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For us, Pattern Recognition refers to the automatic machine 

determination of salient patterns in remotely sensed image data. From 

the pattern recognition perspective, 

composed of units defined by the sensor. 

the world to be sensed is 

For digital imaging sensors, 

as a first approximation, the units can be thought of as small non-

overlapping areas on the ground: one such area for each picture 

element (pixe 1) in the image. The sensor makes an ordered set of 

measurements on each unit sensed. The ordered set of measurements is 

called a measurement vector or measurement pattern. Each value 

measured in this set is a number proportional to the energy received 

by the sensor in some band of the electromagnetic spectrum at some 

specified observation time. The basic pattern recognition problem is 

first to automatically and consistently determine the informational 

class or category of each distinct region on the ground using the set 

of sensor measurement patterns and second to estimate 

for the automatically determined assignments. 

the error rate 

Specific examples of pattern recognition for remote 

applications include determining 

(1) tree species composition in a forest 

(2) hot spots of incipient forest fires 

(3) natural vegetation cover types 

(4) crop types 

(5) State of health or stress vegetation 

(6) percent of sedimentation in a river or lake 

(7) percent of pollutant in a river or lake 

( 8) 

(9) 

(10) 

( 11) 

(12) 

geological formation and rock types 

lineament patterns 

degree of mineralization 

number of small objects in a smooth background 

urban land use patterns 

sensing 

The automation of these tasks requires a corresponding variety of 

methods and techniques varying from simple to highly complex. It is 
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to describe the most commonly used 

Books describing the principles of pattern recognition have been 

written by Sebestyen (1962), Nilsson (1965), Arkadev and Braverman 

(1966), Fu (1968), Kanal (Ed.)(1968), Watanabe (Ed.) (1969), Mendel 

and Fu (1970), Fu (Ed.)(1971), Andrews (1972), Fukunaga (1972), Meisel 

(1972), Patrick (1972), Watanabe (Ed.) (1972), Chen (1973), Duda and 

Hart (1973), Ullman (1973), Ton and Gonzalez (1974), Batchelor (1974), 

Young and Calvert (1974), Fu and Whinston (Ed.)(1977), and Batchelor 

(1978). Some of these books have been reviewed and the reader might 

be interested in consulting the reviews listed in the table before 

attempting to read any of these books. 

Shorter reports and review articles include those by Nagy (1968), 

Ho and Aggarwala (1968), Fu, Landgrebe, and Philips (1969), Casy and 

Nagy (1971), Nagy (1972), Kanal (1972) and Kanal (1974). Reprints of 

important pattern recognition articles can be found in Sklansky (1973) 

and Aggarwala (1976). The May 1979 issue of the IEEE Proceedings was 

a special issue on pattern recgonition and image processing. Journal 

papers on pattern recognition appear in the IEEE Iransactio~ QA 

~llllll• Man An4 ~ll£!:netic_!, and IE!i;!i; Transactions QA Pa,itern 

Ana~is and MA£hin£ !n.ielligenc£. The Pattern Recognition Society 

publishes a journal called ~A.i.i£Ln R££OgnitiQA• Conference papers 

appear in the Int£.r.natiQAll Joint Conf£!:ll££ Qn Pat.t£Ln Re£Q.&nition, 

The Pattern Reco,&Aition and Im.!A£ PrO££.!.!irul. Coni.£!:ll££• Ihe ~:l!.U!ll 

~mQsium Qn MA£hin£ ~rocesJ.ing of R£.!!!.Q.i£1Y ~n.!£4 Data, and the 

Environmental R£J.£.!rch Institnt£ Qf Mi£hiAAA RemQ,i£ ~£nsin.& Qf 

EnvirQnment Conf£!:£A£ll• 

Harry Andrew In,i!:Q4n£tiQA to Mathem.!,ii£.!1 

Techniques in Pa,i.i£!:A Re£Q.&= 

nitiQn, Prentice Hall, New 

Jersey, 1972, 504 pages. 

and Peter 

Hart 

King-Sun Fu 

AnAlYsis, Wiley, New York, 

1973,482 pages. 

