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or correctly. Hence, the quality of an initial estimate is critical since it determines
the convergence speed and the correctness of the iterative procedures. Linear solu-
tions, which are often used to provide initial guesses for nonlinear procedures, are
therefore important for computer vision and photogrammetric problems.

Numerous methods have been proposed to analytically obtain exterior cam-
era parameters. Previous methods in camera parameter or pose estimation have
primarily been focused on using sets of 2D-3D point correspondences including
the three-point solution,” the four-point solutions,!>!7 and the six- or more point
solutions.?2%26 Haralick et al.!® reviewed major analytic solutions from three-point
correspondences and characterized their performance under varying noisy condi-
tions. Sutherland®® provided a closed-form least-squares solution using six or more
points. The solution, however, assumed the depth of the camera to be unity.
Faugeras® proposed a similar constrained least-squares method to solve for the
camera parameters that requires at least six-point 2D-3D correspondences. The
solution includes an orthogonalization process that ensures the orthonormality of
the resulting rotation matrix. Tsai?® presented a direct solution by decoupling the
camera parameters into two groups; each group is solved separately in different
stages. While eflicient, Tsai’s method does not impose any of the orthonormal
constraints on the estimated rotation matrix. Also, the errors with the camera
parameters estimated in the earlier stage can significantly affect the accuracy of
parameters estimated in the later stage.

These methods are effective and simple to implement. However, they are not
robust and are very susceptible to noise in image coordinates,?” especially when the
number of control points approaches the minimum required. For the three-point
solutions, Haralick et al.!®> showed that even the order of algebraic substitutions
can render the output useless. Furthermore, the point configuration and noise in
the point coordinates can also dramatically change the relative output errors. For
least-squares based methods, a different study by Haralick et al.!? showed that
when the noise level exceeds a knee level or the number of points is below a knee
level, these methods become extremely unstable and the errors skyrocket. The use
of more points can help relieve this problem. However, fabrication of more control
points often proves to be difficult, expensive, and time-consuming. Another disad-
vantage of point-based methods is the difficulty with point matching, i.e. finding
the correspondences between the 3D scene points and 2D image pixels.

In view of these issues, other researchers have investigated the use of higher-
level geometric features such as lines or curves as observed geometric entities to
improve the robustness and accuracy of linear methods for estimating camera pa-
rameters. Over the years, various algorithms!+4-21:23 have been introduced. Haralick
and Chu!! presented a method that solves the camera parameters from the conic
curves. Given the shape of conic curves, the method first solves the three rota-
tion parameters using an iterative procedure. The three translation parameters are
then solved analytically. The advantage of this method is that it does not need to
know the location of the curves and it is more robust than any analytical method
in that rotation parameter errors are reduced to minimum before they are used
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analytically to compute translation parameters. In their analytic method, Liu et
al.?! and Chen! discussed direct solutions for determining external camera parame-
ters based on a set of 2D-3D line correspondences. The key to this algorithm lies in
the linear constraint they used. This constraint uses the fact that a 3D line and its
image line lie on the same plane determined by the center of perspectivity and the
image line. Rothwell et al.2® discussed a direct method that determines camera pa-
rameters using a pair of conic curves. The method works by extracting 4 or 8 points
from conic intersections and tangencies. Camera parameters are then recovered from
these points. Kumar and Hanson?® described a robust technique for finding camera
parameters using lines. Kamgar-Parsi!? introduced a camera calibration method
with small relative angles. Gao® introduced a method for estimating camera pa-
rameters using parallelepiped. Forsyth® proposed to use a pair of known conics or a
single known circle for determining the pose of the object plane. Haralick!®!! pre-
sented methods for solving camera parameters using rectangles and triangles. Ma24
introduced a technique for pose estimation from the correspondence of 2D/3D con-
ics. The technique, however, is iterative and requires a pair of conics in both 2D
and 3D.

Analytic solutions based on high-level geometric features afford better stability
and are more robust and accurate. Here the correspondence problem can be ad-
dressed more easily than in the point-based methods. However, high-level geometric
features may not always be present in some applications, and points are present in
many applications. Therefore, completely ignoring points while solely employing
high-level geometric entities can be a waste of readily available geometric informa-
tion. This is one of the problems with the existing solutions: they either use points
or lines or conics but not a combination of features. In this paper, we describe
an integrated least-squares method that solves the camera transformation matrix
analytically by fusing available observed geometric information from different levels
of abstraction. Specifically, we analytically solve for the external camera param-
eters from simultaneous use of 2D-3D correspondences between points, between
lines and between 2D ellipses and 3D circles. The attractiveness of our approach
is that the redundancy provided by features at different levels improves the robust-
ness and accuracy of the least-squares solution, therefore improving the precision of
the estimated parameters. To our knowledge, no previous research attempts have
been made in this area. Work by Phong et al.2? described a technique in which
information from both points and lines is used to compute the pose. However, the
method is iterative and involves only points and lines.

