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Abstract. We develop on estimation method, for the derivative field of
an image based on Bayesian approach which is formulated in a geometric
way. The Maximum probability configuration of the derivative field is
found by a gradient descent method which leads to a non-linear diffusion
type equation with added constraints. The derivatives are assumed to be
piecewise smoothe and the Beltrami framework is used in the development
of an adaptive smoothing process.

1 Introduction

It is widely accepted that gradients are of utmost importance in early vision anal-
ysis such as image enhancement and edge detection. Several numerical recipes
are known for derivatives estimation. All based on fixed square or rectangular
neighborhoods of different sizes. This type of estimation does not account for the
structure of images and bound to produce errors especially near edges where the
estimate on one side of the edge may wrongly influence the estimate on the other
side of it. In places where the image is relatively smooth, least square estimates
of derivatives computed over large area neighborhoods will give best results (e.g
the facet approach [2], see also [1]). But, in places where the underlying image
intensity surface is not smooth, and therefore can not be fitted by a small degree
bivariate polynomial, the neighborhood should be smaller and rectangular, with
the long axis of the rectangle aligned along the orientation of the directional
derivative.

From this viewpoint, it is natural to suggest a varying size and shape neigh-
borhood in order to increase both the robustness of the estimate to noise, and its
correctness. Calculating directly for each point of the image its optimal neighbor-
hood for gradient estimation is possible but cumbersome. We Therefore propose
an alternative approach, which uses a geometry driven diffusion [8] that produces
implicitly, and in a sub-pixel accuracy, the desirable effect. We are not concerned,
in this approach, with finding an optimal derivative filter but formulate directly
a Bayesian reasoning for the derivative functions themselves.
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The paper is organized as follows: In Section 2 we review the Beltrami frame-
work. A Bayesian formulation of the problem, in its linear form, is presented in
Section 3. We incorporate, in Section 4, The Beltrami framework in the Bayesian
paradigm, and derive partial differential equations (PDEs) by means of the gra-
dient descent method. Preliminary results are presented in Section 5.

2 A Geometric Measure on Embedded Maps

We represent an image as a two-dimensional Riemannian surface embedded in a
higher dimensional spatial-feature Riemannian manifold [11,10,3,4,5,13,12]. Let
σµ, µ = 1, 2, be the local coordinates on the image surface and let Xi, i =
1, 2, . . . , m, be the coordinates on the embedding space than the embedding map
is given by

(X1(σ1, σ2), X2(σ1, σ2), . . . , Xm(σ1, σ2)). (1)

Riemannian manifolds are manifolds endowed with a bi-linear positive-definite
symmetric tensor which is called a metric. Denote by (Σ, (gµν)) the image man-
ifold and its metric and by (M, (hij)) the space-feature manifold and its corre-
sponding metric. Then the map X : Σ → M has the following weight [7]

E[Xi, gµν , hij ] =
∫

d2σ
√

ggµν(∂µXi)(∂νXj)hij(X), (2)

where the range of indices is µ, ν = 1, 2, and i, j = 1, . . . , m = dimM , and we
use the Einstein summation convention: identical indices that appear one up and
one down are summed over. We denote by g the determinant of (gµν) and by
(gµν) its inverse. In the above expression d2σ

√
g is an area element of the image

manifold. The rest, i.e. gµν(∂µXi)(∂νXj)hij(X), is a generalization of L2. It is
important to note that this expression (as well as the area element) does not
depend on the local coordinates one chooses.

The feature evolves in a geometric way via the gradient descent equations

Xi
t ≡ ∂Xi

∂t
= − 1

2
√

g
hil δE

δX l
. (3)

Note that we used our freedom to multiply the Euler-Lagrange equations by
a strictly positive function and a positive definite matrix. This factor is the
simplest one that does not change the minimization solution while giving a
reparameterization invariant expression. This choice guarantees that the flow is
geometric and does not depend on the parameterization.