IEEE InfQ!:.!!!A.iion JheQ!:Y 

IT-19 No. 6, November, 

1973, p. 831. 

!!i;EE Com~nt£!: I!:AA.!A£= 

A£tion, Vol. C-23, No.2, 

February. 

IEE!i; InfQ!:.!!!Ation TheQ!:Y 

Vol. JT-19, No.6, 

November 1973, 

p. 827-829. 



Keinosuke 

Fukunaga 

William 

Meisel 

Edward 

Patrick 

Julius Ton 

and Rafael 

Gonzales 
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Recognition, Academic Press, 

New York, 1974, 397 pages. 

Introd.!!£_ti.QA ll ll&istictl 

Patt££A &.!!.cognition, Academic 

Press, New York, 1972, 

382 pages. 

netics, Vol. SMC6, 

No. 8, August, 

1976, p. 590. 

IEEE Systems Man ~yber= 

Allie~, Vol. SMC-4, 

No. 2, March, 1974, 

p. 23 8. 

IEEE !nf.Q.S.!!!.Ation Theory 

Vol. IT-19, No.6, 

November, 1973, 

p. 827-829. 

Computer-Oriented ~LQAch~ 1Q !EE~ ~~tem~ MAA CybeA= 

fatterA RecOAA.i1ion, netics, Vol. SMC-3, No.2, 

Academic Press, New March, 1973, p. 209. 

York, 1972, 262 pages. 

E. u n d Al!!.!!.Allll sli fll1.!!.ll 

!.!!.££AAitioA, Prentice Hall, 

New Jersey, 1979, 528 pages. 

fatteAA ReCOAni1.iQA 

frinc~les, Addison-Wesley, 

Mass. 1974, 377 pages. 

IEEE Computer Transac­

tio~, Vol. C-23, No.1, 

January, 1974, p. 112. 

!EE~ Com.P.J!!..!!.A TrAA~.!!..!t= 

tio~, Vol. C-22, No.4, 

April, 1973, p. 429. 

lEE~ InfQ!:!!t!.1iQA TheQAY, 

Vol. IT-19, No. 6, No­

vember,1973, pp. 832-833. 

!EE~ ~~1.!!.1!!~ Man ~ll= 

netics, Vol. SMC-3, No.5, 

September,1973, p. 528. 

IEEE lnfQA~A1iQA TheQAY 

Vol. IT19, No.6, November, 

1973, pp. 830-831. 

IEEE ~ll~~ MAA ~.!!.A= 

Aetics, Vol. SMC-6, No.4, 

April,l976, pp. 632-633. 
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Ullman 

Satosi 

Watanabe 

(Ed.) 
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Pattern Recognition Tech= 

nigues, Crane-Russak, New 

York, 1973, 412 pages. 

M_ethodolo~ of ~Jlitern 

Recognition, Academic Press, 

New York, 1969, 579 pages. 

IEEE Computer Transac­

tions, Vol. C23, No.2, 

February,l974, pp. 220-222. 

IEEE Information TheQLY, 

Vol. IT-20, No.3, May, 

1974. p. 400. 

IEEE Info~tion Theon 

Vol. IT-17, No.5, Sept. 

1971, pp. 633-634. 

Table 1 lists various books on statistical pattern recognition 

and where they have been reviewed 

II. Summary 

To do the pattern recognition automation job, we must define the 

class of entities of interest, that is, between which kinds of objects 

we must discriminate; we must choose instruments or sensors which can 

measure the environment in which the objects occur; we must provide a 

methodology permitting the recognition of an object in the class of 

objects of interest from those not in the class of objects of 

interest; and using this methodology we must construct a decision rule 

which will decide what kind of object a particular object is, on the 

basis of the measurements made from the observed small area ground 

patches. 

