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The accuracy of existing methods for gradient-based image flow estimation suffers 
from low-quality derivative estimation, lack of systematic error analysis, and heuristic 
selection. 

In this paper we present an image flow estimator using the facet model and covariance 
propagation. The facet model provides high-quality derivatives, image noise variance 
estimates, and the effect of prefiltering at the same time. We propagate the covariance 
of the image data to the image flow vector, yielding a covariance matrix with each vector. 
From the raw flow field, a x2 test selects the estimates statistically significant from zero. 
This selection scheme successfully suppresses false alarms and bad estimates with a low 
misdetection rate. We further incorporate a flow field smoothness constraint to achieve 
higher motion field consistency. Experiments on both synthetic and real data, and 
comparison with other techniques show that at a 10% misdetection rate, our approach 
has an average error vector magnitude that is 25% less than that of Lucas and Kanade 
and a false alarm rate less than half of theirs. 

Keywords: Facet model, covariance propagation, image flow, optic flow, hypothesis test
ing, error analysis. 

1. INTRODUCTION 

Optic flow is the projected 2D velocity arising from a 3D surface point of an object in 
motion relative to the camera or the observer. Image flow is the optic flow that can 
be estimated from image sequences. Various applications, such as motion detection, 
egomotion analysis, 3D motion inference, scene segmentation, and object structure 
or camera parameter analysis, require image flow as a fundamental measure. This 
makes accurate and efficient image flow estimation a critical issue. 

Existing image flow estimation methods can be roughly divided into three cat
egories, matching-based, frequency /phase-based and gradient-based methods. 

Matching-based methods include feature-based and region-based methods. 
Feature-based methods locate and trace identifiable features of the image over time. 
They are robust to large motion and brightness variation. The problems with the 
methods are that the image flow field is usually very sparse and that the feature ex
traction and matching are difficult. Region-based methods locate the most similar 
region to the one under examination and calculate the flow vector from their dis
placement. These kinds of methods have been widely used in video coding. However 
its flow fields are still not dense enough. Both of these two subcategories have diffi
culty in measuring subpixel motion and the computation is too expensive. In terms 
of flow field accuracy and density, matching-based methods are not comparable with 
frequency-based or gradient-based methods. 
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Frequency /phase-based methods use frequency /phase information from the out
put of velocity tuned filters. Although high accuracy on raw flow field estimates 
might be achieved,1•11 they usually involve very intensive computation and meet 
with difficulties in selecting reliable estimates. The technique developed by Fleet 
and Jepson,1 and that by Xiong and Shafer11 are two of the representative ones 
with good performance reported. 

Gradient-based methods compute 2D velocities from spatiotemporal intensity 
derivatives of image sequences. Because of their simple computation and favor
able experimental results, gradient-based methods have received the most extensive 
study. A brief overview of gradient-based methods is given in Sec. 2. 

There are four common steps of processing to gradient-based methods: 

(i) prefiltering or smoothing image sequences to enhance the signal-to-noise
ratio; 

(ii) estimating spatiotemporal derivatives; 
(iii) organizing derivative information to form constraints and solving the con

straint equations for the image flow vector; 
(iv) selecting nonzero raw image flow estimates based on some kind of error 

analysis. 

Much attention has been paid to Step (iii), developing the image flow estimation 
model. However, Steps (i), (ii) and (iv), the pre- and post-processings, to a great 
extent affect the overall performance of the algorithm. 

Although quite a few existing gradient-based methods provide reasonable raw 
estimates, further improvement of accuracy is hindered by the following problems. 
Prefiltering, if any, involves additional work and has tuning parameters. Most 
methods use the neighborhood difference as the derivative estimate. This is highly 
sensitive to noise. Quantitative error analysis is seldom carried out. Without a 
reliable confidence measure, selecting good estimates is usually heuristic. 

In this paper, we develop an image flow estimator involving local linear con
straint equations, the facet model, covariance propagation and selection based on a 
statistical hypothesis testing. 

The image flow constraint equations we use belong to the local optimization 
gradient-based category and involve both first- and second-order derivatives. They 
lay a sound base for the rest of the processing by providing good raw estimates. 

The derivatives in the image flow constraint equations are estimated from the 
3D cubic facet model. We assume that the unobserved noiseless intensity pat
tern in each small 3D neighborhood is a trivariate cubic polynomial in the (r.c.t) 
spatiotemporal domain and that the observation results from perturbing the true 
pattern by a small additive iid., Gaussian noise with zero mean and variance u2 • 

We estimate the facet model parameters first and ·calculate the image flow vector 
from them. Compared with popular neighborhood difference approaches, the facet 
model approach achieves better accuracy and robustness because it uses the entire 
neighborhood gray-level information. The facet model automatically prefilters the 
neighborhood data avoiding any extra work or hand-tuned parameters used in other 
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gradient-based techniques. It also provides neighborhood noise variance estimates, 
which can be used in the quantitative error analysis. 

We assume the system is approximately linear for small perturbations. Under 
this assumption, the covariance matrix of the image flow estimate is a good measure 
of the error size. We partition the system into facet model fitting .and image flow 
constraint solving and propagate the covariance through them one by one, finally 
obtaining a covariance matrix with each image flow estimate. 

Under the assumption of Gaussian perturbations, we derive a x2 statistic as the 
confidence measure and conduct a hypothesis testing on it to select reliable estimates 
in a statistical sense. Experimental results show that the selection suppresses false 
alarms and bad estimates while preserving high accuracy and detection rates. 

In the second phase, we incorporate a flow field smoothness constraint into our 
algorithm. Instead of estimating the image flow vector at each pixel independently 
from its neighboring vectors, we assume the flow vectors in each neighborhood are 
constant and solve a group of image flow constraint equations simultaneously. The 
flow field smoothness constraint dramatically improves the motion field consistency. 

We show the advantages of our technique from experiments on both synthetic 
and real data. Comparisons with popular techniques, particularly the modified 
technique of Lucas and Kanade, the one having the best overall performance as 
reported by Barron, 2 are given as well. 

At a 10% misdetection rate of nonzero image flow estimates, our approach yields 
an average error vector magnitude that is 25% less than that of Lucas and Kanade 
and a false alarm rate well less than half of theirs. 

This paper is organized as follows. Section 2 gives a brief overview of typical 
gradient-based methods. Section 3 describes the Image Flow Constraint Equations 
we use. Section 4 introduces how we estimate derivatives from the cubic facet model. 
In Sec. 5 we do the covariance propagation through the image flow estimation system 
yielding a covariance matrix associated with each estimate. In Sec. 6 we use.a x2 test 
to reliably select nonzero image flow estimates. The algorithm with the flow field 
smoothness constraint is developed in Sec. 7. Experimental results and analysis, 
and comparison with other techniques are presented in Sec. 8. Finally to make this 
paper more self-contained, Appendix A and B provide some related background 
knowledge on Discrete Orthonormal Polynomials and covariance propagation. 

2. GRADIENT-BASED ESTIMATION METHODS 

In this section we briefly describe the well-known Optic Flow Constraint Equation, 
which is the common base for all gradient-based methods. Then we divide gradient
based methods into three subcategories and give an introduction to each of them. 

2.1. Optic Flow Constraint Equation 

We represent the intensity of an image sequence by I(x, y, t), where x, y, t are re
spectively the row, column and frame (time) indices. The following assumptions 
are made to derive the Optic Flow Constraint Equation: (i) the motion of objects is 

~-~--- -·-~~~-- ------------
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constant translation; (ii) the intensities of matching points on different frames are 
the same; (iii) 1(x, y, t) is differentiable in the spatiotemporal domain. 

