbations which are not additive. That is, in 
mid and high-level vision, the appropriate kinds of perturbations are perturbations of 
structures. Now, we are in the process of understanding some of the issues with these 
kinds of perturbations and expect to soon have some results in this area. 
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