Defining the class of objects of interest should be easy since it 

is an intrinsic part of the automation need. We will see however, 

that it is not so easy since the sensor may not gather sufficient 

information to allow the discrimination to take place. In these cases 

we will prefer to define our classes to be the more discriminable ones 

even though they may be less interesting to us. To help us do this we 

need to employ a clustering process which tells us what are the 

naturally distinguishable classes given the sensor's data. 

Choosing the measuring instruments or sensors and designing a way 

to preprocess - to standardize, to normalize, and to extract the 

revelant information in its simplest form from the measurements - so 

that objects of interest can be simply recognized from those of non-

interest and so that each class or category of objects of interest has 

a particularly simple description in terms of the preprocessed 

measurements are amoung the most difficult problems in the pattern 

recognition area. These problems are called feature-extraction or 
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preprocessing problems and are concerned with presenting in some 

standard form only the simplest most important 

decision rule. 

information to the 

Finally, the problem in constructing a decision rule we call the 

pattern discrimination problem. It is based on a probability model 

and it allows us to estimate the error rates of the automatic decision 

process. 

Most pattern recognition of remotely sensed image data is done 

processing each pixel's information separately or independently. This 

means that a category assignment is made to each pixel purely on the 

basis of its own information. 

basis over the entire image. 

Processing proceeds on a pixel by pixel 

When the pixel's information consists only of the sensor 

obtained from one observation time, the measurement pattern 

measurement pattern is called a multispectral feature vector and the 

kind of pattern recognition is called multispectral pattern 

recognition. When spectral information from more than one observation 

time for the same ground area are stacked in the same measurement 

pattern vector, this kind of pattern recognition is called 

multispectral multitemporal pattern recognition. When the measurement 

pattern for each pixel contains spectral information from its 

associated ground area as well a neighboring ground area or when the 

decision rule which makes category assignments uses the information 

from a pixel and some of its neighboring pixels, the pattern 

recognition is called spatial pattern recognition. 

Figure 1. Typical 

materials, illustrating 

relative response 

the possibility 

curves for different 

of discrimination by 

comparision of curves at different wavelengths. Source: Landgrebe 

(1972). 
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Figure 2. The categories vegetation, soil, and water distinct 

responses on wavelengths Al and A2 Shown in this figure are these 

categories plotted 

and A2 responses. 

In order to 

in a measurement space whose axes are 

Source: Landgrebe (1972). 

understand the pattern discrimination methodology 

consider a simplified example. Suppose that there are three types of 

surface cover material: vegetation, soil, and water. Suppose that 

each of these has a unique spectral response which does not vary with 

season, atmosphere haze, sunangle etc. Let these be the responses 

shown in figure 1. Now select two wavelengths Al and A2 for a 

remote sensor to make some measurements. Then, for each surface cover 

category, 

pattern. 

use wavelengths Al to determine its spectral measurement 

Plot these in measurement space as shown in figure 2. Since 

they obviously plot nicely separated from each other we would expect 

no difficulty in designing a decision rule to recognize these 

categories. 

category we 

Anytime a new meaurement pattern needs to be as~igned a 

see if it lies as the point in measurement space 

associated with vegetation, or soil, or water. If it does, we assign 

it the corresponding category. If it doesn't we assign it unknown. 

In reality, the spectral response patterns from these surface 

categories as well as others vary due to natural random variations, 

systematic seasonal causes, and atmospheric haze, etc. There is not a 

unique measurement pattern associated with each category. Rather, 

associated with each category is a probability distribution indicating 

for any measurement pattern the relative frequency of occurrence that 

it may arise from a ground area of the given category. 

