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Existing linear solutions for the pose estimation (or exterior orientation) problem 
suffer from a lack of robustness and accuracy partially due to the fact that the majority 
of the methods utilize only one type of geometric entity and t.heir frameworks do not 
allow simultaneous use of different types of features. Furthermore, the orthonormality 
constraints are weakly enforced or not enforced at all. We have developed a new analytic 
linear least-squares framework for determining pose from multiple types of geometric fea­
tures. The technique utilizes correspondences between points, between lines and between 
ellipse-circle pairs. The redundancy provided by different geometric features improves 
the robustness and accuracy of the least-squares solution. A novel way of approximately 
imposing orthonormality constraints on the sought rotation matrix within the linear 
framework is presented. Results from experimental evaluation of the new technique us­
ing both synthetic data and real images reveal its improved robustness and accuracy 
over existing direct methods. 

Keywords: Pose estimation, exterior camera parameter estimation, camera calibration. 

1. INTRODUCTION 

Pose estimation is an essential step in many machine vision and photogrammetric 
applications including robotics, 3D reconstruction, and mensuration. In computer 
vision, the problem is also known as exterior camera calibration. It addresses the 
issue of determining the position and orientation of a camera with respect to an 
object coordinate frame. Solutions to the pose estimation problem can be classified 
into linear methods and nonlinear methods. Linear methods have the advantage 
of computational efficiency, but they suffer from lack of accuracy and robustness. 
Nonlinear methods, on the other hand, offer a more accurate and more robust solu­
tion. They are, however, computationally intensive and require an initial estimate. 
The classical nonlinear photogrammetric approach to camera calibration requires 
setting up a constrained nonlinear least-squares system. Given initial estimates of 
the camera parameters, the system is then linearized and solved iteratively. While 
the classical technique guarantees all orthonormality constraints and delivers the 
best answer, it, however, requires a good initial estimate. It is a well-known fact 
that the initial estimates must be close or the system may not converge quickly 
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or correctly. Hence, the quality of an initial estimate is critical since it determines 
the convergence speed and the correctness of the iterative procedures. Linear solu­
tions, which are often used to provide initial guesses for nonlinear procedures, are 
therefore important for computer vision and photogrammetric problems. 

Numerous methods have been proposed to analytically obtain exterior cam­
era parameters. Previous methods in camera parameter or pose estimation have 
primarily been focused on using sets of 2D-3D point correspondences including 
the three-point solution,7 the four-point solutions, 15•17 and the six- or more point 
solutions.5•25•26 Haralick et alP reviewed major analytic solutions from three-point 
correspondences and characterized their performance under varying noisy condi­
tions. Sutherland25 provided a closed-form least-squares solution using six or more 
points. The solution, however, assumed the depth of the camera to be unity. 
Faugeras5 proposed a similar constrained least-squares method to solve for the 
camera parameters that requires at least six-point 2D-3D correspondences. The 
solution includes an orthogonalization process that ensures the orthonormality of 
the resulting rotation matrix. Tsai26 presented a direct solution by decoupling the 
camera parameters into two groups; each group is solved separately in different 
stages. While efficient, Tsai's method does not impose any of the orthonormal 
constraints on the estimated rotation matrix. Also, the errors with the camera 
parameters estimated in the earlier stage can significantly affect the accuracy of 
parameters estimated in the later stage. 

These methods are effective and simple to implement. However, they are not 
robust and are very susceptible to noise in image coordinates,27 especially when the 
number of control points approaches the minimum required. For the three-point 
solutions, Haralick et al. 13 showed that even the order of algebraic substitutions 
can render the output useless. Furthermore, the point configuration and noise in 
the point coordinates can also dramatically change the relative output errors. For 
least-squares based methods, a different study by Haralick et al. 12 showed that 
when the noise level exceeds a knee level or the number of points is below a knee 
level, these methods become extremely unstable and the errors skyrocket. The use 
of more points can help relieve this problem. However, fabrication of more control 
points often proves to be difficult, expensive, and time-consuming. Another disad­
vantage of point-based methods is the difficulty with point matching, i.e. finding 
the correspondences between the 3D scene points and 2D image pixels. 

In view of these issues, other researchers have investigated the use of higher­
level geometric features such as lines or curves as observed geometric entities to 
improve the robustness and accuracy of linear methods for estimating camera pa­
rameters. Over the years, various algorithms1•4•21 •23 have been introduced. Haralick 
and Chu 11 presented a method that solves the camera parameters from the conic 
curves. Given the shape of conic curves, the method first solves the three rota­
tion parameters using an iterative procedure. The three translation parameters are 
then solved analytically. The advantage of this method is that it does not need to 
know the location of the curves and it is more robust than any analytical method 
in that rotation parameter errors are reduced to minimum before they are used 
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analytically to compute translation parameters. In their analytic method, Liu et 
al. 21 and Chen 1 discussed direct solutions for determining external camera parame­
ters based on a set of 2D-3D line correspondences. The key to this algorithm lies in 
the linear constraint they used. This constraint uses the fact that a 3D line and its 
image line lie on the same plane determined by the center of perspectivity and the 
image line. Rothwell et al. 23 discussed a direct method that determines camera pa­
rameters using a pair of conic curves. The method works by extracting 4 or 8 points 
from conic intersections and tangencies. Camera parameters are then recovered from 
these points. Kumar and Hanson20 described a robust technique for finding camera 
parameters using lines. Kamgar-Parsi19 introduced a camera calibration method 
with small relative angles. Gao9 introduced a method for estimating camera pa­
rameters using parallelepiped. Forsyth8 proposed to use a pair of known conics or a 
single known circle for determining the pose of the object plane. Haralick10•11 pre­
sented methods for solving camera parameters using rectangles and triangles. Ma24 

introduced a technique for pose estimation from the correspondence of 2D /3D con­
ics. The technique, however, is iterative and requires a pair of conics in both 2D 
and 3D. 