Consider a point moving from (x, y) to (x+ .6.x, y+ .6.y) during the time interval 
(t, t + .6.t). Expanding its intensity at time t + .6.t about point (x, y, t) as Taylor 
series and omitting the terms higher than the first-order yields 

o1 o1 o1 
1(x + .6.x, y + .6.y, t + .6.t) = 1(x, y, t) + .6.x ox + .6.y oy + .6.t 8t · 

Because 

1(x, y, t) = 1(x + .6.x, y + .6.y, t + .6.t) 

(Assumption ii), the above equation reduces to 

When .6.t -t 0, it becomes 

o1 dx o1 dy o1 
OX dt + oy dt + ot = 0 . 

(~~,~)is the image flow vector (u, v). Abbreviating ~~' ~! ~! by 1x,ly,lt respec
tively, the well-known Optic Flow Constraint Equation (OFCE) 

(1) 

is obtained. 

2.2. Subcategories 

The two unknowns u and v cannot be solved for from the single equation OFCE. At 
least one more constraint is needed. According to different ways of organizing the 
constraints, gradient-based approaches are further divided into global optimization, 
local optimization and local parametric methods. First-order derivatives, second
order derivatives or both of them may be used in the constraints. 

2.2.1. Global optimization 

Global optimization techniques minimize an error function based upon the OFCE 
(Eq. (1)] and an assumption of local smoothness of image flow variations over the 
entire image sequence. A classic technique of this category is developed by Horn 
and Schunck. 7 They minimize an error over the entire image sequence 

c
2 

= J J ( oh~ + E:~)dxdy 

where 
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is actually the OFCE, 

2 = (au) 2 (au) 2 (av) 2 (av) 2 

cc ax + ay + ax + ay 
is the image flow field smoothness constraint, and a is the relative weight of these 
two factors. 

The algorithm is implemented by iteration. The experimental results are rea
sonably good. The flow field density is high because of the global smoothness 
constraint. However it tends to oversmooth the flow field, does not perform well at 
boundaries and thus produces a lot of false alarms. It also meets with difficulties 
in choosing the weight a and a confidence measure to select reliable estimates. 

2.2.2. Local optimization 

Local optimization methods determine the image flow vector at each pixel inde
pendently from its neighboring flow field. They solve a group of linear constraint 
equations whose coefficients are derivatives evaluated at that pixel. Since estimates 
are not influenced by their neighbors, at the pixels for which the assumptions hold, 
the estimation accuracy is high, and motion boundaries and occlusions are pre
served better. However most moving objects are large enough such that flow fields 
are usually smooth. Not taking this factor into account might hurt the robustness 
of the estimation. 

The technique developed by Uras et al. 1 is a representative of this type of 
method. Uras assumes the first-order gradient is conserved for a moving point 
and solves for the image flow vector using two second-order constraints 

fxxU + fxyV + fxt = 0 

fyxU + fyyV + fyt = 0 

when the Hessian H of I(x, y, t) is nonsingular. For robustness, they divide the 
image into 8 x 8 regions. For each region they select the 8 estimates that best 
satisfy the constraint II(~V)T(~Ix,~Iy)TII « II~Itll· Of these they choose the 
most reliable estimate as the velocity for the entire 8 x 8 region. In Barron's 
implementation, the determinant det(H) of the Hessian is used as the reliability 
measure. 

This technique is reported to have competitive performance. However the re
striction of constant motion in each 8 x 8 region makes the flow field blocky and 
limits the accuracy. Also the confidence measure det(H) turns out not to work very 
well. 1 

2.2.3. Local parametric methods 

Local parametric approaches assume the image flow field in a small neighborhood 
is smooth so that ( u, v) can be fit to a local model such as a low-order polynomial. 
In each neighborhood they first estimate the parameters of the model and then 
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determine the image flow vectors from the parameters. These approaches can be 
looked on as a compromise of global and local optimization methods. They improve 
the robustness over local optimization methods, while they do not smear the motion 
field as much as global techniques do. 

A simple local parametric scheme assumes the velocity is constant in each neigh
borhood. The technique developed by Lucas and Kanade4 uses this scheme. It 
solves for the constant velocity in each small neighborhood n by minimizing 

L W 2(x, y)[Ixu + I11v + It] 2 

n 

where W(x, y) denotes a weight function that shows more influence of the center of 
the neighborhood. The solution to the minimization problem is given by 

where for n points Pi E 0 at a single time t, 

(

Ix{p1) 

lx{p2) 
A= 

Ix{pn) 

l
71

{p1) l l 71 {p2) 

ly{pn) 
(

It{p1) l 
It{p2) 

b=-

It(pn) 

and W = diag(W{p1), ... , W(pn)). When ATW2 A is nonsingular, V has a closed 
form solution 

V = (ATW2A)-1ATW2b. 

Simoncelli et al. 10 arrive at a similar result through Maximum Likelihood 
Estimation. They model the OFCE [Eq. {1)] using Gaussian distribution errors 
on gradient measurements and a Gaussian prior distribution on velocity V, and 
derive the mean and covariance of the image flow vector by a Bayesian approach. 
Although the accuracy of the raw estimate does not improve much, they provide a 
covariance matrix with each estimate as the error indicator. Barron further suggests 
that the smaller eigenvalue of ATW2 A can be used as the confidence measure to 
select the good estimates. 

This technique is reported to be the most efficient one among nine popular 
techniques. 1 However as we will show in Sec. 8, its confidence measure and selection 
scheme are still not reliable. One of the major reasons is, they empirically choose 
the three variances of the assumed Gaussian variables instead of determining them 
by propagating the error from the image sequence. 

3. IMAGE FLOW CONSTRAINT EQUATIONS 

The image flow constraint equations we use were first described by Haralick and 
Lee. 4 This section illustrates how the estimation scheme works (Fig. 1) and explains 
the derivation of the constraint equations. 
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Fig. 1. Interpretation of image flow constraint equations. 
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Let us consider a point moving with 2D velocity V = ( u, v )' in an image se
quence. Suppose the point is at the origin {0, 0, 0) in the 3D space of row x, column 
y and time t. After a time interval to, the point arrives at the location (xo, yo, to). 
We define a neighborhood N of size X x Y x T centered at {0, 0, 0) such that 
(xo, Yo, to) EN. Once we have located the point (xo, Yo, to), the image flow vector 
is readily available as V = (xofto, Yo/to)'. 

We assume: 

(i) the underlying 3D intensity value of the neighborhood N is a continuous 
function I(x, y, t); 

(ii) a point retains its intensity value during motion, i.e. 

I(xo, Yo, to) = I(O, 0, 0); {2) 

{iii) the motion is translational without acceleration; 
(iv) there is sufficient intensity variation along the direction of motion (no aperture 

problem). 

We first construct an isocontour plane at the origin 

xix + yi11 + tit = 0. 

The plane is isocontour in the sense that it is orthogonal to g = (Ix, I11 , It), the 
gradient vector of I(x, y, t) at {0, 0, 0). Intersecting the plane with the frame at to 
and dividing both sides by to yields 

X y 
-Ix + -I11 +It= 0. 
to to 

Noting that ( ~, ~) = ( u, v), this equation is the well-known Optic Flow Constraint 
Equation {OFCE). Thus our estimation scheme actually interprets the OFCE as the 
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intersection line of the isocontour plane with an image frame in the neighborhood. 
Finally the point ( xo, Yo, to) is located on the intersection line as the one of the same 
intensity value as the point (0, 0, 0). 

Now let us quickly go over the derivation of the constraint equations from the 
above estimation scheme. 

Expanding both sides of Eq. (2) as Taylor series around (0, 0, 0) and neglecting 
the third- and higher-order terms yields 

x2 y2 t2 
I(x, y, t) = I(O,O,O)+xix+Yiy+tit+ 2Ixx+xyixy+ 2Iyy+xtixt+Ytiyt+ 2Itt. 

(3) 
Matching of spatial intensity patterns around the two corresponding points results 
m 

Ix(x, y, t) = Ix(O, 0, 0) = Ix 

Iy(x, y, t) = Iy(O, 0, 0) = Iy. 