If, using some training data, we plotted five observations of 

each of three vegetation categories, soybean, corn and wheat, we might 

obtain the measurement space plot of figure 3. To assign a new 

measurement pattern v to one of the classes is now not such an easy 

problem. In essence we must use our training observations to estimate 
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for each new measurement pattern v, the probability that soybeans, 

corn or wheat is its true category. If we can do that we can 

associate with each measurement that category having highest 

conditional probability given the measurement. In effect, 

association partitions measurement space as shown in figure 4. 

our new measurement pattern is in the part of measurement 

this 

Since 

space 

associated with soybeans 

class. 

the decision rule assigns it to the soybean 

Figure 3. A given material will not always have the exactly same 

response in a group 

A typical 

of samples but each material tends to cluster 

together. two-dimensional sampling of three materials is 

shown. Source: Landgrebe (1972). 
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Figure 4. 

domains assigned 

Division of two-dimensional sampling space into 

to different materials. 

point u is considered to 

sampling sapce. Source: 

be soybean because 

Landgrebe (1972). 

The procedure by which the measurement 

partitioned is simple. Use the training 

In this case the unknown 

of its location in the 

space of 

data for 

figure 3 

each class 

was 

to 

determine the class sample mean. Then partition measurement space is 
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that each class has associated with it all the measurement patterns 

closest to its sample mean. Unfortunately, without a probability 

model we cannot say that this procedure is the one that yields the 

lowers error rate or maximizes any utility function. Although, there 

is a probability model under which this is the appropriate 

do. 

thing to 

It is the purpose, therefore, of the next sections to develop a 

probabilistic decision theoretic model for pattern discrimination 

which suggests techniques for decision rule construction having 

certain optimal properties which we can measure in terms of utility or 

economic consequences. 

IV. Economic Conseguences .Q.f Decisio,!ll 

For each pattern d belonging to D, dsD, a decision rule f 

assigns a category alternative ck from the set of category 

alternatives c = { cl, cK }. The assignment may be 

deterministic or probabilistic. In any case, we assume that the 

assignment by the decision rule of category alternative c to a pattern 

d measured from a unit u caries economic consequences. These economic 

consequences are 

discrimination 

determined by the people who need to automate the 

ability of the trained human observer. The 

consequences are generally good when the chosen category alternative c 

is in fact the true category indentification of the unit u. The 

consequences are generally bad when the category alternattve c is not 

the true category identification of the unit u. Because such 

identification decisions must be made, and because they cause 

consequences when they are made, we may view the goal of decision rule 

construction as the construction of a decision rule which in some 

sense maximizes the good consequences. 

To speak of maximizing good consequences implies that we must 

have some numerical measure indicating the economic gain or loss of 

the consequence when the decision rule assigns category ci to a unit u 

with measurement d when the true category identification of unit u is 

category cj. 

consequence. 

Let e(cj,ci) be the net worth or economic gain of such a 

In general, e(ci,ci) will be positive signifying a gain 

for a correct identification, for i i- j, will be 

negative signifying a loss for an incorrect identification. 

In determining a decision rule, we must choose a criterion of 

optimality by which we can judge the worth of the decision rule on the 

basis of the various economic gains or losses of the consequence 

The optimality criterion defines how to judge how well the 
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decision rule balances, in terms of these gains and losses, the 

possible consequences of its decision. The most often used criterion 

is one which defines the best decision rule to be one which maximizes 

the expected gain under certain given conditions. Such a rule is 

called a Bayes decision rule. 

Let us consider the economic gains of the possible consequences 

given that a unit u has measurements d. These gains are illustrated 

simply in Figure 5. Suppose the decision rule assigns a unit u having 

measurements d to category ci This asignment, at best, however, is 

only an educated guess; the true category identification for unit u 

can actually be one of c 1 ,c 2 , ••• ,cK. In Figure 5 the decision rule 

assignment of ci corresponds to a selection of the ith column. The 

true category identification of unit u corresponds to a selection of 

some row. This row intersected with the ith column yields an entry 

which is the economic gain consequence. 