Analytic solutions based on high-level geometric features afford better stability 
and are more robust and accurate. Here the correspondence problem can be ad­
dressed more easily than in the point-based methods. However, high-level geometric 
features may not always be present in some applications, and points are present in 
many applications. Therefore, completely ignoring points while solely employing 
high-level geometric entities can be a waste of readily available geometric informa­
tion. This is one of the problems with the existing solutions: they either use points 
or lines or conics but not a combination of features. In this paper, we describe 
an integrated least-squares method that solves the camera transformation matrix 
analytically by fusing available observed geometric information from different levels 
of abstraction. Specifically, we analytically solve for the external camera param­
eters from simultaneous use of 2D-3D correspondences between points, between 
lines and between 2D ellipses and 3D circles. The attractiveness of our approach 
is that the redundancy provided by features at different levels improves the robust­
ness and accuracy of the least-squares solution, therefore improving the precision of 
the estimated parameters. To our knowledge, no previous research attempts have 
been made in this area. Work by Phong et al.22 described a technique in which 
information from both points and lines is used to compute the pose. However, the 
method is iterative and involves only points and lines. 

Another major factor that contributes to the lack of robustness of the existing 
linear methods is that orthonormality constraints on the rotation matrix are often 
weakly enforced or not enforced at all. In this research, we introduce a simple, yet 
effective, scheme for approximately imposing the orthonormal constraints on the 
rotation matrix. While the scheme does not guarantee that the resultant rotation 
matrix completely satisfies the orthonormal constraints, it does yield a matrix that 
is closer to orthonormality than those obtained with competing methods. 
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This paper is organized as follows. Section 2 briefly summarizes the perspec­
tive projection geometry and equations. Least-square frameworks for estimating 
camera transformation matrix from 2D-3D point, line and ellipse/circle correspon­
dences are presented in Sees. 3-5 respectively. Section 6 discusses our technique for 
approximately imposing orthonormal constraints and presents the integrated linear 
technique for estimating the transformation matrix simultaneously using point, line 
and ellipse/circle correspondences. Performance characterization and comparison 
of the developed integrated technique is covered in Sec. 7. 

2. PERSPECTIVE PROJECTION GEOMETRY 

To set the stage for the subsequent discussion of camera parameter estimation, this 
section briefly summarizes the pin-hole camera model and the perspective projection 
geometry. 

Let P be a 3D point and (xyz)t be the coordinates of P relative to the object 
coordinate frame C0 • Define the camera coordinate system Cc to have its Z-axis 
parallel to the optical axis of the camera lens and its origin located at the perspec­
tivity center. Let (xc Yc Zc)t be the coordinates of p in Cc· Define ci to be the 
image coordinate system, with its U -axis and V -axis parallel to the X and Y axes 
of the camera coordinate frame, respectively. The origin of Ci is located at the 
principal point. Let (u v)t be the coordinates of?;, the image projection of Pin 
Ci. Figure 1 depicts the pin-hole camera model. 

row·column 
frame 

Cp 

r 

~ -----cc ~ -------C~a ~Af ~ --------
Frame ~~-------~~-~~~~·-----

~nter of perspectivity 

image plane 

principle point 

Fig. 1. Camera and perspective projection geometry. 

--· p 

Based on the perspective projection theory, the projection that relates (u,v) on 
the image plane to the corresponding 3D point (xc, Yc, zc) in the camera frame can 
be described by 

(1) 

where >. is a scalar and f is the camera focal length. 
Further, (x y z)t relates to (xc Yc zc)t by a rigid body coordinate transformation 

consisting of a rotation and a translation. Let a 3 x 3 matrix R represent the rotation 
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and a 3 x 1 vector T describe the translation, then 

where T and R can be parameterized as T = (tx ty tz) and 

(
rn 

R= T21 

T31 

137 

(2) 

R and T describe the orientation and location of the object frame relative to the 
camera frame respectively. Together, they are referred to as the camera transfor­
mation matrix. Substituting the parameterized T and R into Eq. (2) yields 

(
Xc) (rn 
Yc = r21 

Zc T31 

(3) 

Assume rotation matrix R results from successive Euler rotations of the camera 
frame around its X-axis by w, its once rotated Y-axis by¢, and its twice rotated 
Z-axis by K, then 

R(w, ¢, K) = Rx(w)Ry(</J)Rz(K) 

( 

cos <P cos K - cos <P sin K 

= sinwsin¢cosK + coswsin K - sinw sin¢sin K + coswcos K 

-~W~</J~K+~W~K ~W~</J~K+~W~K 

sin¢ ) 
-sinwcos¢. 

cosw cos¢ 

(4) 

Equation ( 4) describes relationships between r ii and the Euler angles. 
Combining the projection Eq. (1) with the rigid transformation of Eq. (2) and 

solving for >. yields the collinearity equations, which describe the ideal relationship 
between a point on the image plane and the corresponding point in the object frame 

u = 1rnx + r12Y + r13Z + tx 
T31X + T32Y + T33Z + tz 

J
T21X + T22Y + T23Z + ty v-

- T31X + T32Y + T33Z + tz . 