Since the motion is uniform with no acceleration, the temporal derivative of the 
intensity must match. It yields 

It(x, y, t) = It(O, 0, 0) =It. 

Applying these constraints to Eq. (3) we have 

x2 ~ ~ 
xix + yiy +tit+ 2Ixx + xyixy + 2Iyy + xtixt + ytiyt + 2Itt = 0 (4) 

xixx + yixy + tixt = 0 (5) 

xiyx + ylyy + tiyt = 0 (6) 

XItx + yity + titt = 0 . (7) 

Multiplying Eqs. (5)-(7) by x, y, t respectively and adding them together produces 

x 2 Ixx + 2xyixy + c2 Iyy + 2xtixt + 2ytiyt + t 2 Itt = 0 . 

Substituting the above equation back into Eq. (4) we obtain 

xix + yiy + tit = 0, 

the OFCE. Thus, the technique of using Eqs. (1) and (2) in essence works because it 
assumes that all first partials match. Combining Eqs. (1), (5)-(7) yields the image 
flow constraint equations we use. 

Solving the over-constraint equations is equivalent to find the V = ( u, v )' 
minimizing 

(8) 

where 

Iy) (It) Ixy b = _ Ixt . 
Iyy Iyt 

Ity Itt 
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Once the partial derivatives are available, ( u, v) can be solved for by standard least
square procedures. If A' A is nonsingular, we can write the explicit solution in the 
least-square sense as 

V =(A' A)- 1(A'b). (9) 

Before evaluating the matrix inverse (A' A)-1 , we first examine the condition of A' A 
by looking at its determinant. If the determinant is smaller than a certain threshold, 
A' A is close to singular. In such cases, the estimation becomes extremely unstable 
and we directly set V = 0. We set the threshold to 10-5 in our experiments. 

4. FACET MODEL AND DERIVATIVE ESTIMATES 

The coefficients of the Image Flow Constraint Equations [Eq. (8)], which are deriva
tives of the neighborhood data evaluated at the origin, should be determined before 
the equations are solved. The quality of the derivatives greatly affects the the esti
mation accuracy. We extract the derivatives from the 3D cubic facet model. The 
facet model yields high-quality derivatives, prefilters the image data, and provides 
image noise variance estimates simultaneously. This section discusses how deriva
tives are obtained from the facet model and the advantages of this approach. 

4.1. Facet Model Concepts 

The facet model principle states that the image can be thought of as an underlying 
piecewise continuous gray-level intensity surface. The observed digital image is a 
noisy, discrete sampling of a distorted version of this surface. A small neighborhood 
of any pixel is completely characterized by two models, one describing what the 
general form of the surface would be· in the neighborhood if there were no noise, 
and the other describing what the noise and distortion do to the assumed form. 
Once the two models are well defined, processing can be applied to the noise-free 
model, and the impact of the noise is examined quantitatively. 5 

Usually the facet model is defined on an image, a 2D domain. In our case it is 
generalized to the image sequence which is a 3D domain. 

Low-order polynomials are the most commonly used general forms for the facet 
model. We use a 3D cubic polynomial in our algorithm. "Cubic" means the highest
order of any term is 3. 

To ensure that the center of the neighborhood lies at the origin, we require the 
neighborhood sizes to be odd numbers. As the smallest neighborhood size for an 
lD cubic polynomial is 5, the 3D neighborhood at least has the size of5 x 5 x 5. 

4.2. Canonical Cubic Facet Model 

We define a noise-free facet model in each 3D neighborhood N by a canonical cubic 
polynomial of row, column and time index x, y, t 

I(x, y, t) = a1 + a2x + a3y + a4t + a5x2 + a5xy + a7y2 + asyt 

+agt2 + a10xt + aux3 + a12x2y + a13xy2 + a14Y3 + a15y2t 

+at6Yt2 + a11t3 + a1sx2t + a1gxt2 + a2oxyt, (x, y, t) E N. {10) 
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We assume the noise in each neighborhood an iid., additive Gaussian variable with 
zero mean and small variance a 2• 

The coefficient vector a minimizes 

IIDa- J112 (11) 

where 
1 X1 Y1 tl XlYltl 

1 X1 Y2 tl X1Y2h 

1 Xl Y1 t2 X1Ylt2 hGJ D= 

1 X2 Y1 tl X2Y2h 

1 xx YY tT xxyytT 

D is the design matrix of the canonical cubic facet fitting problem, with each row 
the twenty bases evaluated at the point (xi, Yi, tk)· Jn is the intensity value at this 
point. 

Since D' D is nonsingular, the Least-Square solution to a is 

a= (D'D)- 1D'J, 

which is just a linear transform of the neighborhood data J. 
With the assumption of equal-variance Gaussian noise, the optimization problem 

in Eq. (11) can be interpreted as minimizing the chi-square statistic 

with N- 20 degrees of freedom. As a constant, the noise standard deviation a has 
no impact on the minimization problem and thus can be left out when solving for 
a. 

The mean of a chi-square statistic is equal to its degrees of freedom. Here 

This makes 

an unbiased estimate of the true neighborhood noise variance a 2 • 
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4.3. DOP Cubic Facet Model 

Directly solving for a and u 2 is computationally expensive. For example, when the 
neighborhood size is 5 x 5 x 5, each ai needs 125 multiplications and 124 additions in 
the linear transform. To improve efficiency, we do not use the brute-force approach, 
but adopt the Discrete Orthonormal Polynomial (DOP) approach. 

For a better understanding on the DOP cubic facet model, an introduction 
to the discrete orthonormal polynomial and its fast implementation is given in 
Appendix A. 

The major difference between the canonical and DOP model lies in what bases 
they use. In the DOP approach, we generate three 1D DOPs and use a subset of 
their tensor product to form the twenty bases. Replacing the canonical bases with 
the DOP bases in Eq. (11 ), we obtain the design matrix Dd of the DOP facet fitting 
problem. Dd is column-wise orthonormal in the sense that Dd_Dd =I. 

Estimating the coefficients of the DOP cubic facet model corresponds to finding 
k to minimize the fitting error 

Solving for k in the least-square sense yields 

which is an orthonormal transform on the neighborhood data vector. We do not 
directly evaluate the expression fork, but take the advantage of the DOP's separa
bility and cut down the amount of computations by a factor greater than 10. 

The fitting error is calculated as the energy difference between the neighborhood 
data and the DOP coefficients. The image noise variance is estimated from the 
fitting error by 

Noticing that two neighborhoods whose centers are in the same row and immedi
ately adjacent are different only by 25 pixels, IIJII 2 can be calculated recursively. 
Compared with the brute-force approach, this reduces the amount of computation 
to less than 1/50. 

4.4. From DOP to Canonical Parameters 

We have obtained the DOP parameter k, while what we need for the IFCEs are 
the canonical parameters a2 through a10. Converting k to the canonical parameter 
vector X= (a2 , a3 , ••• , a10 )T is merely a sparse linear transform X= Lk. 

For the cubic facet model defined in a 5 x 5 x 5 neighborhood, the transform is 
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represented as 

a2 = c1k2 + c2ku + c3k13 + c4k19 

a3 = csk3 + c6k12 + c7k14 + cskt6 

a2 = cgk4 + c10k1s + cuk17 + c12k1s 

as= Ct3ks 

a6 = Ct4k6 

a7 = Ctsk7 

as= Ct6ks 

ag = c17k9 

where Ci's are all constants. In this case, the transform matrix Lis row-wise orthog
onal because no ki appears more than once in L. The fact that LL' is a constant 
diagonal matrix simplifies the calculation of the covariance matrix of the facet model 
for this case. 