N 

A 

T 

u 
R 

E 

r---;(;I~;I,---r------r------r----;(;I~;K,---r 

r--------------r------r------r---------------r 
+--------------+------+------+---------------+ 

+--------------+------+------+-------K-------+ I e(cK,cl) I I I e(c ,cK) I 
+--------------+------+------+---------------+ 

Figure 5 shows the economic gains obtained under various 

alternatives conditioned on the measurement d being made of a unit K. 

Given that the observed measurement is d, 

choose category cj, corresponding to the 

decision rule will choose some category 

the 

j th 

k c • 

probability that nature 

row, isPd(cj). The 

corresponding to the kth 

column. the result of nature choosing category cj and the decision 

rule choosing 

ck) • 

category category ck is the economic consequence 

The question of concern is how often will the true category 

identification of a unit u be category cj when the unit u has 

measurement d. the probability of the true 
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category identification of a unit u being in category cj given that 

the unit u has measurements d. It is these conditional probabilities 

which can be estimated from the training data or ground truths data. 

The decision rule has no information regarding the true category 

identification of any unit. It only knows that the unit gives rise to 

a pattern d and it has available 

probabilities Pd(ck), k = 1,2, ••• ,K. 

estimates of the conditional 

The decision rule must assign 

the unit to a category, say ci This corresponds to a selection of the 

ith column. For this course of action a number of difference 

consequences can occur. If the true category identification is c 1 , 

then the gain of the consequence (c 1 , ci) is e(c 1 ,ci). If the true 

category 

(c2,ci) 

identification is c 2 , 

is e ( c 2 , c i) • The next 

then the gain of the 

section discusses a 

construction procedure which maximizes the expected gain. 

V. The Bayes Decision Rul£. Maximizes Expected Gain 

consequence 

decision rule 

Let fd(c) denote the probability that the decision rule assigns 

the category c to the unit given that the unit has pattern measurement 

d. Since for any pattern d, there is no reason to suppose any 

interaction or collaboration between nature, who may be thought of as 

choosing the true category identification, and the pattern 

discriminator, which may be thought of an employing the decision rule 

to assign categories we may assume that nature and the pattern 

discrimination are statistically independent. Thus, the probability 

that the unit has measurements d and the decision rule assigns the 

category ck to the unit and the true category identification for the 

unit is 
k . 

be written as fd(c )Pd(cl) P(d). Therefore, the 

expected gain for the decision rule f may be expressed by 

K K 

'E[e;f] = l 
dsD j=l k=l 

To see how to find that decision rule which maximizes the 

expected gain, we rewrite the expression for E[e;f] as 

K K 

deD k=l j=l 

P(d), being the probability of measuring pattern d for a unit, ls non­

negative. Hence E[e;f] will be maximized (maximum taken over all f) 

if and only if for each deD the expected gain given d using f is 

maximized ; that is, 
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Since l fd(ck) 

k=1 

K 

k=1 
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K 

j=1 

1, 2, ••. ,k, it is easy to 

see that the maximum of the above expression is 

i 

and the decision rule f will certainly achieve this maximum if 

K 

j=1 

In this 

O,i : :} where k is any index such that 

K 

j=1 

case the optimal decision rule can be deterministic if the 

index k is unique or it can be either deterministic or probabilistic 

if k is not unique. Any optimal decision rule is called a Bayes rule. 

For example, suppose there are three categories c 1 ,c 2 , and c 3 

with conditional probabilities and economic gains for the various 

alternatives and consequences shown in Figure 6. The optimal decisi~n 

rule will assign the unit u to category c 3 since the average gain for 

now is 5/6 which is larger than the 

-1/3 or for row 2 which is 1/2. 

average gain for row 1 which is 

Pd(c 2 )=1/2 c 3 

P d (c 3 ) =1 I 3 c 3 

+--------------+--------------+--------------+ I 4 I -2 I o I 
+--------------+--------------+--------------+ I o I 1 I o I 
+--------------+--------------+--------------+ I -1 I o I 3 I 
+--------------+--------------+--------------+ 

Figure 6. Illustrates the economic gains for an example 

problem where the pattern measurements d are made on a unit and there 

are three possible categories. 