Another major factor that contributes to the lack of robustness of the existing
linear methods is that orthonormality constraints on the rotation matrix are often
weakly enforced or not enforced at all. In this research, we introduce a simple, yet
effective, scheme for approximately imposing the orthonormal constraints on the
rotation matrix. While the scheme does not guarantee that the resultant rotation
matrix completely satisfies the orthonormal constraints, it does yield a matrix that
is closer to orthonormality than those obtained with competing methods.
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This paper is organized as follows. Section 2 briefly summarizes the perspec-
tive projection geometry and equations. Least-square frameworks for estimating
camera transformation matrix from 2D-3D point, line and ellipse/circle correspon-
dences are presented in Secs. 3-5 respectively. Section 6 discusses our technique for
approximately imposing orthonormal constraints and presents the integrated linear
technique for estimating the transformation matrix simultaneously using point, line
and ellipse/circle correspondences. Performance characterization and comparison
of the developed integrated technique is covered in Sec. 7.

2. PERSPECTIVE PROJECTION GEOMETRY

To set the stage for the subsequent discussion of camera parameter estimation, this
section briefly summarizes the pin-hole camera model and the perspective projection
geometry.

Let P be a 3D point and (zyz)! be the coordinates of P relative to the object
coordinate frame C,. Define the camera coordinate system C,. to have its Z-axis
parallel to the optical axis of the camera lens and its origin located at the perspec-
tivity center. Let (z. y. z.)! be the coordinates of P in C.. Define C; to be the
image coordinate system, with its U-axis and V-axis parallel to the X and Y axes
of the camera coordinate frame, respectively. The origin of C; is located at the
principal point. Let (u v)* be the coordinates of P;, the image projection of P in
C;. Figure 1 depicts the pin-hole camera model.

row-column

image planc

\Cenler of perspectivity

principle point
Fig. 1. Camera and perspective projection geometry.
Based on the perspective projection theory, the projection that relates (u,v) on

the image plane to the corresponding 3D point (zc, yc, ) in the camera frame can
be described by

u Te
Alv =1 v (1)
f Ze

where A is a scalar and f is the camera focal length.
Further, (z y z)* relates to (z. y. 2.)! by a rigid body coordinate transformation
consisting of a rotation and a translation. Let a 3 x3 matrix R represent the rotation
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and a 3 x 1 vector T describe the translation, then

Te T
ve | =Ry | +T (2)
2 z

R and T describe the orientation and location of the object frame relative to the
camera frame respectively. Together, they are referred to as the camera transfor-
mation matrix. Substituting the parameterized T and R into Eq. (2) yields

Zc 11 Ti2 T13 T te
Ye | = |21 T22 To3 yl+lt ®3)
Ze z i,

31 732 T33

Assume rotation matrix R results from successive Euler rotations of the camera
frame around its X-axis by w, its once rotated Y-axis by ¢, and its twice rotated
Z-axis by k, then

R(w, ¢, k) = Rx(w)Ry(#)Rz(k)
coS pCcoS K —cos¢sink sin ¢
= | sinwsingcosk + coswsink —sinwsingsink + coswcosk — sinw cos¢
—coswsin@cosk +sinwsink coswsingsink +sinwcosk  cosw cos ¢

4)

Equation (4) describes relationships between r;; and the Euler angles.

Combining the projection Eq. (1) with the rigid transformation of Eq. (2) and
solving for A yields the collinearity equations, which describe the ideal relationship
between a point on the image plane and the corresponding point in the object frame

_ T 4Ty +rigztis
31T +T32Y + T332 + 1,

(5)

_ 1T + T22Y + ro32 + ty
31T + 13y + T332+t

For a rigid body transformation, the rotation matrix R must be orthonormal,
that is, R® = R~1. The constraint R* = R~! amounts to the six orthonormality
constraint equations on the elements of R

1‘%1 + 1‘%2 + 1'¥3 =1 711721 + 712722 + 713723 = 0
1‘%1 + ng + 1'%3 =1 711731 + 712732 + 113733 = 0 (6)

2 2 _ —
Th+rh+tri=1 721731 + 22732 + 723733 = 0
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where the three constraints on the left are referred to as the normality constraints
and the three on the right as the orthogonality constraints. The normality con-
straints ensure that the row vectors of R are unit vectors, while the orthogonality
constraints guarantee orthogonality among row vectors.

3. CAMERA TRANSFORMATION MATRIX FROM POINT
CORRESPONDENCES

Given the 3D object coordinates of a number of points and their corresponding
2D image coordinates, the coeflicients of R and T can be solved for by a least-
squares solution of an overdetermined system of linear equations. Specifically, the
least-squares method based on point correspondences can be formulated as follows.
Let Xp = (Zn,¥Yn,2n), n=1,..., K, be the 3D coordinates of K points relative
to the object frame and U,, = (un,v,) be the observed image coordinates of these
points. We can then relate X,, and U,, via the collinearity equations as follows

u = fT1%n ¥ T12Yn + 71320 + 123
"=
T31%n + T32Yn + 73320 + L,

o = f721%n + T22Yn +T232n + ¢y
n — .
T31Zpn + T32Yn + T332 + 1,

Rewriting the above equation yields

Fr11Zn + frioyn + fT132n — UnT31Tn — UnT32Yn — UnT332n + flz —unt, =0
fro1Zn + frooyn + fro3zn — UnT31Zn — UnT32YUn — UnT332n + fly —vnt, =0. (7)