4.5. Derivatives and Solving the IFCEs in a 

The coefficients in the IFCEs are scaled canonical cubic facet parameters. We sub
stitute the parameters into Eq. (8) obtaining the Image Flow Constraint Equations 
which we actually use. The A and bare expressed in terms of a as 

a3) ( a4) a6 b = _ a10 . 
2a7 as 

as 2ag 

When A' A is nonsingular, Vis evaluated as 

Defining 

yields 

V = (A' A)-1 A'b. 

Pt = a~ + 4a~ + a~ + a~0 
P2 = a2a3 + 2asa6 + 2a6a7 + asa10 

P3 = a~ + a~ + 4a~ + a~ 
P4 = a2a4 + 2asal0 + a6as + 2agal0 

Ps = a3a4 + a6a10 + 2a7as + 2agag , 

A' A= (Pt 
P2 

P2) A'b = _ (P4) 
P3 Ps 

(12) 
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and 

V _ 1 (P2P5- P3P4) 
- PlP3 - P~ P2P4 - PlP5 . 

4.6. Advantages of Facet Model in Image Flow Estimation 

Derivative calculation is the lowest-level processing for gradient-based image flow 
estimation. It greatly affects the efficiency of the entire algorithm. People usu
ally use simple neighborhood differences as derivative estimates. Such schemes are 
highly sensitive to noise. Barron 1 claims that higher accuracy can be achieved using 
the four-point central difference mask ( -1, 8, 0, -8, 1)/12. However we have proven 
that applying this mask actually gives us the parameter of the first-order term of 
an 1D canonical cubic polynomial on a neighborhood of size 5. This means, in a 
5 x 5 x 5 neighborhood, this method estimates the first-order derivatives using only 
13/125 of the data. The accuracy and robustness of this approach is problematic. 
We implement an image flow estimator which is the same as our estimator except it 
uses the four-point central difference mask approach for derivatives. Experiments 
show that on our synthetic sphere sequences, it produces about twice the average 
error vector magnitude as our estimator, and on real data it gives much worse visual 
effects. 

As Barron reports in Ref. 1, an additional prefilter or smoother prior to the esti
mator can significantly improve the derivative accuracy. He applies a spatiotempo
ral Gaussian prefilter to the gradient-based techniques. However the improvement 
comes with extra computation. Furthermore, the variance u 2 of this prefilter are 
chosen empirically, although he claims the value CT = 1.5 works generally well. Since 
fifteen frames are required for the typical CT value, when the number of frames avail
able is small, this method will be a problem. As well, if the total neighborhood 
size is kept constant, the facet model derivative estimator will in fact have lower 
variance than those obtained by a prefiltering approach. 

In the facet model, we first estimate the true neighborhood data from the noisy 
observation and then calculate the derivatives from the estimates. This scheme in 
effect works as a smoothing filter. No extra work or setting hand-tuned parameters 
is needed. The facet model allows different noise variance in each neighborhood. 
This adaptive scheme is more appropriate than sweeping the same Gaussian mask 
across the entire sequence. 

The facet model also provides the image noise variance estimate in each neigh
borhood. It is a quantitative evaluation to the input noise and enables us to estimate 
the perturbation on the image flow vector in a systematic way. 

5. ERROR ANALYSIS THROUGH COVARIANCE PROPAGATION 

We conduct covariance propagation analysis to keep track of the error in the esti
mated image flow. We propagate all sources of errors to image flow vectors, ob
taining a covariance matrix with each of them. And then a x2 statistic is obtained 
from the covariance matrix as the estimation confidence measure. Appropriately 

-~----. -------
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Image Sequence Facet Facet Parameters Constraint Image flow vector 

Image Noise Model Covariance matrix 
Equations 

Covariance matrix 

Fig. 2. Block diagram of our algorithm 

thresholding the x2 statistic allows us to select the reliable estimates at a speci
fied significance level. The selection has a clear statistical meaning and is therefore 
widely applicable. 

A complete introduction to the covariance propagation theory is given in Ref. 6. 
Appendix B describes the part pertinent to our algorithm. 

To propagate covariance through the system (Fig. 2), two assumptions are made: 
(i) the error only comes from the image noise, which is an additive iid., Gaussian 
variable with zero mean and variance u2 , and (ii) the system is approximately linear 
for a small perturbation u. As the system is composed of two cascaded subsystems, 
covariance propagation has two steps. 

5.1. Covariance Propagation Through the Facet Model 

The input to the facet model fitting step is the neighborhood data vector J, and the 
output is the canonical cubic facet parameter vector a= (at. a2, ... , a2o). Only nine 
of the twenty parameters are used in the IFCEs. We denote them by the vector 
X= (a2,a3, ... ,ato). Under the assumption of the noise model, the covariance 
matrix of J is u2 I. 

Calculating the covariance matrix I::a of a is trivial, because going from J to 
a is merely a linear transform. Denoting by '!:l.' the error between the estimate 
(observation) and the true value, 

I::a = E{!:l.a!:l.a'} 

= E{(D'D)- 1D'!:l.J!:l.J'D(D'D)-1
} 

= (D'D)- 1D'E{!:l.J!:l.J'}D(D'D)-1 

= u2(D' D)-1. 

The covariance matrix of X, I::x, is easily found as a 9 x 9 submatrix of I::a. 
The DOP approach helps us gain more insight to the matrix (D' D)-1 for sim

plifying the implementation. Recall that the DOP parameter vector k comes from 
an orthonormal transform on the image data vector J 

k = DdJ. 

Hence the covariance matrix of k is the same as that of J because 
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We apply a linear transform X = Lk to obtain X. The covariance matrix of X is 

Ex= E{~X~X'} = E{L~k~k'L'} = LE{~k~k'}L' = u 2 LL'. 

For the cubic facet model defined on the 5 x 5 x 5 neighborhood, LL' happens to be 
a diagonal matrix (Sec. 4.4). Therefore Ex is also diagonal. This property allows 
us to convert matrix multiplications to scalar products. 

With X and Ex available, we now proceed to propagate covariance through the 
image flow constraint equations. 

5.2. Covariance Propagation Through the IFCEs 

The input to the image flow constraint equations is the canonical facet parameter 
vector X with its covariance Ex, and the output is the image flow vector V = ( u, v )' 
with its covariance matrix Ev. Estimating V from X is no longer a simple linear 
transform. Therefore we apply the implicit covariance propagation theory6 to find 
Ev. 

F(X, V), the criterion function to estimate V, is defined by 

F(X, V) = (AV- b)'(AV- b) (13) 

where A, bare given in Eq. (12). 
We take partial derivatives of F(X, V) with respective to V forming the gradient 

vector g(X, V) 2 x 1 = 2A'(AV- b). 
The second-order partial derivatives of F with respect to V and X are 

respectively 

0 (X V)9x2 
g ' =2X 

aX 

ag(X, V) 2x2 = 2A' A 
{}V 

2a2u + a3v + a4 

a2v 

a2 

8a5u + 2a6v + 2a10 

2v(a5 + a7) + 2a6u +as 

a3u 

a2u + 2a3v + a4 

a3 

2a6u 

2u(a5 + a7) + 2a6v + a10 

2a6v 2a6u + 8a1v + 2as 

a6 + a10v 2a1 + a10u + 2asv + 2ag 

2a1o 2as 

2a5 + 2a10u + asv + 2ag a6 + asu 

Based on Eq. (20), the covariance of the random perturbation ~Vis 

( 
ag ) -

1 
a9 ' a9 ( a9 ) -

1 

Eav = 8V aX Eax aX 8V 

(14) 

. (15) 

Since in our algorithm zero-mean Gaussian noises are assumed ( E{ ~ V} = E{ ~X} = 
0), it satisfies that Eav = Ev and Eax = Ex. Not knowing the true values of 
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X, V, we approximate Ev by substituting X, V for X, V 

{16) 

Up to this point, we have accomplished the covariance propagation from the 
input image sequences to the image flow estimates. 