It is often the case 

are not known but that the 

that the conditional probabilities 

conditional probabilities P(dlc) 

P (c I d) 

of the 

measurements given the categories are known. Fortunately, there is a 
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well known relationship between P(cJd) and P(dJc) which involves the 

prior probabilities of P(d) 

categories, respectively. 

and P(c) of the measurements and 

By the definition of conditional probability , we may express 

Pd(c) by 

p~~~~~~~~­
P(d) 

so that the average gain obtained by the use of decision rule f may be 

rewriten as 

K K 

E[e;f} = l l l fd(ck)e(cj,ck)Pcj(d)P(cj). 

d eD k;,l j=l 

E[e;f] is maximized if and only if for each deD, the gain 
conditioned on d, 

K K 

E[eJd;f] l fd(ck) l e(cj,ck)Pcj(d)P(cj) 

j=l j=l 

is maximized. The maximum value of E[eJd;f] is 

K 

l e(cj,ck)Pcj(d)P(cj) 

j=l 

where k is some index for which 

K K 

l e(cj,ck)Pcj(d)P(cj) L l e(cj,ci)Pcj(d) P(cj),i=1,2, •.• ,K. 

j=l j=l 

An optimal deterministic decision rule f may therefore be defined by 

fd(ci) = l,i = k} where k is any index such that 
O,i #- k 

K K 

l e(cj,ck)Pcj(d)P(cj) L 

j=l 

l e ( c j , c i) P c j (d) P ( c j ) , i= 1, 2, ••• , K. 

j=l 

Note the strong dependence which f has on the category probalitity 
p (c) • Because of this, anytime we define an optimal Bayes decision 

rule we must state that it is optimal only relative to the category 

prior probability function P(c). 

VII. M~~lmin ~££ision R~~ 

Figure 7 illustrates the expected gain of a Bayes decision rule 

in a two-category classification problem with the identity gain 

function, Selecting a value of prior probability, the corresponding 

value of expected gain is the highest expected gain achievable by any 
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decision rule. Therefore, use of any decision rule which is not a 

Bayes rule is guaranteed to perform below the curve. In particular, 

if a Bayes rule is used in a new situation where the encountered prior 

probability function differs from the one employed in the design, then 

the Bayes rule is. not optimal in the new situation. 

Expected gain 

Prior Probability 
for class Cl 

Figure 7 illustrates how the expected gain of a Bayes deeision 
rule can vary with a change in prior probability !Or class c1 in 
some two class example problem. Notice that as the prior probability 
:'or class cl. becomes 1, t~e prior certainty reflects itself in an 
a posterior~ certainty wh1.ch makes the expected gain high. 'i.fuen 
the prior probability for class c 1 becomes 0, the prior probability 
for class c., becomes 1 and the situation is similar. For class c1 
prior probabilities between 1 and 0. the prior situation is less 
certain and the expected gain must be less than the end cases. 
The shape of the function is guaranteed to be convex. 

Repognizing this, a conservative decision rule decision designer 

will attempt to construct a decision rule which maximizes the smallest 

gain achieved by the decision rule under some encountered prior 

probability function. It turns out that the expected gain for a 

decision rule which maximizes the smallest gain as the encountered 

prior probability function varies has a value equal to the smallest 

possible Bayes gain (the lowest point on the curve of Figure 7.) This 

value is the same regardless of the actually encountered prior 

probability function. This kind of decision rule is called a maximin 

decision rule since it maximizes the minimum expected gain. In 
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genera 1, it is not a deterministic decision rule and designing a 

maximum decision rule is equivalent to solving a large linear 

programming problem. 