We can then set up a matrix M and a vector V as follows

fZl fyl fZl 0 0 0 —UuUi1T —ui1y1 —UuU121 f 0 Ul
0 0 0 fzi fyr faro —vizi —viyi —wnz1 0 f —wu

M2EX12
fzx fyk fzx O 0 0 -—ugsk —ugyk —-ukzk f 0 —uk
0 0 0 fzx fyx fzx —vkzx —vkyx —vkzk 0 f —vk
(8)
izl - (ri1T12T13 721 T2 T23 T3 T2 T3z o by tz)t 9)

where M is hereafter referred to as the collinearity matrix and V is the unknown
vector of transformation parameters containing all sought rotational and transla-
tional coefficients.

To determine V', we can set up a least-squares problem that minimizes

& =||Mv|? (10)

where ¢2 is the sum of residual errors of all points. Given an overdetermined system,
a solution to the above least-squares minimization requires MV = 0. Its solution
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contains an arbitrary scale factor. To uniquely determine V, different methods have
been proposed to solve for the scale factor. In the least-squares solution provided
by Sutherland?®, the depth of the camera is assumed to be unity; ¢, = 1. Not
only is this assumption unrealistic for most applications, but also the solution is
constructed without regard to the orthonormal constraints that R must satisfy.
Faugeras® posed the problem as a constrained least-squares problem. The third
normality constraint in Eq. (6) is imposed during the minimization to solve for the
scale factor and to constrain the rotation matrix.

4. CAMERA TRANSFORMATION MATRIX FROM LINE
CORRESPONDENCES

Given correspondences between a set of 3D lines and their observed 2D images, we
can set up a system of linear equations that involve R, T', and the coefficients for
3D and 2D lines as follows. Let a 3D line L in the object frame be parametrically

represented as
L: X=AMN+P
where X = (z y z) is a generic point on the line, X is a scalar, N = (4, B,C)}

is the known direction cosine and P = (P, P, P,)! is a known point on the line
relative to the object frame. Let the corresponding 2D line [ on the image plane be

represented by
l:au+bv+c=0.

Ideally the 3D line must lie on the projection plane formed by the center of per-

spectivity and the 2D image line as shown in Fig. 2.
Relative to the camera frame, the equation of the projection plane can be derived

from the 2D line equation as

afc.+bfyc+cz.=0

where f is the focal length. Since the 3D line lies on the projection plane, the
plane norntla.l must be perpendicular to the line. Denote the plane normal by n =
—tefbf0) . then given an ideal projection, we have

fa2f2b2f24ct’

n'RN =0. (11)
Similarly, since point P is also located on the projection plane, this leads to
n‘(RP+T)=0. (12)
Equations (11) and (12) are hereafter referred to as coplanarity equations. Equiva-
lently, they can be rewritten as

Aarq1 + Barys + Cary3 + Abrgy + Abrag + Cbras + Acrzy + Bersg + Cerzs =0
Pparyy + Pyariz + Pary3 + Prbray + Pybrag + Pbraz + Prersy + Pyersy
+ Pyeraz +at; + bty +ct, =0.
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Image Plane

Camera
Frame

projection plane

AR

X Y

Fig. 2. Projection plane formed by a 2D image line ! and the corresponding 3D line L.

Given a set of J line correspondences, we can set up a system of linear equations
similar to those for points that involve matrix H and vector V', where V is as defined
before and H is defined as follows

Alal Blal Clal Albl B1b1 Clbl A101 Blcl Clcl 000
leal Pylal leal lebl Pylbl lebl lebl Pylcl lecl aj b1 C1
H2Jxl2 —

A_;a_; B_]a_] C_]a_] A_]b_] B_]b_] C_]b_] A_]C_] B_]C_] C_]C_] 00 0
Py,a5 Py a5 P05 Py by Py,by Pyby Prycg Py,cy Pyycyagbycy

(13)

and is called the coplanarity matrix. Again we can solve for V by minimizing the
sum of residual errors ||[HV||2. V can be solved for up to a scale factor. The scale
factor can be determined by imposing one of the orthonormality constraints.

5. CAMERA TRANSFORMATION MATRIX FROM ELLIPSE-CIRCLE
CORRESPONDENCES

5.1. Circle Pose from Ellipse—Circle Correspondence

Given the image of a circle in 3D space and the corresponding ellipse in the image,
its pose relative to the camera frame can be solved for analytically. Solutions to this
problem may be found in Refs. 3, 8 and 14. Here we propose an algebraic solution
as detailed below.

Assume we observe an ellipse in the image, resulting from the perspective pro-
jection of a 3D circle. Relative to the image frame C;, the ellipse may be represented
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by a standard conic function
Au? +2Buv + Cv® + 2Du+2Ev+ F =0 (14)

where the coefficients A, B, C, D, E, F can be estimated from a least squares fit. A
point in camera frame (z, Y., 2.) relates to its projection (u,v) in the image via

LN i 1
Zc Zc

Substituting « and v into Eq. (14) yields

D E F
Az? 4+ 2Bzcyc + Cy? + 2—Tcze + 2—ye2e + sz =0. (15)

f f

Fig. 3. The 3D cone formed by a 2D ellipse and the corresponding 3D circle.