6. SELECTION BY x2 TESTING 

The statistical meaning of the selection scheme is that a velocity estimate is taken 
to be nonzero only if it is statistically significantly different from zero, or to say, it 
is taken to be nonzero only if it is large enough relative to its variance. A physical 
interpretation of this selection scheme is that only the estimate with a small relative 
error is taken to be good. 

We assume the image noise is Gaussian and the system is approximately linear 
for small variances. Therefore the image flow estimate V is a Gaussian variable with 
mean the true 2D velocity V and covariance Ev. When the noise is small, Ev is a 
good estimate of Ev. We further assume the perturbation on the two components 
u, v are independent and identically distributed. Under this assumption, Ev is 
simplified to a 2 J 2

X
2 , where a 2 is the common variance of u and v. We further 

approximate a 2 by (u~ + u~)/2, the average of the diagonal entries in Ev· Finally 
the hypothesis testing is described as below. 

Ho : V = 0, H1 : V =/:- 0 
Test statistic: 

(17) 

Because of the large number of degrees of freedom associated with u~ + u~, the 
distribution ofT is x~, a central x2 with two degrees of freedom. 

A single-sided x2 test is conducted on T to reject the false alarms. For any 
specified significance level a there is associated a x2 value Tt, which is used as the 
threshold. Ho is accepted when T < Tt or H1 is accepted otherwise. Whenever H0 

is accepted a false alarm is claimed and the estimate is set to 0. 
The assumptions for the Image Flow Constraint Equations do not hold at places 

of homogeneity, moving boundaries and abrupt intensity change. The x2· test can 
detect these situations and then reject the image flow estimates. Because the 3D 
cubic facet model is insufficient to describe neighborhoods at moving boundaries 
or abrupt intensity change, the variance estimates a 2 become very large at such 
places. Large variances will propagate to the flow vectors to produce large a~, a~. 
When aperture problems occur, the matrix A' A in the IFCEs become close to 
singular. This causes huge variances of flow vectors. As it is clear from Eq. (17), 
large variances make T very small. In the hypothesis testing, Ho will be accepted 
and the estimates will be set to 0. Therefore the x2 test also rejects bad estimates. 
Since V will be eventually set to 0 when A' A is close to singular, we detect this 
situation early and directly set V = 0, skipping the equation solving, covariance 
propagation and selection steps. 
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7. FLOW FIELD SMOOTHNESS CONSTRAINT 

We call the algorithm developed in Sees. 3-6 Algorithm I. It estimates each image 
flow vector independently from its neighboring vectors. Actually in most cases 
moving objects are larger than one pixel and the motion field is smooth at most 
places. Taking this into account can improve the estimation robustness. Therefore 
we add a flow field smoothness constraint to Algorithm I and form Algorithm II. 

7 .1. Algorithm II 

Now we assume that the image flow vectors in each small 3D flow field regularization 
neighborhood are constant. It is worth noting that just to solve for the raw flow field, 
the size of this neighborhood can be any reasonable combination, for example, 3 x 3 x 
3, or 5 x 5 x 1. But currently our implementation of covariance propagation through 
Algorithm II depends on the choice of this size, so in the following explanation we 
set it to be 5 x 5 x 1 (row by column by frame). Also to facilitate understanding, 
we take the facet model neighborhood size to be 5 x 5 x 5. Thus the image data 
support for each velocity estimate becomes 9 x 9 x 5. 

We traverse the 25 positions within the regularization neighborhood in a left
right and top-down manner and number them by i, i = 1, 2, ... , 25. Accordingly, 
Algorithm l's image flow constraint equation at the ith position is expressed as 
AiV = bi. 

We want to determine the motion vector at the center, namely the 13th position. 
Under the assumption of constant flow in the neighborhood, we stack the 25 sets of 
IFCEs together to form the new constraint equation 

where 

Similarly to the Algorithm I, when A~As is nonsingular, the explicit Least
Square solution is 

If A~As is close to singular (the magnitude of its determinant is less than a certain 
threshold), we directly set V = 0. 

Algorithm II is less sensitive to noise than Algorithm I. The flow field consistency 
improvement is clear by comparing Figs. 6 and 8. 

Algorithm II involves more computation, and it makes motion near boundaries 
more smeared. However these problems are negligible when overall accuracy is the 
primary concern. 
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7.2. Covariance Propagation in Algorithm II 

Algorithm II is also composed of two subsystems (Fig. 2) just as Algorithm I, but 
the input sizes of these systems have changed. Now for each velocity estimate the 
input to the facet model step is a 9 x 9 x 5 block of image data, and the input of 
the IFCEs (output ofthe facet model) becomes Xs = (X{,X~, ... ,X~5)'. 

By exploiting the regularity in forming the new constraint, covariance propaga
tion through the IFCE step is easily done. 

7.2.1. Propagating through the IFCEs 

The criterion function we minimize for V is 

The gradient of Fs with respect to V is 

g;x 1(Xs, V) = 2A~(AsV- bs) 

( 

At V _ bt llOOxl 
A2V- b2 

= 2(A~A~ ... A~5)2xtoo : 

A25V- b25 

25 
= 2 LA~(AiV- bi). 

i=l 

The second-order derivative of Fs with respect to V and X are 

8g~x2(Xs, V) = 2A' A 
8V s s 

25 

=2LA~Ai 

8g~x 1 (Xs, V) _ 
aX~9x25)xl -

i=l 

09s(Xs, V) 9 x2 

8X1 
8g8 (X8 , V) 9 x 2 

8X2 

8g8 (X8 , V) 9x 2 

8X25 

225x2 

where each 89·~~:·V) is the same as Eq. (15) except that all facet parameters now 
become functions of i. 

Similarly, 
vgs vgs V9s ugs (!l )-1 !l I !l (!l )-1 

E~v = 8V 8Xs Eax. 8Xs 8V ' 
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and we finally estimate Ey- by substituting V and X8 into the expression. The only 
unknown in the expression is 'E~x., which we will estimate in the section below. 

7.2.2. Propagating through the facet model 

Now X 8 has the dimension 225 x 1 ((9 x 25) x 1) and its covariance matrix 'Ex. 
has the dimension 225 x 225. We divide 'Ex. into 25 x 25 = 625 submatrices, 
each of which, Cij, is a 9 X 9 covariance matrix of the two parameter vectors 
Xi, X;, i, j = 1, 2, ... , 25. We will estimate these submatrices one by one and then 
put them together to form 'Ex.· Section 5.1 has already discussed how to calculate 
each diagonal submatrix C,i. The problem lies in determining the off-diagonal sub
matrices, because as every two 5 x 5 x 5 neighborhoods overlap each other in the 
9 X 9 X 5 support, two sets of facet parameters xi, X;(i =F j) are not independent. 

Let us see how Xi and X; are related to each other. 
Recall that the facet parameter vector X is a linear transform of the neighbor

hood data vector J, i.e. X= PJ, where P 9
X

125 is composed of the 2nd to the lOth 
rows of (D' D)-1 D'. Clearly there are many ways that we can traverse the neigh
borhood data to form the vector J. But for each traversing order, there is only one 
column ordering of P which leads to the correct X. To indicate the dependency of 
P's arrangement on Ps, we denote P by PJ instead. 

In the ith and jth neighborhoods, we have Xi= PJJi and X;= PJ;J;, where 
Ji and J; have some data in common. Let Ji; be the union of J, and J;. We can find 
two linear operators B,, B; which make Xi = BiJi;, X; = B;Ji; hold. Since J,; 
has more elements than Ji (J;), Bi (B;) has more columns than PJ; (PJ;)· To keep. 
the identity BiJi; = PJJi (B;Ji; = PJ;J;), we need to insert some zero columns 
into PJ; (PJ;) to form Bi (B; ). Those zero columns should be at the places whose 
corresponding Jii terms do not belong to Ji (J;). In our implementation, Ji has the 
common data at the rear, J; has them at the head, and Ji; has them in the middle. 
Therefore Bi is formed by padding a zero block to the right of PJ;, Bi = (PJ; I 0), 
and similarly B; = (0 I PJ;)· Figure 3(a) illustrates the two neighborhoods and our 
data traversing order. Neighborhood i,j are partitioned into three 3D blocks. In 
each block, we scan the first frame in a zig-zag manner, and then the second frame, 
... , when this block is finished, we move on to the next one. 