(5) 

For a rigid body transformation, the rotation matrix R must be orthonormal, 
that is, Rt = R- 1 . The constraint Rt = R-1 amounts to the six orthonormality 
constraint equations on the elements of R 

r~1 + r~2 + r~3 = 1 

r~1 + r~2 + r~3 = 1 

r§1 + r§2 + r§3 = 1 

T11T21 + T12T22 + T13T23 = 0 

T11T31 + T12T32 + T13T33 = 0 

T21T31 + T22T32 + T23T33 = 0 

--------------

(6) 



138 Q. JI ET AL. 

where the three constraints on the left are referred to as the normality constraints 
and the three on the right as the orthogonality constraints. The normality con­
s~raints ensure that the row vectors of R are unit vectors, while the orthogonality 
constraints guarantee orthogonality among row vectors. 

3. CAMERA TRANSFORMATION MATRlX FROM POINT 
CORRESPONDENCES 

Given the 30 object coordinates of a number of points and their corresponding 
2D image coordinates, the coefficients of R and T can be solved for by a least­
squares solution of an overdetermined system of linear equations. Specifically, the 
least-squares method based on point correspondences can be formulated as follows. 

Let Xn = (xn,Yn,Zn), n = 1, ... ,K, be the 3D coordinates of K points relative 
to the object frame and Un = (un, vn) be the observed image coordinates of these 
points. We can then relate Xn and Un via the collinearity equations as follows 

Un = f TUXn + T12Yn + T13Zn + tx 
T31Xn + T32Yn + T33Zn + tz 

Vn = f T21Xn + T22Yn + T23Zn + ty . 
T31Xn + T32Yn + T33Zn + tz 

Rewriting the above equation yields 

We can then set up a matrix M and a vector V as follows 

fxl fY1 fz1 0 0 0 -UlXl -UlYl -UlZl f 0 -Ul 

0 0 0 fx1 fY1 fz1 -VlXl -VlYl -VlZl 0 f -Vi 

M2Kx12 = 

fxK fYK fzK 0 0 0 -UKXK -UKYK -UKZK f 0 -UK 

0 0 0 fxK fYK /ZK -VKXK -VKYK -VKZK 0 f -VK 

(8) 

y12xl ( )t = Tu T12 T13 T21 T22 T23 T31 T32 T33 tx ty tz (9) 

where M is hereafter referred to as the collinearity matrix and V is the unknown 
vector of transformation parameters containing all sought rotational and transla­
tional coefficients. 

To determhie V, we can set up a least-squares problem that minimizes 

(10) 

where e is the sum of residual errors of all points. Given an overdetermined system, 
a solution to the above least-squares minimization requires MV = 0. Its solution 
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contains an arbitrary scale factor. To uniquely determine V, different methods have 
been proposed to solve for the scale factor. In the least-squares solution provided 
by Sutherland2S, the depth of the camera is assumed to be unity; tz = 1. Not 
only is this assumption unrealistic for most applications, but also the solution is 
constructed without regard to the orthonormal constraints that R must satisfy. 
Faugeras5 posed the problem as a constrained least-squares problem. The third 
normality constraint in Eq. (6) is imposed during the minimization to solve for the 
scale factor and to constrain the rotation matrix. 

4. CAMERA TRANSFORMATION MATRIX FROM LINE 
CORRESPONDENCES 

Given correspondences between a set of 3D lines and their observed 2D images, we 
can set up a system of linear equations that involve R, T, and the coefficients for 
3D and 2D lines as follows. Let a 3D line Lin the object frame be parametrically 
represented as 

£: X=>.N+P 

where X = (x y z)t is a generic point on the line, >. is a scalar, N = (A, B, C)t 
is the known direction cosine and P = ( Px Py Pz )f is a known point on the line 
relative to the object frame. Let the corresponding 2D line l on the image plane be 
represented by 

l : au + bv + c = 0 . 

Ideally the 3D line must lie on the projection plane formed by the center of per­
spectivity and the 2D image line as shown in Fig. 2. 

Relative to the camera frame, the equation of the projection plane can be derived 
from the 2D line equation as 

afxc + bfyc + CZc = 0 

where f is the focal length. Since the 3D line lies on the projection plane, the 
plane normal must be perpendicular to the line. Denote the plane normal by n = 
v' ~a;,bl~c); 

2
; then given an ideal projection, we have 

a I +b I +c 

ntRN =0. (11) 

Similarly, since point P is also located on the projection plane, this leads to 

(12) 

Equations (11) and (12) are hereafter referred to as coplanarity equations. Equiva­
lently, they can be rewritten as 

Aaru + Bar12 + Car13 + Abr21 + Abr22 + Cbr23 + Acr31 + Bcr32 + Ccr33 = 0 

Pxaru + Pyar12 + Pzar13 + Pxbr21 + Pybr22 + Pzbr23 + Pxcr31 + Pycr32 

+ PzCT33 + atx + bty + ctz = 0. 

- --------
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Image Plane 

p 

X y 

Fig. 2. Projection plane formed by a 2D image line l and the corresponding 3D line L. 