Given that the embedding space is Euclidean, The variational derivative of
E with respect to the coordinate functions is given by

− 1
2
√

g
hil δF

δX l
= ∆gX

i =
1√
g
∂µ(

√
ggµν∂νXi), (4)

where the operator that is acting on Xi in the first term is the natural gener-
alization of the Laplacian from flat spaces to manifolds and is called the second
order differential parameter of Beltrami [6], or in short Beltrami operator.
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3 Bayesian formulation for derivatives estimate

Denote by (xr, ys) the sampling points and by I0
rs ≡ I0(xr, ys) the grey-levels at

the sampling points.
From the data i.e. (xr, ys), I0

rs we want to infer the underlying function I(x, y)
and its gradient vector field V(x, y). The analysis is easier in the continuum and
we refer from now on to I0 as to a continuous function. In practice we can skip a
stage and find the derivatives without referring to the underlying function. The
inference is described by the posterior probability distribution

P (I(x, y),V(x, y)|I0(x, y)) =
P (I0(x, y)|I(x, y),V(x, y))P (I(x, y),V(x, y))

P (I0(x, y))

In the numerator the first term P (I0(x, y))|V(x, y)) is the probability of the
sampled grey-level values given the vector field V(x, y) and the second term is
the prior distribution on vector fields assumed by our model. The denominator
is independent of V and will be ignored from now on.

Assuming that P (A|B) is given by a Gibbsian form :

P (A|B) = Ce−αE(A,B),

we get

− log P (V(x, y)|I0(x, y)) = αE1(I0(x, y),V(x, y)) + βE2(V(x, y)).

If we use the Euclidean L2 norm we get

E1(I0(x, y),V(x, y)) =
1
2
C1

∫
dxdy

(|V − ∇I|2)

E2(V(x, y)) =
1
2
C2

∫
dxdy

(|∇V|2) + E3, (5)

where the first term is a fidelity term that forces the vector field V to be close
enough to the gradient vector field of I(x, y). The second term intoduces reg-
ularization that guarantees certain smoothness properties of the solution. The
second term in E2 constraints the vector field to be a gradient of a function. Its
form is:

E3(I(x, y),V(x, y) =
1
2
C3

∫
dxdy(εµν∂µVν)2 =

1
2
C3

∫
dxdy(V 1y − V 2x)2,

where εµν is the antisymmetric tensor.
Alternatively we may adopt a more sophisticated regularization based on

geometric ideas. These are treated in the next section.
Maximization of the posterior probability amounts to the minimization of

the energy. We do that by means of the gradient descent method which leads
eventually to non-linear diffusion type equations.
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4 Derivatives Estimation: Geometric Method

In this section we incorporate the Beltrami framework into the Byesian paradigm.
We consider the intensity to be part of the feature space, and the fifth-dimensional
embedding map is

(X1 = x, X2 = y, X3 = I(x, y), X4 = V1(x, y), X5 = V2(x, y)). (6)

Again we assume that these are Cartesian coordinates of IR5 and therefore hij =
δij . That implies the following induced metric:

(gµν(x, y)) =
(

1 + I2
x + V 12

x + V 22
x IxIy + V 1xV 1y + V 2xV 2y

IxIy + V 1xV 1y + V 2xV 2y 1 + I2
y + V 12

y + V 22
y

)
. (7)

The energy functionals have two more terms: The first is a fidelity term of the
denoised image with respect to the observed one, and the last is an adaptive
smoothing term. The functionals are

E0(I(x, y), I0(x, y)) =
1
2
C0

∫
dxdy

√
g(I − I0)2

E1(I0(x, y),V(x, y)) =
1
2
C1

∫
dxdy

√
g

(|V − ∇I0|2)

E2(V(x, y)) =
1
2
C2

∫
dxdy

√
ggµν(∂µXi)(∂νXi)

E3(V(x, y)) =
1
2
C3

∫
dxdy

√
g(εµν∂νVµ)2, (8)

and since the Levi-Civita connection’s coefficients are zero, we get the following
gradient descent system of equations:

It = C2∆gI − C0(I − I0)

Vρt = C2∆gVρ − C1(Vρ − ∂ρI
0) +

C3√
g
∂ρ(

√
gεµν∂νVµ), (9)

with the initial conditions

I(x, y, t = 0) = I0(x, y)
Vρ(x, y, t = 0) = ∂ρI

0(x, y), (10)

where I0(x, y) is the given image.
It is important to understand that V1 and V2 are estimates of I0x and I0y

and not of the denoised Ix and Iy.