We assume the noise on Ji; are additive iid with zero mean and variance u~, 
and ul; can be approximated by (ul +u])/2. Then the covariance matrix of Xi, X; 
is 

Ci; = E{axiaXj} = E{BiaJi;aJI;Bj} = u?;BiBj. 

We do not need to repeat zero padding and matrix multiplication to compute all 
BiBj in each neighborhood, because BiBj only has a small number of forms, which 
can be determined before the covariance propagation procedure. Figure 3(b) shows 
a 9 x 9 x 5 support and three neighborhoods i,j, k. The relative position of k to j is 
the same as that of j to i. We can traverse j, kin the same way as we traverse i,j. 
Each traversing order corresponds with one pair of Bi and B;, and hence a unique 
BiBj. So i,j and j,k have the same matrix BiBj. In our case we observe that 
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Fig. 3. Relationship between two facet fitting neighborhoods. (a) Our data traversing order and 
(b) BiBj is decided by neighborhood relative position. 

two neighborhoods have totally 41 possible relative positions. Therefore BiBj can 
only take 41 forms, which we can determine beforehand and put in a lookup table. 
When we actually evaluate Ci;, we just look up the table for the appropriate BiBj 
and multiply it by the scalar (u'f + uJ)/2. With all Ci;, i,j = 1, 2, ... , 25 available, 
we assembly them together yielding :Ex •. And then we can proceed to evaluate the 
velocity covariance matrix Ey-. 

8. EXPERIMENTS AND ANALYSIS 

We conducted both qualitative and quantitative experiments to evaluate our algo
rithms. Barron gives a comparison among nine representative image flow estimation 
techniques on various synthetic and real image sequences in Ref. 1. Of the nine tech
niques, the one developed by Lucas and Kanade (LK) is the best in terms of overall 
performance.2 The one by Fleet and Jepson (FJ), and that by Uras et al. (Uras) 
rank as the second and the third, respectively. The technique of Horn and Schunck 
(HS) is probably the earliest one with reasonably good performance. We will com
pare our algorithms mainly with LK. Results of FJ, Uras and HS will be shown on 
the TAXI sequence as well. 

For all the experiments presented here, we choose the facet model fitting neigh
borhood size to be 5 x 5 x 5 and the smoothness constraint neighborhood size 
5x5xl. 

8.1. Test Data 

We generate the sequences "ROT", of a rotating sphere, and "DIV", of a diverg
ing sphere for quantitative evaluation and comparison. Their central frames and 
ground-truth flow fields are shown in Fig. 4. Details about the synthesis scheme are 
given in Ref. 14. Discussion of results on the synthetic data is in Sec. 8.3. 
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(a) Central frame (b) ROT (c) DIV 

Fig. 4. Synthetic sequences and their true flow fields. 

(a) TAXI (b) RUBIK 

Fig. 5. Central frames of TAXI and RUBIK sequences. 

Results of two real image sequences "TAXI" [Fig. 5(a)] and "RUBIK" [Fig. 5(b)] 
from Ref. 1 will be shown in Sees. 8.2 and 8.3. In TAXI there are four moving 

. objects: a taxi turning the corner, a car in the lower left, driving from the left to 
the right, a van in the lower right driving from the right to the left, and a pedestrian 
in the upper left walking across the street from the right to the left [circled and 
marked in Fig. 5(a)]. 2D speeds of the four moving objects are approximately 1.0, 
3.0, 3.0 and 0.3 pixel/frame respectively. The background scene is still. In RUBIK, 
on a still background, a Rubik's cube is rotating counterclockwise on a turntable. 
The 2D velocity of the cube is between 0.2 and 0.5 pixel/frame, and that of the 
turntable is between 1.2 and 1.4 pixel/frame. 

The results of HS, Uras, LK and FJ on TAXI are shown in Fig. 6 for future 
comparison. 
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(a) Horn and Schunck (b) Uras et al. 

:· ::.:·: .. ·.··· . 
. . ... .. . .. ... ... ..... . 

:·; .. -~~~:\;! :~-. ::~~: ~ ::::.:::-::. <:-
(c) Lucas and Kanade (d) Fleet and Jepson 

Fig. 6. Results of four representative techniques on TAXI. 

8.2. Results of Algorithm I 

As we can see from Refs. 1 and 11 etc., many techniques suffer from severe false 
alarms on TAXI. After selection, many false alarms are still there while some correct 
motion vectors such as those of the two black cars are gone. So far nearly no 
result reported in the literature successfully discriminates the motion vectors of the 
pedestrian from the background false alarms. 

Our raw flow field [Fig. 7(a)] also has a lot of false alarms. But after x2 selection 
with a significance level o: = 0.005, almost all false alarms are eliminated and 
the motion vectors of the four moving objects including the pedestrian stand out 
(Fig. 7(b)]. 

If a selection scheme is reliable, the more rigorous the selection becomes, higher 
accuracy should result. When we decrease o: to a certain value, all the false alarms 
are gone. Further decreasing rejects all the vectors inconsistent with the prior 
knowledge. At last when o: is very close to 0, only one vector is left, which is on 
white car at the center. The observation is also clear from Fig. 9 (Algorithm II). 
Similar experiments were conducted on LK's selector. When the threshold increases, 
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(a) Raw flow field (b) x2 selection, a= 0.005 

Fig. 7. Results of TAXI from Algorithm I. 

the vectors of the two black cars quickly go away. Finally a high threshold only 
leaves three vectors in the flow field, which are all background false alarms. 

8.3. Results of Algorithm II 

We compare the performance of Algorithm II with that of LK in terms of False 
Alarm Rate (FAR), Misdetection Rate (MR), and Average Error Vector Magnitude 
(AEVM) on our synthetic sphere data. A false alarm is defined as the case in which 
a nonzero vector is claimed at a pixel of no motion. A misdetection is the case in 
which no motion is detected at a pixel of nonzero motion vector. The error vector is 
defined as the difference vector of the true and the detected motion vector at places 
where both of them are nonzero. False alarm rate (misdetection rate) is defined as 
the number of false alarms ( misdetections) divided by the number of actual vectors 
in the flow field. 

The AEVM-MR and FAR-MR curves of Algorithm II arid LK's are shown in 
Fig. 8. Circles and squares represent our and LK's techniques respectively. To 
exhibit the details, large FAR's are not shown with the literal scale but marked 
with their values instead. 

On these two sequences our algorithm achieves higher accuracy. Especially on 
ROT, the average vector error magnitude of LK with the misdetection rate as high 
as 56% is still larger than that of our raw estimate. As to the false alarm rates on the 
raw flow field, our results are less than half of those of LK. When the misdetection 
rate increases, the false alarm rate of our algorithm quickly decreases to 0, while 
those of LK remain nonzero even with the misdetection rates as high as 56% on 
ROT and 94% on DIV. 

The raw flow field, the flow field selected with a= 0.005 and a< w-14 on TAXI 
from Algorithm II are shown in Fig. 9. The improvement of accuracy and motion 
field consistency over that of Algorithm I is dramatic. Compared with the results 
on TAXI reported in the literature, our algorithm gives the best performance. 

, 
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Fig. 8. Quantitative comparison between Algorithm II and LK. 

(a) Raw flow field (b) Q = 0.005 (c) a< 10-14 

Fig. 9. Effect of decreasing significance level of x2 test on TAXI (Algorithm II). 