Given a set of J line correspondences, we can set up a system of linear equations 
similar to those for points that involve matrix H and vector V, where V is as defined 
before and H is defined as follows 

H2Jx12 = 

A1a1 B1a1 C1a1 A1b1 B1b1 C1b1 A1c1 B1c1 C1c1 0 0 0 

Px1 a1 Py1 a1 Pz1 a1 Px1 b1 Py1 b1 Pz1 b1 Px1 b1 Py1 c1 Pz1 c1 a1 b1 c1 

AJaJ BJaJ CJaJ AJbJ BJbJ CJbJ AJCJ BJCJ CJCJ 0 0 0 

PxJaJ PyJaJ PzJaJ PxJbJ PyJbJ PzJbJ PxJCJ PyJCJ PzJCJ aJ bJ CJ 

(13} 

and is called the coplanarity matrix. Again we can solve for V by minimizing the 
sum of residual errors IIHVII2 • V can be solved for up to a scale factor. The scale 
factor can be determined by imposing one of the orthonormality constraints. 

5. CAMERA TRANSFORMATION MATRIX FROM ELLIPSE-CIRCLE 
CORRESPONDENCES 

5.1. Circle Pose from Ellipse-Circle Correspondence 

Given the image of a circle in 3D space and the corresponding ellipse in the image, 
its pose relative to the camera frame can be solved for analytically. Solutions to this 
problem may be found in Refs. 3, 8 and 14. Here we propose an algebraic solution 
as detailed below. 

Assume we observe an ellipse in the image, resulting from the perspective pro­
jection of a 3D circle. Relative to the image frame Ci, the ellipse may be represented 
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by a standard conic function 

Au2 + 2Buv + Cv2 + 2Du + 2Ev + F = 0 (14) 

where the coefficients A, B, C, D, E, F can be estimated from a least squares fit. A 
point in camera frame (xe,Ye,ze) relates to its projection (u,v) in the image via 

fxe 
U=-

Ze 

Substituting u and v into Eq. (14) yields 

fYe 
v=-. 

Ze 

2 2 D E F 2 
Axe + 2BXeYe + Cye + 2JXeZe + 2JYeZe + J2 Ze = 0. 

Fig. 3. The 3D cone formed by a 2D ellipse and the corresponding 3D circle. 

(15) 

The above equation defines the equation of a cone formed by the center of perspec­
tivity and the ellipse in the image as shown in Fig. 3. The sought 3D circle must be 
the cross-section of the cone when cut with a plane (also shown in Fig. 3). Without 
loss of generality, assume the plane equation, relative to the camera frame, can be 
represented as Ze = axe + f3Ye + 'Y. Substituting the plane equation into the cone 
Eq. (15) and collecting like terms yield the equation for the cross-section of the cone 
and the plane 
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Given the above equation, the pose of the circle plane is determined by exploiting 
the property, unique to a circle, that the space curve relative to the camera frame 
must have equal coefficients for the x~ and y~ terms and zero coefficient for the XcYc 
term. This property yields the following two simultaneous equations 

Reorganizing the above two equations gives rise to 

(C- A)! 
E 

(17) 

(18) 

Let s = a + ~ and w = {3 + iJ, we can easily solve for s and w from the above 
equations. Given s and w, the plane parameters a and {3 can be derived. There will 
be two solutions for a and {3, yielding a total of four possible solutions for the circle 
normals. With a and {3 known, we can substitute them into Eq. (15), yielding 

where 

2 2 l Xc + Yc + qxc + Yc = P 

2Ea"(+2D"f 
q = Af + Ea2 + 2Da 

l = 2Ef3"1 + 2F"' 
Af+Ea2 +2Da 

-E"/2 

P = Af + Ea2 + 2Da . 

(19) 

Given the radius of the circle to be r, we can use it to solve for the third plane 
parameter"' and subsequently for q, land p. Substituting the solutions for p, land 
q into Eq. {19) allows us to solve for the x andy coordinates of the circle center in 
the camera frame. The z coordinate of the circle center can then be solved for from 
the plane equation. 

5.2. Camera Transformation Matrix from Circles 

The pose of a circle, as derived in the last section, is relative to the camera frame. 
If we are also given the pose of the circle in the object frame, then we can use 
the two poses to solve for R and T. Specifically, let Nc = (Nc., Nc

11 
NcJt and 

De= (De., Dc
11 

DcJt be the 3D circle normal and center respectively in the camera 
coordinate frame. Also, let No= (No., N 011 NozY and Do= (Do., D011 DoJt be the 
normal and center of the same circle, but in the object coordinate system. Nc and 

._ ___________________________________________ --------
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De can be obtained from the pose-from-circle technique as described in Sec. 5.1. No 

and Do are assumed to be known. The problem is to determineR and T from the 
correspondence between Ne and N0 , and between De and D 0 • The two normals and 
the two centers are related by the transformation R and T as shown below 

Ne = RNo 

("' T12 r,) c··) = T21 T22 T23 No11 
(20) 

ra1 ra2 raa Noz 

and 

De= RDo+T 

C" 
r12 r,) c-· ) c·) = T21 r22 T23 Do11 + ty (21) 

ra1 T32 raa Doz tz 

Equivalently, we can rewrite Eqs. (20) and (21) as follows 

No.,rn + N 011 T12 + NozT13 = Ne., 

No.,T21 + No11 T22 + NozT23 = Ne11 

No.,T31 + No11 T32 + NozT33 =Nez 

and 

Do.,rn + Do
11

T12 + Dozr13 + tx =De., 

Do.,T21 + Do
11

T22 + DozT23 + ty = De11 

Do.,T31 + Do11 T32 + DozT33 + tz = Dez • 

Given I observed ellipses and their corresponding space circles, we can set up a 
system of linear equations to solve for R and T by minimizing the sum of residual 
errors IIQV- kll 2 , where Q and k are defined as follows 