The above equation defines the equation of a cone formed by the center of perspec-
tivity and the ellipse in the image as shown in Fig. 3. The sought 3D circle must be
the cross-section of the cone when cut with a plane (also shown in Fig. 3). Without
loss of generality, assume the plane equation, relative to the camera frame, can be
represented as z, = ax. + By. + . Substituting the plane equation into the cone
Eq. (15) and collecting like terms yield the equation for the cross-section of the cone
and the plane

Ea? 2D« Ep? 2Fﬁ) ( Ea Dg Fa)
A+ — + — |z? C+—+ = )v? —F T T | %cYe
( + 7 + 7 )l‘c+< + 7 + 7 yc+2.B+ 7 + 7 + 7 Ty

Eay | DY\, (E8v Fr\  E¥_
+2( 7 + f)z+2( 7 + f)y-l- 7 =0. (16)
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Given the above equation, the pose of the circle plane is determined by exploiting
the property, unique to a circle, that the space curve relative to the camera frame
must have equal coefficients for the 22 and y2 terms and zero coefficient for the z.y.
term. This property yields the following two simultaneous equations

Ea? 2Da Ep? 2F3
A= 2Pe o B P,
f f f f
Eaf DB Fa
B+——+="F+—=0
f ff
Reorganizing the above two equations gives rise to
D\? F\? (C-Ayf
<a+E—) _(m-E) _ A (17)
D F
(a+E) (ﬁ+E)—Bf—DF. (18)

Let s = a + % and w = B8+ %, we can easily solve for s and w from the above
equations. Given s and w, the plane parameters @ and 3 can be derived. There will
be two solutions for « and 3, yielding a total of four possible solutions for the circle
normals. With a and 3 known, we can substitute them into Eq. (15), yielding

2:(2: + y?: +qr.+ly.=p (19)

where
_ 2Eay+2Dy
7= Af + Ea? +2Da
= 2EBy + 2Fy
~ Af+ Ea? 4+ 2D«
p Af + Ea? +2Da’

Given the radius of the circle to be r, we can use it to solve for the third plane
parameter v and subsequently for g, ! and p. Substituting the solutions for p, I and
g into Eq. (19) allows us to solve for the z and y coordinates of the circle center in
the camera frame. The z coordinate of the circle center can then be solved for from
the plane equation.

5.2. Camera Transformation Matrix from Circles

The pose of a circle, as derived in the last section, is relative to the camera frame.
If we are also given the pose of the circle in the object frame, then we can use
the two poses to solve for R and T. Specifically, let N. = (N, N., N, )t and
O, = (O, O, O, }* be the 3D circle normal and center respectively in the camera
coordinate frame. Also, let N, = (N,, No, No,)* and O, = (O,, O,, O,,)" be the
normal and center of the same circle, but in the object coordinate system. N, and
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O, can be obtained from the pose-from-circle technique as described in Sec. 5.1. N,
and O, are assumed to be known. The problem is to determine R and T from the
correspondence between N, and N,, and between O, and O,. The two normals and
the two centers are related by the transformation R and T as shown below

N. = RN,
i1 Ti2 T3 N,
=711 T2 T3 No, (20)
T3l T32 T33 N,
and
O.=RO,+T
il T2 T13 O., tz
=|ran T2 T23 O,, | + 1ty (21)
r31 T32 T33 O., t,

Equivalently, we can rewrite Egs. (20) and (21) as follows

No,r11+ No,r12 + No, 113 = Ne,

No.r21 + No,T22 + No, 23 = N,

No,r31+ No,T32 + No 133 = Ne,

and

Oo, 711 + 00,7'12 + 0,713 + 1z = O.,

Op, 121 + Ooyrzz + 0o, 23+, = Ocy

Oo,731 + 00,732 + Op,T33 + 12 = O, .

Given I observed ellipses and their corresponding space circles, we can set up a

system of linear equations to solve for R and T by minimizing the sum of residual
errors ||QV — k||, where Q and k are defined as follows

(Mo Ny My, 0 0 0 0 0 0 0 0 0\
0 0 0 Ny, N, N, 0 0 0 0 0 O
0 0 0 0 0 0 Ny, Nlo,, Niy,, 0 0 O
O1,, O, O, 0 0 0 0 0 0 1 0 0O
0 0 0 O, O, O, 0 0 0 01 0
0 0 0 0 0 0 On, O, O, 0 01

e=|

Ny, Ny, N, 0 0o 0 0o 0 0 0 0 0
0 0 0 N, Ni, N, 0 0 0 00 0
0 0 0 0 0. 0 Ni,, Ni,, ‘Nt‘,z 0 0 O
O, Olo,, Oy, 0 0 0 0 0 0 1 0 0O
0 0 0 O1,, O1, Oi, 0 0 0 01 0

\ 0 0 0 0 0 0 On, On, On, 0 0 1)