~------------------- ------
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(a) Covariance _field (b) X2 map 

Fig. 10. Covariance field and x2 map of TAXI. 

We show the covariance field of TAXI in Fig. 10(a). Each covariance matrix is 
represented as an ellipse with the lengths of axes as its eigenvalues and the axes 
directions are its eigenvectors. The aperture problem at the places of boundaries, 
such as the car window and the white lines, are detected by the very slim ellipses 
along the small-gradient directions. The lower-right car is occluded by a tree and 
hence the variances of its motion are large. 

In this flow field, large motion is associated with large uncertainties. This gives 
one possible reason why LK's selection scheme does not work properly. It uses 
the smaller eigenvalue of the covariance matrix as the confidence measure, 1 while 
as we see in this covariance field the background false alarms have the smallest 
eigenvalues. 

Figure 10(b) shows the map of test statistic T. The brighter intensity value 
represents the larger T. There are four bright spots at the places of four moving 
objects. Comparing the map with the covariance field we can see the x2 test statistic 
is a better confidence measure than those extracted only from the covariance matrix. 
It emphasizes the importance of using covariance matrix appropriately. 

The RUBIK sequence is quite challenging in the sense that many sources of error 
are present. It has large image noise, as we can tell from severe background false 
alarms. The top of the turntable is a homogeneous region. The cube has many 
black stripes on the surface, which cause abrupt intensity changes and aperture 
problems. Our algorithm detects the homogeneity from the ill-conditioned matrix 
A~As and set the estimates 0. The abrupt intensity change and aperture problem 
at the black stripes produces erroneous vectors. But they are associated with very 
large variance and thus rejected in the x2 test. Almost all the background false 
alarms disappear after the selection. Compared with those given in Ref. 1, our 
result (Fig. 11) on this sequence is among the best. 
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(a) Raw flow field (b) a= 2.06 x IQ-9 

Fig. 11. Results of RUBIK from Algorithm II. 

9. CONCLUSIONS AND FUTURE WORK 

There are two major contributions of our image flow estimation technique. First, 
the facet model is used to provide high-quality derivative estimates, image noise 
variance estimation and the effect of prefiltering simultaneously. Secondly, covari
ance propagation enables a systematic error analysis and a statistically meaningful 
selection scheme. 

Experiments show our algorithms successfully reject false alarms and bad esti
mates while achieving a low misdetection rate and high accuracy for nonzero image 
flow vectors. Quantitative and qualitative comparison between our approach with 
other competitive techniques makes the advantages obvious. 

There are quite a few directions we may pursue in future work. The smoothness 
constraint has proven a success in achieving high accuracy, although only the sim
plest assumption of constant local flow is made. We are considering to add weights 
when combining the image flow constraint equations. We also expect higher ac
curacy with a linear local flow model. We will propagate the covariance through 
Lucas and Kanade's algorithm to gain more insight to the comparison. This work 
will also enable us to study the robustness of different algorithms. The assumption 
of iid Gaussian image noise might oversimplify many real cases. Now we are trying 
to characterize the noise as colored Gaussian. 

APPENDIX 

A. DISCRETE ORTHONORMAL POLYNOMIALS (DOPS) 

This section gives a description on the discrete orthonormal polynomials mainly 
based on Chapter 8 in Ref. 5. We start from the concept, generation and use of 
lD DOPs, proceed by the properties and generation of N-D DOPs, at last explain 
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the fast implementations by use of separability and recursion. The contents are 
important for a better understanding on the DOP approach in Sec. 4.3. 

A.l. 1D DOPs 

The 1D (N -1)th order Discrete Orthonormal Polynomial Pn(r), n = 0, ... , N -1 
is defined on a symmetric discrete integer index set R. R is symmetric in the sense 
that r E R implies -r E R. The number of elements in R is N. Pn(r) is orthonormal 
because 

L Pn(r)Pm(r) = 0 
rER 

L Pn(r)Pn(r) = 1, Vm, n E [0, N- 1], m =f. n. 
rER 

Discrete orthogonal polynomial Pn(r)'s can be recursively generated by the 
relation 

Pn+1(r) = TPn(r)- f3nPn-1(r) 

where 

Po(r) = 1 and P1(r) = r. 
The discrete orthonormal polynomials Pn(r)'s are obtained by normalizing the 

discrete orthogonal polynomials on their index set 

Here is an example of the 1D 3rd-order discrete orthogonal polynomials 

Index Set DOP 

{ -2, -1, 0, 1, 2} { 
2 3 4 31 2 72 } 1,r,r -2,r -3.4r, r - 1 r + 

35
, 

and the corresponding discrete orthonormal polynomials (DOPs) 

Index Set DOP 

{ -2, -1, 0, 1, 2} { 
1 r 1 ( 2 ) vlo( 3 .;5' v'lo' VI4 r - 2 , l2 r - 3.4r), 

A.2. 1D Cubic Curve Fitting 

Let a data value d(r) be observed for each r E R. The exact fitting problem is to 
determine the coefficients ko, ... , kN-1 such that 

N-1 

d(r) = L knPn(r), r E R. 
n=O 
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The approximate fitting problem is to determine ko, ... , kK-1, K ~ N such that 

K-1 
e2 = L)d(r) - L knPn(rW 

rER n=O 

is minimized. In either case the solution is 

kn = L Pn(r)d(r). 
rER 

The exact fitting coefficient and the least-square coefficients are identical for n = 
o, ... ,K -I. 

It is obvious that each kn is actually a dot-product of d(r)'s and Pn(r)'s for 
r E R. Thus to calculate kn, we just need to convolve the mask Pn(r), r E R with 
the neighborhood data. 

The approximate fitting can be thought of as a projection from aN-dimensional 
space to a K-dimensional space spanned by the K DOP basis vectors. The residual 
error e2 is the energy residing in the complement space of dimension N - K. Thus 
instead of calculating e2 in the brute force manner, we can compute it as the energy 
difference between the two spaces 

e2 = Ld2(r)- L k;.. 
rER rEK 

This approach greatly reduces the computational complexity. 

A.3. 2D and Higher Dimensional OOPs 

2D OOPs can be created from two sets of lD OOPs by taking their tensor products. 
Let {Po(r), ... , PN-1(r)} and {Qo(c), ... , QM-1(c)} be two sets of DOPs defined 
on R and C respectively. Then their tensor product is a set of 2D OOPs defined on 
R x C. A simple proof is given below. 

rERcEC rER cEO 

where i =1- n, j =1- m. 
Similarly, all the DOPs of dimension higher than 2 can be generated from lD 

OOPs using tensor products. The way of computing the fitting error from the 
residual energy can also be generalized to higher dimensional cases. 

A.4. Computational Efficiency 

The DOP facet model is superior to the canonical model because of the computa
tional efficiency. Significant savings of computation result from the use of separa
bility and recursion . 

...,._ _________________________________ . -----
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Any N-D (N ~ 2) DOP can be expressed as a tensor product of N 1D DOPs, as 
it is clear from the procedure we generate it. To estimate the coefficient of an N-D 
DOP, rather than applying an N-D mask on the data, we can separate the N-D 
mask to N 1D masks and apply them along each of the N directions respectively. 

Let us consider the typical case in which the neighborhood size is W x W x W 
and the image sequence size is N x N x W. 

In the brute force approach, every coefficient takes W 3 multiplications in each 
neighborhood. There are totally (N- W +1)2 neighborhoods. Therefore the number 
of multiplications is (N- W + 1)2W3. 

Now let us see what happens when separability is used. Masking the sequence by 
the 1D mask along the time axis needs N 2W multiplications. It yields one frame of 
temporary result. Masking this frame by the 1D mask along the column axis takes 
N(N- W + 1)W multiplications. This produces a frame of size N(N- W + 1). 
Finally masking this frame by the 1D mask along the row axis yields the coefficient 
corresponding with these three 1D masks, with (N- W + 1)2W multiplications. 
The total number of multiplications is N 2W + N(N- W + 1)W + (N- W + 1)2W. 