VIII. Th,!!. Gaus.!_ian AS§..!!!!U!.tion 

The conditional probability Pc(d) of the data measurement vector 

d given the category c plays an essential role in decision rule 

determination. Pc(d) could be stored as a table. However, because of 

the large number of possible data vectors, Pc(d) is often represented 

as parametric function, the parameters being the category mean 

mesurement J.lc and its covariance matrix ~c· The 

probability density function having these parameters is 

one which is defined by 

1 -1/2(d- )''\:-l(d ) 
----N7~-----y~e llc l c -llc-
(27!) ~~ell 

where N is the dimension of the measurement vector d. 

simplest 

the Gaussian 

In the case of identity gain function e and equal probabilities for 

the prior P(c) for each category c, the Bayes decision rule assigns 

measn~ement d to that category c minimizing 

log J~cl + (d-J.Ic)'~-~(d-J.Ic) 
This kind of decision rule is sometimes called quadratic or piecewise 

quadratic because the decision boundaries they form in measurement 

space are piecewise hyperquadratic boundaries. 

In the case that the covariance matrices for all categories are 

equal, the Bayes decision rule reduces to assigning the measurement d 

to that category c minimizing the Mahalanobis distance 

(d-J.Ic)' ~-l(d-J.Ic) 
between the measurement vector d and the category mean vector llc for 

ca~egory c, This decision does simplify to a linear decision rule. 

Assign measurement d to that category c maximizing f ' ~1] d -[~~~~~=~L] 
By precomputing the terms in parentheses, the number of multiply and 

add operations for this decision rule is only N + 1 per category, a 

significant saving over the quadratic rule, especially when the 

dimensionality N is large. 

IX. Eeat~~ ~.!!.l.!!.~~io~ 

Multitemporal multispectral remotely sensed imagery can produce a 

ten or twenty dimensional data vector for each pixel. The data has 

inherent redundancies and processing all of it or storing all of it 
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may not be cost effective. Feature selection procedures are used to 

select those dimensions most suitable for processing. 

There are two kinds of feature selections depending on whether 

the classses and their statistics are known or not known. If they are 

not known, the best feature selection procedure is called principle 

components. If they are known, the easiest to use feature selection 

is based on Bhattacharyya distance, 

1. Principal ~QmQ£A~~~~ 

Principal 

selecting that 

components is a standard statistical technique 

subspace of given dimension in which the most 

for 

data 

variance lies. If x 1 , xn are 

sample mean vector, and l the sample 

the sample data vectors, 11 the 

covariance matrix, the best K 

dimension in which to project the data would be that K-dimensional 

subspace spanned by the K eigenvectors of l having largest 

eigenvalues. Thus if T is a matrix whose K rows are these 

eigenvectors, the K principal components of x 1 , 

, Txn• each Txn being a K-dimensional vector. 

2. BhallJ!.£.ha.u:.:t.!!. !!is~~£.~ 

The Bhattacharyya distance is a measure of the separability 

between two classes. For 

and 

two Gaussian classes having means 

covariances 112• l 2 respectively, the 

Bhattacharyya distance is given by 

1/8 <11 1 - 11 2 > '[lL~J~] <111 - 112> 

!l!l~! 
2 

+ 1/ 2 
ln ~~~~1121~;1172-

and 

To use this distance measure for selecting the best K features 

from the original N dimensions on an L class problem, 

Bhattacharyya distance needs to be calculated between each of 

for each of the [~] possible ways L(L-1)/2 pairs of classes 

the 

the 

of 

choosing K features from N dimensions. 

best are those K dimensions whose sum of 

The K dimensions which are 

the Bhattacharyya distances 

between the L(L-1)/2 pairs of classes is highest. The Bhattacharyya 

distance between a pair of classes for a selection of K dimensions is 

calculated using the mean and covariance matrix in the selected K 

dimensions, 
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