Nlo., N1011 Nloz 0 0 0 0 0 0 0 0 0 

0 0 0 Nlo., N1 011 Nloz 0 0 0 0 0 0 

0 0 0 0 0 0 N1o., N1 011 Nloz 0 0 0 

olo., a loll oloz 0 0 0 0 0 0 1 0 0 

0 0 0 olo., a loll oloz 0 0 0 0 1 0 

0 0 0 0 0 0 olo., a loll oloz 0 0 1 

Q= 
Nio., N/011 Nloz 0 0 0 0 0 0 0 0 0 

0 0 0 Nio., NI
011 Nioz 0 0 0 0 0 0 

0 0 0 0 0. 0 Nio., Nioll Nioz 0 0 0 

olo., a loll oloz 0 0 0 0 0 0 1 0 0 

0 0 0 Qlo., a loll Qloz 0 0 0 0 1 0 

0 0 0 0 0 0 olo., a loll olo% 0 0 1 

(22) 
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and 

6. THE INTEGRATED TECHNIQUE 

In the previous sections we have outlined the least-square frameworks for computing 
transformation matrix from different features individually. It is desirable to be able 
to compute camera parameters using more than one type of feature simultaneously. 
In other words, given observed geometric entities at different levels, we want to 
develop a mechanism that systematically and consistently fuses this information. 
The reason is quite obvious: using all available geometric information will provide 
a more accurate and robust solution, since it increases the relative redundancy of 
the least-squares estimation. It also reduces the dependency on points. We can be 
more selective when choosing points, without worrying about the minimum number 
of points needed for accurate results. Furthermore, we do not need to worry about 
whether the selected points are coplanar or not. To our knowledge, this problem 
has never been addressed in the literature. This section is devoted to formulating 
a direct solution for computing camera parameters from 2D-3D correspondences of 
points, lines and ellipses/circles. 

6.1. Fusing All Observed Information 

The problem of integrating information from points, lines and circles is actually 
straightforward, given the frameworks we have outlined individually for points, 
lines and circles. The problem can be stated as follows. 

Given the 2D-3D correspondences of K points, J lines and I ellipse/circle pairs, 
we want to set up a system of linear equations that involves all geometric enti­
ties. The problem can be formulated as a least-squares estimation in the form of 
minimizing IIWV- bll, where Vis the unknown vector of transformation parame­
ters as defined before, and b is a known vector defined below. W is an augmented 
coefficient matrix, whose rows consist of linear equations derived from points, lines 
and circles. Specifically, given theM, Hand Q matrices defined in Eqs. (8), (13), 
and (22), theW matrix is 

(24) 

where the first 2K rows of W represent contributions from points, the second sub­
sequent 2J rows represent contributions from lines, and the last 61 rows represent 
contributions from circles. The vector b is defined as 

(25) 

---~----
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Given W and b, the least-squares solution for V is 

(26) 

It can be seen that to have an overdetermined system of linear equations, we need 
2K +2J +61 ~ 12 observed geometric entities. This may occur with any combination 
of points, lines and circles. For example, one point, one line and one circle or two 
points and one circle are sufficient to solve the transformation matrix from Eq. (26). 
Any additional points or lines or circles will improve the robustness and the precision 
of the estimated parameters. 

6.2. Approximately Imposing Orthonormal Constraints 

The least-squares solution to V described in the last section cannot guarantee the 
orthonormality of the resultant rotation matrix. One major reason why previous lin­
ear methods are very susceptible to noise is because the orthonormality constraints 
are not enforced or enforced weakly. To ensure this, the six orthonormal constraints 
must be imposed on V within the least-squares framework. The conventional way 
of imposing the constraints is through the use of the Lagrange multiplier. However, 
simultaneously imposing any two normality constraints or one orthogonality con­
straint using the Lagrange multiplier requires a nonlinear solution for the problem. 
Therefore, most linear methods choose to use a single orthonormal constraint. For 
example, Faugeras6 imposed the constraint that the norm of the last row vector 
of R be unity. This constraint, however, cannot ensure complete satisfaction of all 
orthonormal constraints. To impose more than one orthonormality constraint but 
still retain a linear solution, Liu et al. 21 suggested the constraint that the sum of the 
squares of the three row vectors be 3. This constraint, however, cannot guarantee 
the normality of each individual row vector. Haralick et al.12 and Horn16 proposed 
direct solutions, where all orthonormality constraints are imposed, but for the 3D 
to 3D absolute orientation problem. They are only applicable while using point cor­
respondence and are not applicable to line and circle-ellipse correspondence. Most 
important, their techniques cannot be applied to the general linear framework we 
propose. 

Given the linear framework, even imposing one constraint using the Lagrange 
multiplier can render the solution nonlinear. It is well-known that the solution to 
minimizing IIAx- bll subject to s(x) = 0 can only be achieved by the nonlinear 
method. In statistics, this kind of problem is called trust region. Existing solutions 
to trust region problems are all nonlinear. 

We now introduce a simple yet effective method for approximately imposing 
the orthonormal constraints in a way that offers a linear solution. We want to 
emphasize that the technique we are about to introduce cannot guarantee a perfect 
rotation matrix. However our experimental study proves that it yields a matrix that 
is closer to a rotation matrix than those obtained using the competing methods. 
The advantages of our technique are: 

(1) all six orthonormal constraints are imposed simultaneously; 
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(2) constraints are globally imposed on each entry of the rotation matrix rather 
than locally, and 

(3) asymptotically, the resulting matrix should converge to a rotation matrix. 