It is easier to see the difference from the example. When N = 256, W = 5, the 
brute-force approach involves 7,938,000 multiplications, while the one with separa
bility only involves 967,760. The savings is about eight times. 

It is important to work on the dimensions in the correct order to achieve the 
best saving. Separated 1D convolutions shou~d always go from the dimension of 
smaller size to those of larger sizes. The proof is omitted here. 

Another significant saving comes from reusing results of intermediate frames. 
For the 3D cubic DOPs, there are four 1D bases of order 0 through 3 on each 
dimension. Each of the twenty DOP bases is a combination of three of these twelve 
1D bases whose order sum do not exceed 3, for instance, the DOP basis with the 
highest-order term ret is a combination of the 1D DOP bases of the highest-order 
terms r, c, t respectively. Therefore two 3D bases may have one or two dimensions 
in common. For instance, both r and r 2 have the Oth order terms on the time and 
column axes. Thus we can obtain the two coefficients on the same intermediate 
frame resulting from masking on the common bases. 

The trouble with this scheme might be the peak storage. However in our case 
it is not a big problem. Applying the four masks along the time axis gives us four 
frames of size N 2 • Under the constraint of order sum less than or equal to 3, there 
is a total of 10 frames of size N(N- W + 1) from the row-wise masking. The peak 
intermediate storage is 4N2 + lON(N- W + 1), about 3.6M for N = 256, W = 5. 
This is not bad at all. 

Use of separability in the above two ways brings more than 10 times saving on 
the amount of computation for each parameter estimating. Further saving can be 
achieveq by calculating the residual error in a recursive way. 

Let us consider the 3D cubic model in a 5 x 5 x 5 neighborhood. The number 
of bases is 20. If we directly evaluate e2 = (Ddk- J) 2 in each neighborhood, 
125 x 20 + 125 = 2625 multiplications are needed. While if we compute e2 by 
IIJII 2

- llkll 2 , it reduces to 125 + 20 = 145 multiplications. When the 5 x 5 x 5 
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mask is moving in the image sequence in the way of progressive scanning, only 25 
pixels are different between two neighborhoods whose centers are in the same row 
and immediately adjacent. Therefore except for the ones at the beginning of the 
row, we only need 25 dot-products for each neighborhood to evaluate IIJII 2• The 
number of multiplications further reduces to about 45 on the average. 

With the increase of the index set size or the dimension, the improvement of the 
computational efficiency becomes even more substantial. 

B. RELATED THEORY OF COVARIANCE PROPAGATION 

Reference 6 gives a comprehensive description to the Theory of Covariance Propa
gation in Computer Vision. This section introduces the part related to our image 
flow estimation algorithms to facilitate understanding Sees. 5 and 7.2. 

The goal of covariance propagation is to propagate the input error step by step 
through a system to obtain the perturbation on the output. When the random 
perturbations on both the input and the output of a system are approximately 
additive, one basic measure of the random perturbation size is given by the co
variance matrix of the estimate. As long as the system is approximately linear for 
small perturbations, given the covariance matrix of the input, we can determine the 
covariance matrix of the output by analytical covariance propagation. 

There are two ways to do covariance propagation through a system. One is 
the explicit way, the other is the implicit way, which is first introduced into the 
computer vision field by Ref. 6. 

B.l. Explicit Covariance Propagation 

The output e of a system is related to the input X by e = /(X). Iff is an explicit 
function of X, we can expand /(X) as Taylor series, neglect all the terms of order 
higher than one, and then relate the small perturbation on e to that on X by 

de' 
~e= dX~x. 

With the covariance matrix of the input Eaxax known, the covariance of e is 

Eaeae = E[~e~e'] 

=de' E[~X~X'] de 
dX dX 

_df(X)'E df(X) 
-dX axax dX · 

The derivation of Eaeae requires dejdX and Eaxax, functions of the true 
input X be known, while only X = X + ~X is observed. When ~X is small, 
substituting X for X in the two functions give reasonable estimates of the true 
values. Thus finally the covariance matrix of the output is estimated as 

A df(X)' A df(X) 
Eaeae = --A-Eaxax--A-. 

dX dX 
(B.l) 
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9.1. Implicit Covariance Propagation 

Many steps in a system cannot be expressed as explicit functions of the input and 
the output. Instead, a certain criterion function F(X, e) is minimized to solve for 
e in a least-square sense. In such a context, it might be very difficult to find ~ 
directly. If ideally the minimum of F(x, e) is 0, we can use the implicit method 
introduced by Ref. 6 to do the covariance propagation. 

The basic idea of the implicit way is to find ~~ indirectly from an implicit 
function g(e,X) which relates e and X to each other. If agjae and agjaX are 
computable, then 

de ( a9 )-
1 

a9 
dX = ae ax· 

Minimizing F(X, e) requires aF(X, e)jae equal to zero. Hence 

g(X, e) = aF(X, e) = O 
ae 

is an desired implicit function relating e and X together. 
To minimize F(X, e), the solution e = e + .6.e must be a zero of g(X, e). 

Now taking a Taylor series expansion of g around (X, e) we obtain to the first
order approximation: 

ag I ag I 

g(X + .6.X, e + .6.e) = g(X, e)+ ax (X, e).6.X + ae (X, e).6.e. 

Because e + .6.e extremizes F(X + .6.X, e + .6.e), g(X + .6.X, e + .6.e) = 0. Also, 
since e extremizes F(X, e), g(X, e) = 0. Thus to a first-order approximation, 

ag 1 ag 1 

o = ax (X, e).6.X + ae (X, e).6.e. 

Since the relative extremum of F is a relative minimum, the matrix 

ag ap2 
ae(x,e) = a2e(x,e) 

must be positive definite for all (X, e). This implies that ~(X, e) is non-singular 
and have the inverse ( ~) - 1 . Hence 

( 
ag ) - 1 ag1 

.6.e = - ae (X, e) ax (X, e).6.X 

noting that ( ~) - 1 is symmetric. This expression relates to how the random pertur
bation .6.X on X propagates to the random perturbation .6.e on e. If the expected 
value of .6.X, E[.6.X], is zero, then from this relation we see E[.6.e] will also be 
zero, to a first-order approximation. 

This relation permits us to calculate the covariance of the random perturbation 
.6.e 

E.6.e = E[.6.e.6.e1
] (B.2) 

( 
ag) -

1 
ag I ag ( ag) -

1 

= ae ax E.6.x ax ae 
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To the extent that the first-order approximation is good, (i.e. E[A8] = 0), it exists 
E9 = Ea.e. 

The way in which we have derived the covariance matrix for Ae based on the 
covariance matrix for AX requires that the matrices 

ag ag 
ae (X, e) and ax (X, e) 

be known. But the true values X and 8 are not observed. Only X + AX and 
e + Ae are available. If we want to determine the estimate E9 for the covariance 
matrix Ee, we can proceed by expanding g(X, 8) around g(X +AX, e + A8). 

a , 
g(X, 8) = g(X +AX, 8 + A8) - a~ (X+ AX, 8 + A8)AX 

ag, 
- ae (X +AX,8+A8)A8. 

Because g(X, 8) = g(X +AX, 8 + A8) = 0 and ~,(X+ AX, 8 + Ae) is non
singular, 

(
ag )-

1
a9 ' 

A8 =- ae(X +AX,8+A8) ax (X +AX,8+A8)AX. 

This motivates the estimator Ea.e for Ea.e defined by 

A g A A g A A g A A ag A A (a ) 
-la , a ( ) -1 

Ea.e = ae (X,e) ax (X,e)Ea.x ax(x,e) ae (X,e) (B.3) 

To the extent that the first-order approximation is good, Ee = Ea.e. 
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