5 Results and discusssion

The solution of the PDE’s was obtained by using the explicit Euler scheme,
where the time derivative is forward and the spatial derivatives are central. The
stencil was taken as 3 × 3.
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Fig. 1. Upper row, left: The original noisy x derivative. Upper row, right: The x
derivative estimation. Middle row, left: The original noisy y derivative. Middle row,
right: The y derivative estimation. Lower row, left: The original noisy image. Lower
row, right: The denoised image.
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We did not optimize any parameter, nor the size of the time steps. For the
Euclidean embedding algorithm we chose C1 = 0.5, C2 = 1, C3 = 8.5 and the
time step was ∆t = 0.005. The results after 150 iterations are depicted in Fig.
(1).

This demonstrates that it is possible to merge Bayesian reasoning and the
geometric Beltrami framework in computation of derivative estimations. The
requirement that the obtained functions are the x and y derivatives of some un-
derlying function is formulated through a Lagrange multiplier. Close inspection
reveals that this requirement is fulfilled only approximately.

An analysis and comparison with statistical based method will appear else-
where [9].

References

1. M Azaria, I Vitsnudel and Y Y Zeevi “The Design of Tow-Dimensional Gradient
estimators Based on One-Dimensional Operators”, IEEE Trans. on Image Pro-
cessing, 5, (1996) 155-159.

2. R M Haralick and L G Shapiro Computer and Robot Vision, Addison-Wesley Pub-
lishing Company, New York, 1992, Chapter 8.

3. R Kimmel, R Malladi and N Sochen, “Images as Embedding Maps and Minimal
Surfaces: Movies, Color, Texture, and Volumetric Medical Images”, Proc. of IEEE
CVPR’97, (1997) 350-355.

4. R Kimmel, N Sochen and R Malladi, “On the geometry of texture”, Report, Berke-
ley Labs. UC, LBNL-39640, UC-405, November,1996.

5. R Kimmel, N Sochen and R Malladi, “From High Energy Physics to Low Level
Vision”, Lecture Notes In Computer Science: 1252, First International Conference
on Scale-Space Theory in Computer Vision, Springer-Verlag, 1997, 236-247.

6. E Kreyszing, “Differential Geometry”, Dover Publications, Inc., New York, 1991.
7. A M Polyakov, “Quantum geometry of bosonic strings”, Physics Letters, 103B

(1981) 207-210.
8. B M ter Haar Romeny Ed., Geometry Driven Diffusion in Computer Vision, Kluwer

Academic Publishers, 1994.
9. N A Sochen, R M Haralick and Y Y Zeevi in preparation

10. N Sochen, R Kimmel and R Malladi, “From high energy physics to low level vision”,
Report, LBNL, UC Berkeley, LBNL 39243, August, Presented in ONR workshop,
UCLA, Sept. 5 1996.

11. N Sochen, R Kimmel and R Malladi , “A general framework for low level vision”,
IEEE Trans. on Image Processing, 7, (1998) 310-318.

12. N Sochen and Y Y Zeevi, “Images as manifolds embedded in a spatial-feature
non-Euclidean space”, November 1998, EE-Technion report no. 1181.

13. N Sochen and Y Y Zeevi, “Representation of colored images by manifolds embed-
ded in higher dimensional non-Euclidean space”, IEEE ICIP’98, Chicago, 1998.


	Introduction
	A Geometric Measure on Embedded Maps
	Bayesian formulation for derivatives estimate
	Derivatives Estimation: Geometric Method
	Results and discusssion