We now address the problem of how to impose the orthonormality constraints 
in the general framework of finding pose from multiple geometric features described 
in Sees. 3-5. Given the pose of circles relative to the camera frame and the object 
frame, let Nc = (Nc., Nc11 NcJt and No = (No., N 011 No.)t be the 3D circle nor­
mals in camera and object frames respectively. Equation (20) depicts the relation 
between two normals that involves R. The relation can also be expressed in an 
alternative way that involves Rt (note Rt = R-1) as follows 

No= RtNc 

Equivalently, we can rewrite Eq. (27) as follows 

Nc.,ru + Nc11 T2t + Nc.T3t =No., 

Nc., Tt2 + Nc11 T22 + Nc. T32 = No11 

Nc.,Tt3 + Nc11 T23 + Nc.T33 =No •. 

(27) 

Given the same set of I observed ellipses and their corresponding space circles, 
we can set up another system of linear equations that uses the same set of circles 
as in Q. Let Q' be the coefficient matrix that contains the coefficients of the set of 
linear equations, then Q' is 

Ntc., 0 0 Ntcll 0 0 Ntcz 0 0 0 0 0 

0 Ntc., 0 0 Ntc
11 

0 0 Ntc• 0 0 0 0 

0 0 Ntc., 0 0 Ntc11 0 0 Ntc• 0 0 0 

Q'= (28) 

Nlc., 0 ,0 Nlcll 0 0 N1c• 0 0 0 0 0 

0 Nlc., 0 0 Nlc
11 

0 0 N1c• 0 0 0 0 

0 0 N1c., 0 0 Nlcll 0 0 N1c• 0 0 0 

Correspondingly, we have k' defined as 

k' = (Nto Nt Nto 0 0 0 ... N1o N1 N1o 0 0 O)t. a: o11 z :c o11 z (29) 

To implement the constraint in the least-squares framework, we can augment 
matrix W in Eq. (26) with Q', yielding W', and augment vector b in Eq. (25) with 
k', yielding b', where W' and b' are defined as follows 

w'- (w) - Q' b'=(:,). 
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Putting it all together, the solution to V can be found by minimizing IIW'V -b'll2 , 

given by 

(30) 

The resultant transformation parameters R and T are more accurate and robust 
due to fusing information from different sources. The resultant rotation matrix R 
is also very close to being orthonormal since the orthonormality constraints have 
been implicitly added to the system of linear equations used in the least-squares 
estimation. The obtained R and T can be used directly for certain applications or 
fed to an iterative procedure to refine the solution. Since the obtained transforma­
tion parameters are accurate, the subsequent iterative procedure can converge very 
quickly, usually after a couple of iterations as evidenced by our experiments. In 
the section to follow, we study the performance of the new linear pose estimation 
method against the methods that only use one type of geometric entity at a time, 
using synthetic and real images. 

7. EXPERIMENTS 

In this section, we present and discuss the results of a series of experiments aimed at 
characterizing the performance of the integrated linear pose estimation technique. 
Using both synthetic data and real images of industrial parts, the experiments con­
ducted are to study the effectiveness of the proposed technique for approximately 
imposing the orthonormal constraints and to quantitatively evaluate the perfor­
mance of the integrated linear technique against the existing linear techniques. 

7.1. Performance Study with Synthetic Data 

This section consists of two parts. First, we present results from a large number 
of controlled experiments aimed at analyzing the effectiveness of our technique 
for imposing orthonormal constraints. This was accomplished by comparing the 
errors of the estimated rotation and translation vectors obtained with and without 
orthonormal constraints imposed under different conditions. Second, we discuss the 
results from a comparative performance study of the integrated linear technique 
against an existing linear technique under different noisy conditions. 

In the experiments with simulation data, the 3D data (3D point coordinates, 
3D surface normals, 3D line direction cosines) are generated randomly within spec­
ified ranges. For example, 3D coordinates are randomly generated within the cube 
[( -5, -5, -5) to (5, 5, 5)]. 2D data are generated by projecting the 3D data onto 
the image plane, followed by perturbing the projected image data with iid Gaus­
sian distributed noise of mean 0 and standard deviation u. From the generated 
2D--3D data, we estimate the rotation and the translation vector using the linear 
algorithm, from which we can compute the estimation errors. The estimation error 
is defined as the Euclidean distance between the estimated rotation (translation) 
vector and the ideal rotation (translation) vector. We choose the rotation matrix 
(vector) rather than other specific representations like Euler angles and quaternion 
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parameters for error analysis. This is because all other representations depend on 
the estimated rotation vector. For each experiment, 100 trials are performed and 
the average distance errors are computed. The noise level is quantified using signal 
to noise ratio (SNR). SNR is defined as 20 log~' where a is the standard deviation 
of the Gaussian noise and dis the range of the quantity being perturbed. 

Figures 4 and 5 plot the mean rotation and translation errors as a function of 
the signal to noise ratio, with and without orthonormal constraints imposed. It is 
clear from the two figures that imposing the orthonormal constraints improves the 
estimation errors for both the rotation and translation vectors. The improvement 
is especially significant when the SNR is low. 

I 
2.5 ,. 
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t 
!j1.5 ,., 
~ 
: 
E 

\ 
\ ... ··\···: 
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Signal to noise ratio (dB) 

without constraints 
with constraints 

Fig. 4. Average rotation vector error versus SNR. The plot was generated using the integrated 
linear technique with a combination of three points, one line and one circle. Each point represents 
an average of 100 trials. 