(22)
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and

k= (Nlc, Nlc, Nlc, Olc= Olc, Olc, IVI= NIc, NIc, 01% Olc, OIcz )t. (23)

c

6. THE INTEGRATED TECHNIQUE

In the previous sections we have outlined the least-square frameworks for computing
transformation matrix from different features individually. It is desirable to be able
to compute camera parameters using more than one type of feature simultaneously.
In other words, given observed geometric entities at different levels, we want to
develop a mechanism that systematically and consistently fuses this information.
The reason is quite obvious: using all available geometric information will provide
a more accurate and robust solution, since it increases the relative redundancy of
the least-squares estimation. It also reduces the dependency on points. We can be
more selective when choosing points, without worrying about the minimum number
of points needed for accurate results. Furthermore, we do not need to worry about
whether the selected points are coplanar or not. To our knowledge, this problem
has never been addressed in the literature. This section is devoted to formulating
a direct solution for computing camera parameters from 2D-3D correspondences of
points, lines and ellipses/circles.

6.1. Fusing All Observed Information

The problem of integrating information from points, lines and circles is actually
straightforward, given the frameworks we have outlined individually for points,
lines and circles. The problem can be stated as follows.

Given the 2D-3D correspondences of K points, J lines and I ellipse/circle pairs,
we want to set up a system of linear equations that involves all geometric enti-
ties. The problem can be formulated as a least-squares estimation in the form of
minimizing ||WV — b||, where V is the unknown vector of transformation parame-
ters as defined before, and & is a known vector defined below. W is an augmented
coefficient matrix, whose rows consist of linear equations derived from points, lines
and circles. Specifically, given the M, H and @ matrices defined in Egs. (8), (13),
and (22), the W matrix is

M
w=|H (24)
Q

where the first 2K rows of W represent contributions from points, the second sub-
sequent 2.J rows represent contributions from lines, and the last 6/ rows represent
contributions from circles. The vector b is defined as

b=(00...0 N1, N1, N1, Os,, Ox,, Ou, ... Nx., Nx., Nx., Ox., Ok, Ox.,)".

(25)
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Given W and b, the least-squares solution for V is
V = (W'W)~'Wwtb. (26)

It can be seen that to have an overdetermined system of linear equations, we need
2K+2J+61 > 12 observed geometric entities. This may occur with any combination
of points, lines and circles. For example, one point, one line and one circle or two
points and one circle are sufficient to solve the transformation matrix from Eq. (26).
Any additional points or lines or circles will improve the robustness and the precision
of the estimated parameters.

6.2. Approximately Imposing Orthonormal Constraints

The least-squares solution to V' described in the last section cannot guarantee the
orthonormality of the resultant rotation matrix. One major reason why previous lin-
ear methods are very susceptible to noise is because the orthonormality constraints
are not enforced or enforced weakly. To ensure this, the six orthonormal constraints
must be imposed on V within the least-squares framework. The conventional way
of imposing the constraints is through the use of the Lagrange multiplier. However,
simultaneously imposing any two normality constraints or one orthogonality con-
straint using the Lagrange multiplier requires a nonlinear solution for the problem.
Therefore, most linear methods choose to use a single orthonormal constraint. For
example, Faugeras® imposed the constraint that the norm of the last row vector
of R be unity. This constraint, however, cannot ensure complete satisfaction of all
orthonormal constraints. To impose more than one orthonormality constraint but
still retain a linear solution, Liu et al.?! suggested the constraint that the sum of the
squares of the three row vectors be 3. This constraint, however, cannot guarantee
the normality of each individual row vector. Haralick et al.'?> and Horn'® proposed
direct solutions, where all orthonormality constraints are imposed, but for the 3D
to 3D absolute orientation problem. They are only applicable while using point cor-
respondence and are not applicable to line and circle-ellipse correspondence. Most
important, their techniques cannot be applied to the general linear framework we
propose.

Given the linear framework, even imposing one constraint using the Lagrange
multiplier can render the solution nonlinear. It is well-known that the solution to
minimizing ||Az — b|| subject to s(x) = 0 can only be achieved by the nonlinear
method. In statistics, this kind of problem is called trust region. Existing solutions
to trust region problems are all nonlinear.

We now introduce a simple yet effective method for approximately imposing
the orthonormal constraints in a way that offers a linear solution. We want to
emphasize that the technique we are about to introduce cannot guarantee a perfect
rotation matrix. However our experimental study proves that it yields a matrix that
is closer to a rotation matrix than those obtained using the competing methods.
The advantages of our technique are:

(1) all six orthonormal constraints are imposed simultaneously;
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(2) constraints are globally imposed on each entry of the rotation matrix rather
than locally, and
(3) asymptotically, the resulting matrix should converge to a rotation matrix.

We now address the problem of how to impose the orthonormality constraints
in the general framework of finding pose from multiple geometric features described
in Secs. 3-5. Given the pose of circles relative to the camera frame and the object
frame, let N. = (Ne, Ne, Nc,)! and N, = (No, No, N,,)! be the 3D circle nor-
mals in camera and object frames respectively. Equation (20) depicts the relation
between two normals that involves R. The relation can also be expressed in an
alternative way that involves R* (note R* = R~!) as follows

N, = R'N,
i1 Taa Ta N,
=|r2 T2 T3 N, (27)
T3 T23 T33 N,

Equivalently, we can rewrite Eq. (27) as follows
Ne,m11+ Neyra1 + Ne,m31 = N,
Nc.m12+ Ne,r22 + N, 132 = No,
N r13+ N, ro3+ N, 733 = N, .

Given the same set of I observed ellipses and their corresponding space circles,
we can set up another system of linear equations that uses the same set of circles
as in Q. Let @ be the coefficient matrix that contains the coefficients of the set of
linear equations, then Q' is

(M, 0 0 N, 0 0 N, 0 0 000)
0 N, 0 0 N, O O Ny 0 000
0 0 N, O 0 N, 0 0 N 000
Q= : . (28)
: N, 0 0 N, O O N, O 0 000
0O N, 0 0 N, O 0 N, 0 000
\ o o N, O 0 N, O ©0 N 000}
Correspondingly, we have k' defined as
k' =(Ni,, Ny, N, 000... Ny, Ny Np, 000)°. (29)

To implement the constraint in the least-squares framework, we can augment
matrix W in Eq. (26) with @', yielding W’, and augment vector b in Eq. (25) with

k', yielding V', where W’ and b’ are defined as follows

- () o=

‘)
k)
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Putting it all together, the solution to V can be found by minimizing ||W'V —b'||?,
given by

V=W"'w)w. (30)

The resultant transformation parameters R and T are more accurate and robust
due to fusing information from different sources. The resultant rotation matrix R
is also very close to being orthonormal since the orthonormality constraints have
been implicitly added to the system of linear equations used in the least-squares
estimation. The obtained R and T can be used directly for certain applications or
fed to an iterative procedure to refine the solution. Since the obtained transforma-
tion parameters are accurate, the subsequent iterative procedure can converge very
quickly, usually after a couple of iterations as evidenced by our experiments. In
the section to follow, we study the performance of the new linear pose estimation
method against the methods that only use one type of geometric entity at a time,
using synthetic and real images.

7. EXPERIMENTS

In this section, we present and discuss the results of a series of experiments aimed at
characterizing the performance of the integrated linear pose estimation technique.
Using both synthetic data and real images of industrial parts, the experiments con-
ducted are to study the effectiveness of the proposed technique for approximately
imposing the orthonormal constraints and to quantitatively evaluate the perfor-
mance of the integrated linear technique against the existing linear techniques.

7.1. Performance Study with Synthetic Data

This section consists of two parts. First, we present results from a large number
of controlled experiments aimed at analyzing the effectiveness of our technique
for imposing orthonormal constraints. This was accomplished by comparing the
errors of the estimated rotation and translation vectors obtained with and without
orthonormal constraints imposed under different conditions. Second, we discuss the
results from a comparative performance study of the integrated linear technique
against an existing linear technique under different noisy conditions.

In the experiments with simulation data, the 3D data (3D point coordinates,
3D surface normals, 3D line direction cosines) are generated randomly within spec-
ified ranges. For example, 3D coordinates are randomly generated within the cube
[(-5,—5,—5) to (5,5,5)]. 2D data are generated by projecting the 3D data onto
the image plane, followed by perturbing the projected image data with iid Gaus-
sian distributed noise of mean 0 and standard deviation 0. From the generated
2D-3D data, we estimate the rotation and the translation vector using the linear
algorithm, from which we can compute the estimation errors. The estimation error
is defined as the Euclidean distance between the estimated rotation (translation)
vector and the ideal rotation (translation) vector. We choose the rotation matrix
(vector) rather than other specific representations like Euler angles and quaternion
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parameters for error analysis. This is because all other representations depend on
the estimated rotation vector. For each experiment, 100 trials are performed and
the average distance errors are computed. The noise level is quantified using signal
to noise ratio (SNR). SNR is defined as 20 log g, where o is the standard deviation
of the Gaussian noise and d is the range of the quantity being perturbed.

Figures 4 and 5 plot the mean rotation and translation errors as a function of
the signal to noise ratio, with and without orthonormal constraints imposed. It is
clear from the two figures that imposing the orthonormal constraints improves the
estimation errors for both the rotation and translation vectors. The improvement
is especially significant when the SNR is low.

3 T T T T T T T T

-—- without constraints
—_— with constraints

25h e, e ROt SOUUUOUOUEIRIOURUIOT AUOPORTREISOTPIOT SO i

mean rotation vector error
-
1

70 80 90 100

Signal to noise ratio (dB)

Fig. 4. Average rotation vector error versus SNR. The plot was generated using the integrated
linear technique with a combination of three points, one line and one circle. Each point represents
an average of 100 trials.