To further study the effectiveness of the technique for imposing constraints, we 
studied its performance under different numbers of pairs of ellipse/circle correspon­
dences. This experiment is intended to study the efficacy of imposing orthonormal 
constraints versus the amount of geometric data used for the least-squares estima­
tion. The results are plotted in Figs. 6 and 7, which give the average rotation and 
translation errors as a function of the number of ellipse/circle pairs used, with and 
without constraints imposed. The two figures again show that imposing orthonor­
mal constraints leads to an improvement in estimation errors. This improvement, 
however, begins to taper off when the amount of data used exceeds a certain thresh­
old. The technique is most effective when fewer ellipse/circle pairs are used. This 
echos the conclusion drawn from the previous two figures. 
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Fig. 5. Average translation vector error (mm) versus SNR. The plot was generated using the 
integrated linear technique with a combination of three points, one line and one circle. Each point 
represents an average of 100 trials. 
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Fig. 6. Mean rotation vector error versus the number of ellipse/circle pairs (SNR = 35). 

To compare the integrated linear technique with an existing linear technique, we 
studied its performance against that of Faugeras. 6 The results are given in Figs. 8 
and 9, which plot the mean rotation and translation vector errors as a function of 
the SNR respectively. 

----· ------ -----
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Fig. 7. Mean translation vector error (mm) versus the number of ellipse/circle pairs (SNR = 35). 
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Fig. 8. Mean rotation vector error versus SNR. The curve for Faugeras' was obtained using 10 
points while the curve for the integrated technique was generated using a combination of three 
points, one line and one circle. 
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Fig. 9. Mean translation vector error (mm) versus SNR. The curve for Faugeras' was obtained 
using 10 points while the curve for the integrated technique was generated using a combination of 
three points, one line and one circle. 

The two figures clearly show the superiority of the new integrated technique over 
Faugeras' linear technique, especially for the translation errors. To further compare 
the sensitivity of the two techniques to viewing parameters, we changed the position 
parameters of the camera by increasing z. Figures 10 and 11 plot the mean rotation 
and translation vector errors as a function of SNR respectively under the new camera 
position. While increasing z causes an increase in the estimation errors for both 
technique&, its impact on Faugeras' technique is more serious. This leads to a much 
more noticeable performance difference between the two linear techniques. The fact 
that the integrated technique using only five geometric entities (3 points, !line and 
1 circle) still outperforms Faugeras' technique, which uses 10 points, shows that the 
higher-level geometric features such as lines and circles can provide more robust 
solutions than those provided solely by points. This demonstrates the power of 
combining features on different levels of abstraction. Our study also shows that 
Faugeras' linear technique is very sensitive to noise when the number of points used 
is close to the required minimum. For example, when only six points are used, a 
small perturbation of the input data can cause significant errors on the estimated 
parameters, especially the translation vector. Figures 10 and 11 reveal that the 
technique using only points is numerically unstable to viewing parameters. 

7.2. Performance Characterization with Real Images 

This section presents results obtained using real images of industrial parts. The 
images contain linear features (points and lines) and nonlinear features (circles). 
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Fig. 10. Mean rotation vector error versus SNR with an increased camera position parameter z. 
The curve for Faugeras' was obtained using 10 points while the curve for the integrated technique 
was generated using a combination of three points, one line and one circle . 
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Fig. 11. Mean translation vector error (mm) versus SNR with an increased camera position param­
eter z. The curve for Faugeras' was generated using 10 points while the curve for the integrated 
technique was generated using a combination of three points, one line and one circle. 
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Fig. 12. The pose computed using two points (as indicated by the black squares) and one circle 
(the upper circle) with the integrated technique. 

Fig. 13. The pose computed using one point, two lines and one circle (the upper circle) with the 
integrated technique. The points and lines used are marked with black squares and lines. 

This phase of the experiments consist of two parts. First, we visually assess the 
performance of the linear least-squares framework using different combinations of 
geometric entities, such as one circle and six points; one circle and two points; and 
one circle, one point and two lines. The performance of the proposed technique is 
judged by visual inspection of the alignment between the image of a part and the 
reprojected outline of the part using the estimated transformation matrix. Second, 
the technique is compared against existing methods that use only one type of geo­
metric entity as well as against the Gauss-Newton iterative method. The closeness 
between the solutions from the linear method and from the iterative method, as 
represented by the residual errors, as well as the number of iterations required, are 
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Fig. 14. The pose computed using six points (as indicated by the black squares) and one circle 
(the upper circle) with the integrated technique. 

used as measures to indicate the goodness of the solution obtained using the new 
method. 

To test the integrated technique, we performed the following experiments. The 
pose transformation (R T) was analytically computed using our integrated technique 
with different combinations of points, lines and circles. Figures 12-14 illustrate the 
results obtained using the following combinations of features: two points plus one 
circle; one point, two lines and one circle; and six points and one circle respectively. 
The visual inspection of the figures reveals that results obtained from the three con­
figurations are all good enough to serve as an initial guess to an iterative procedure. 
It is also evident from Figs. 12-14 that the result using six points and one circle is 
superior to the ones obtained using the other two configurations. 

The significance of these sample results is as follows. First, they demonstrate 
the feasibility of the proposed framework applied to real image data. Second, they 
show that using multiple geometric primitives simultaneously to compute the pose 
reduces the dependency on points. One can be more selective when choosing which 
point correspondence to use in pose estimation. This can potentially improve the 
robustness of the estimation procedure since points are more susceptible to noise 
than lines and circles. Third, the use of more than the minimum required number 
of geometric features provides redundancy to the least-squares estimation, therefore 
improving the accuracy of the solution, as evidenced by the progressively improved 
results as the number of linear equations increase. 