To further study the effectiveness of the technique for imposing constraints, we
studied its performance under different numbers of pairs of ellipse/circle correspon-
dences. This experiment is intended to study the efficacy of imposing orthonormal
constraints versus the amount of geometric data used for the least-squares estima-
tion. The results are plotted in Figs. 6 and 7, which give the average rotation and
translation errors as a function of the number of ellipse/circle pairs used, with and
without constraints imposed. The two figures again show that imposing orthonor-
mal constraints leads to an improvement in estimation errors. This improvement,
however, begins to taper off when the amount of data used exceeds a certain thresh-
old. The technique is most effective when fewer ellipse/circle pairs are used. This
echos the conclusion drawn from the previous two figures.
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Fig. 6. Mean rotation vector error versus the number of ellipse/circle pairs (SNR = 35).
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Fig. 5. Average translation vector error (mm) versus SNR. The plot was generated using the
integrated linear technique with a combination of three points, one line and one circle. Each point
represents an average of 100 trials.

To compare the integrated linear technique with an existing linear technique, we
studied its performance against that of Faugeras.® The results are given in Figs. 8
and 9, which plot the mean rotation and translation vector errors as a function of
the SNR respectively. )
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Fig. 7. Mean translation vector error (mm) versus the number of ellipse/circle pairs (SNR = 35).
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Fig. 8. Mean rotation vector error versus SNR. The curve for Faugeras’ was obtained using 10
points while the curve for the integrated technique was generated using a combination of three
points, one line and one circle.
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Fig. 9. Mean translation vector error (mm) versus SNR. The curve for Faugeras’ was obtained
using 10 points while the curve for the integrated technique was generated using a combination of
three points, one line and one circle.

The two figures clearly show the superiority of the new integrated technique over
Faugeras’ linear technique, especially for the translation errors. To further compare
the sensitivity of the two techniques to viewing parameters, we changed the position
parameters of the camera by increasing 2. Figures 10 and 11 plot the mean rotation
and translation vector errors as a function of SNR respectively under the new camera
position. While increasing z causes an increase in the estimation errors for both
techniques, its impact on Faugeras’ technique is more serious. This leads to a much
more noticeable performance difference between the two linear techniques. The fact
that the integrated technique using only five geometric entities (3 points, 1 line and
1 circle) still outperforms Faugeras’ technique, which uses 10 points, shows that the
higher-level geometric features such as lines and circles can provide more robust
solutions than those provided solely by points. This demonstrates the power of
combining features on different levels of abstraction. Our study also shows that
Faugeras’ linear technique is very sensitive to noise when the number of points used
is close to the required minimum. For example, when only six points are used, a
small perturbation of the input data can cause significant errors on the estimated
parameters, especially the translation vector. Figures 10 and 11 reveal that the
technique using only points is numerically unstable to viewing parameters.

7.2. Performance Characterization with Real Images

This section presents results obtained using real images of industrial parts. The
images contain linear features (points and lines) and nonlinear features (circles).
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Fig. 10. Mean rotation vector error versus SNR with an increased camera position parameter z.
The curve for Faugeras’ was obtained using 10 points while the curve for the integrated technique
was generated using a combination of three points, one line and one circle.
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Fig. 11. Mean translation vector error (mm) versus SNR with an increased camera position param-
eter z. The curve for Faugeras’ was generated using 10 points while the curve for the integrated
technique was generated using a combination of three points, one line and one circle.
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Fig. 12. The pose computed using two points (as indicated by the black squares) and one circle
(the upper circle) with the integrated technique.

Fig. 13. The pose computed using one point, two lines and one circle (the upper circle) with the
integrated technique. The points and lines used are marked with black squares and lines.

This phase of the experiments consist of two parts. First, we visually assess the
performance of the linear least-squares framework using different combinations of
geometric entities, such as one circle and six points; one circle and two points; and
one circle, one point and two lines. The performance of the proposed technique is
judged by visual inspection of the alignment between the image of a part and the
reprojected outline of the part using the estimated transformation matrix. Second,
the technique is compared against existing methods that use only one type of geo-
metric entity as well as against the Gauss—Newton iterative method. The closeness
between the solutions from the linear method and from the iterative method, as
represented by the residual errors, as well as the number of iterations required, are
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Fig. 14. The pose computed using six points (as indicated by the black squares) and one circle
(the upper circle) with the integrated technique.

used as measures to indicate the goodness of the solution obtained using the new
method.

To test the integrated technique, we performed the following experiments. The
pose transformation (R T') was analytically computed using our integrated technique
with different combinations of points, lines and circles. Figures 12-14 illustrate the
results obtained using the following combinations of features: two points plus one
circle; one point, two lines and one circle; and six points and one circle respectively.
The visual inspection of the figures reveals that results obtained from the three con-
figurations are all good enough to serve as an initial guess to an iterative procedure.
It is also evident from Figs. 12-14 that the result using six points and one circle is
superior to the ones obtained using the other two configurations.

The significance of these sample results is as follows. First, they demonstrate
the feasibility of the proposed framework applied to real image data. Second, they
show that using multiple geometric primitives simultaneously to compute the pose
reduces the dependency on points. One can be more selective when choosing which
point correspondence to use in pose estimation. This can potentially improve the
robustness of the estimation procedure since points are more susceptible to noise
than lines and circles. Third, the use of more than the minimum required number
of geometric features provides redundancy to the least-squares estimation, therefore
improving the accuracy of the solution, as evidenced by the progressively improved
results as the number of linear equations increase.