In order to compare the results with those of other existing techniques, we 
computed the pose of the same object using the same six points and the same 
circle, separately. The result for th~ pose computation using a linear technique18 

(similar to that of Faugeras5) with six points is given in Fig. 15. The algorithms 
of Dhome3 and Forsyth8 for the pose-from-circle computation were augmented in 
Ref. 2 to handle nonrotationally symmetric objects. The results of this augmented 
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algorithm using the single ellipse/circle correspondence is shown in Fig. 16. Notice 
that due to the localized concentration of detectable feature points and the physical 
distance between the circle and these points, the poses computed align well only 
in the areas where the features used are located. Specifically, the result in Fig. 16 
shows a good alignment in the upper portion of the object where the circle is located 
and a poor alignment in the lower part (as indicated by the arrow). On the other 
hand, the result in Fig. 15 shows good alignment only at the lower part of the 
object where the concentration of detectable feature points is located and a poor 
alignment on the upper part of the object (as indicated by the arrow). 

Fig. 15. The pose computed using six points alone. It shows good alignment only at the lower part 
of the object where the concentration of detectable feature points is located and a poor alignment 
on the upper part of the object (as indicated by the arrow). 

Fig. 16. The pose computed using a single circle. It shows a good alignment in the upper portion 
of the object where the circle is located and a poor alignment in the lower part (as indicated by 
the arrow). 
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Visual inspection of the results in Figs. 14-16 shows the superiority of the new 
technique over the existing methods. The model reprojection using the transforma­
tion matrix obtained using the new technique yields a better alignment than those 
using only points or only ellipse/circle correspondences. To compare the perfor­
mance quantitatively, we compare the transformation matrices obtained using the 
three methods against the one obtained from the iterative procedure. Table 1 shows 
the numerical results for the transformations obtained from using only points, only 
the circle, and a combination of points and circle. The results from each method 
were then used as the initial guess to the iterative Gauss-Newton method. The final 
transformation obtained after the convergence of the iterative method is shown in 
the last row of Table 1. These final results are the same regardless of which initial 
guess was used. 

Table 1. Pose transformations from different methods. 

Methods R T 

[ 

0.410 -0.129 -0.902] 
Point only 0.606 -0.700 0.376 

-0.681 -0.701 -0.208 
[-43.125 - 25.511 1232.036] 

[ 

0.302 0.302 -0.932] 
Circle only 0.692 -0.628 0.355 

-0.655 -0.753 -0.054 
[-35.161 - 15.358 1195.293] 

[ 

0.398 -0.142 -0.902] 
Points and circle 0.554 -0.667 0.336 

-0.700 -0.684 -0.201 
[-43.077 -26.400 1217.855] 

[ 

0.341 -0.156 -0.927] 
Nonlinear 0.631 -0.693 0.349 

-0.697 -0.704 -0.137 
[ -43.23 - 28.254 1273.07] 

Table 2. Performance of different methods. 

Method Number of iterations 

Points only 4 

Circle only 6 

Points and circle 1 

Table 2 summarizes the number of iterations required for the iterative proce­
dure to converge using as initial guesses the results from the three linear methods 
mentioned in Table 1. Figure 17 shows the results from the iterative procedure. 

It is evident from Tables 1 and 2 and Fig. 17 that the new technique yields 
a transformation matrix that is closer to the one obtained from the iterative pro­
cedure and therefore requires fewer iterations (one here) for the iterative method 
to converge. By contrast, the final results for initial guesses obtained using only 
points and only one circle require 4 and 6 iterations, respectively, for the iterative 
procedure to converge. The result from the quantitative study echoes the' conclusion 
from visual inspection: the new technique offers better estimation accuracy. 

1'------------------------- ~~-~-~--- -~~ 
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Fig. 17. The final pose obtained from the Gauss-Newton iterative method after only one iteration 
using the solution in Fig. 14 as the initial solution. 

Fig. 18. Results of the integrated method applied to different industrial parts. 
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To further validate our technique, we tested it on over fifty real images with sim­
ilar results. Figure 18 gives results of applying the integrated technique to different 
industrial parts with different combinations of geometric features. Our experiments 
also reveal, as was theoretically expected for a system of linear equations of the 
form AX = b, a decay in robustness when the number of equations in the linear 
system reaches the minimum required for a solution to be found. The premise 
is that one should make use of as many available features as possible in order to 
improve accuracy and robustness. Our technique allows for that. 

8. SUMMARY 

In this paper, we present a linear solution to the exterior camera parameters or pose 
estimation. The main contributions of this research are the linear framework for 
fusing information available from different geometric entities and for introducing 
a novel technique that approximately imposes the orthonormality constraints on 
the rotation matrix sought. Experimental evaluation using both synthetic data 
and real images show the effectiveness of our technique for imposing orthonormal 
constraints in improving estimation errors. The technique is especially effective 
when the SNR is low or fewer geometric entities are used. The performance study 
also revealed superiority of the integrated technique to a competing linear technique 
in terms of robustness and accuracy. The new technique proposed in this paper is 
ideal for applications such as industrial automation where robustness, accuracy, 
computational efficiency and speed are needed. Its results can also be used as 
initial estimates in certain applications where more accurate camera parameters 
are needed. 
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