In order to compare the results with those of other existing techniques, we
computed the pose of the same object using the same six points and the same
circle, separately. The result for the pose computation using a linear technique'®
(similar to that of Faugeras®) with six points is given in Fig. 15. The algorithms
of Dhome® and Forsyth® for the pose-from-circle computation were augmented in
Ref. 2 to handle nonrotationally symmetric objects. The results of this augmented
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algorithm using the single ellipse/circle correspondence is shown in Fig. 16. Notice
that due to the localized concentration of detectable feature points and the physical
distance between the circle and these points, the poses computed align well only
in the areas where the features used are located. Specifically, the result in Fig. 16
shows a good alignment in the upper portion of the object where the circle is located
and a poor alignment in the lower part (as indicated by the arrow). On the other
hand, the result in Fig. 15 shows good alignment only at the lower part of the
object where the concentration of detectable feature points is located and a poor
alignment on the upper part of the object (as indicated by the arrow).

Fig. 15. The pose computed using six points alone. It shows good alignment only at the lower part
of the object where the concentration of detectable feature points is located and a poor alignment
on the upper part of the object (as indicated by the arrow).

Fig. 16. The pose computed using a single circle. It shows a good alignment in the upper portion
of the object where the circle is located and a poor alignment in the lower part (as indicated by
the arrow).
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Visual inspection of the results in Figs. 14-16 shows the superiority of the new
technique over the existing methods. The model reprojection using the transforma-
tion matrix obtained using the new technique yields a better alignment than those
using only points or only ellipse/circle correspondences. To compare the perfor-
mance quantitatively, we compare the transformation matrices obtained using the
three methods against the one obtained from the iterative procedure. Table 1 shows
the numerical results for the transformations obtained from using only points, only
the circle, and a combination of points and circle. The results from each method
were then used as the initial guess to the iterative Gauss-Newton method. The final
transformation obtained after the convergence of the iterative method is shown in
the last row of Table 1. These final results are the same regardless of which initial
guess was used.

Table 1. Pose transformations from different methods.

Methods R T

0.410 —0.129 —0.902 ]
Point only 0.606 —0.700 0.376 [-43.125 — 25.511 1232.036]
| —0.681 —0.701 —0.208 |

0.302 0.302 —0.932]]
Circle only 0.692 —0.628 0.355 [-35.161 —15.358 1195.293]
| —0.655 —0.753 —~0.054 |

0.398 —0.142 —0.902 ]
Points and circle 0.554 —0.667 0.336 [—43.077 — 26.400 1217.855]
| —0.700 —0.684 —0.201 |

0.341 —-0.156 —0.927 ]
Nonlinear 0.631 —0.693 0.349 [—43.23 — 28.254 1273.07)
| —0.697 —0.704 —0.137 |

Table 2. Performance of different methods.

Method Number of iterations
Points only 4
Circle only 6
Points and circle 1

Table 2 summarizes the number of iterations required for the iterative proce-
dure to converge using as initial guesses the results from the three linear methods
mentioned in Table 1. Figure 17 shows the results from the iterative procedure.

It is evident from Tables 1 and 2 and Fig. 17 that the new technique yields
a transformation matrix that is closer to the one obtained from the iterative pro-
cedure and therefore requires fewer iterations (one here) for the iterative method
to converge. By contrast, the final results for initial guesses obtained using only
points and only one circle require 4 and 6 iterations, respectively, for the iterative
procedure to converge. The result from the quantitative study echoes the conclusion
from visual inspection: the new technique offers better estimation accuracy.
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Fig. 17. The final pose obtained from the Gauss—Newton iterative method after only one iteration
using the solution in Fig. 14 as the initial solution.

Fig. 18. Results of the integrated method applied to different industrial parts.
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To further validate our technique, we tested it on over fifty real images with sim-
ilar results. Figure 18 gives results of applying the integrated technique to different
industrial parts with different combinations of geometric features. Our experiments
also reveal, as was theoretically expected for a system of linear equations of the
form AX = b, a decay in robustness when the number of equations in the linear
system reaches the minimum required for a solution to be found. The premise
is that one should make use of as many available features as possible in order to
improve accuracy and robustness. Our technique allows for that.

8. SUMMARY

In this paper, we present a linear solution to the exterior camera parameters or pose
estimation. The main contributions of this research are the linear framework for
fusing information available from different geometric entities and for introducing
a novel technique that approximately imposes the orthonormality constraints on
the rotation matrix sought. Experixhental evaluation using both synthetic data
and real images show the effectiveness of our technique for imposing orthonormal
constraints in improving estimation errors. The technique is especially effective
when the SNR is low or fewer geometric entities are used. The performance study
also revealed superiority of the integrated technique to a competing linear technique
in terms of robustness and accuracy. The new technique proposed in this paper is
ideal for applications such as industrial automation where robustness, accuracy,
computational efficiency and speed are needed. Its results can also be used as
initial estimates in certain applications where more accurate camera parameters
are needed.
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