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2.1 Remote Sensing

Detecting the nature of an object by external observation, without
physical contact with the object, is remote sensing. The advantages of
gathering data about objects remotely are that the object is usually not
disturbed; objects in inaccessible areas can be examined; and a large
amount of information over any spatial area can be obtained.

The earliest and most useful form of remote sensing is photography.
Here, photon energy (in the visible or near-visible portion of the spectrum)
which is radiating or reflected from objects is collected by a camera
(the sensor) and recorded on a light sensitive film emulsion. Aerial
multiband and color photography can be used to determine the number
of acres of land in different uses, such as rangeland, cropland, forest,
urban, swamp, marsh, water, etc. It can help identify rock and soil type,
vegetation, and surface water condition [2.1, 2].

The camera, of course, is not the only kind of remote sensor. Other
types of remote sensors include the multispectral scanner, the infrared
scanner, the scanning radiometer, the gamma ray spectrometer, the
radar scatterometer, and the radar imager. Figure 2.1 illustrates the
typical scanning sensor. A rotating mirror scans the ground scene in a
line by line manner with the forward velocity of the sensing platform
causing the line scans to be successively displaced. The mirror directs
the received energy to a detector which converts it to a video signal
which is then recorded by a film recorder to make an image. Thermal
infrared scanner systems can produce imagery in daytime or nightime
since their detectors are sensitive to emitted heat and not to light. The
near-infrared systems are able to penetrate haze and dust making it
possible to get good contrast images not achievable by aerial photo-
graphy. MALILA [2.3] documented the advantages multispectral scanners
have over cameras for image enhancement and discrimination. The
NASA Third and Fourth Annual Earth Resources Program Reviews
[2.4, 5] and the Michigan Symposia on Remote Sensing of Environment
contain numerous papers on the application of multispectral or thermal
scanners. See also [2.6, 7].
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Fig. 2.1. (a) Schematic of scanning unit. (b) Line-scanning technique used by mechanical
scanners.
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Fig. 2.2. Side-looking radar scanning

The radar imager shown in Fig. 2.2, unlike the others, is an active
system. It illuminates the ground scene by transmitting its own micro-
wave radiation and its antenna receives the reflected energy. After
appropriate processing and electronic amplification the resulting video
signal can be recorded by film recorder to make an image. The radar
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Table 2.1. Agriculture/forestry

Application Type of data

Required

Data use

Agriculture Inventory and

distribution

Infestation

Land use

Forestry Inventory and

distribution

Fire, disease
and reclamation

Land use
Grassland vigor

Conservation

Farm/forest interfaces
Boundaries
Topographic maps
Crop type and density
Crop expected yield
Livestock census
Disease damage
Insect damage
Infestation patterns
Soil texture
Soil moisture and
irrigation requirements
Soil quality to support
vegetation
Farm planning

Forest texture
Boundaries
Topographic maps
Tree types and count
Logging yield and
production
Location of tree types

Fire location and

damage
Pattern and discontinuity
Soil moisture and texture
Insect and disease damage

Maps
Wildlife management

signal is influenced by ground conductivity and surface roughness.
Radar images are particularly good at providing integrated landscape
analysis [2.8—8a], as well as vegetation [2.9], geologic [2.10], and soil

moisture [2.11] information.

Tables 2.1-5 list the variety of uses to which earth resources remote
sensing has been put in the areas of agriculture, forestry, hydrology,
geology, geography, and environment monitoring. MERIFIELD et al.
[2.12] discussed the potential applications of spacecraft imagery.

The success of manual interpretation or automatic processing of
remotely sensed imagery is constrained by the kind of physical character-
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Table 2.2. Hydrology

Application Type of data Data use
required

Water inventory Water inflow into  River effluents
basins, rivers and  Drainage basin features
streams Reservoir levels

Ground water surveys
Irrigation routes

Flood control Excess surface Flood location
water Damage assessment
Rainfall monitoring
Erosion patterns

Water pollution Natural and Color
industrial pollution Spectral signature
Pollution content
Salt content

Water conservation Evaporation and  Evapotranspiration
transpiration

Water resources Seeps and springs  Temperature variation
Water quality
Glaciology Frozen water inventory

Snow surveys

istics the sensors can detect. The sensors used in the various portions of
the electromagnetic spectrum are sensitive to dissimilar energy-matter
interactions. They detect different characteristics and, therefore, convey
different kinds of informations. In crop identification problems, for
example, the molecular absorptions produce color effects in the visible
region which convey information about crop type or condition; in the
infrared region, the diurnal cycle of thermal response under an insolation
load may give information about moisture stresses within crops; in the
radar region, the backscattered return is primarily related to surface
roughness and dielectric constant, which may in turn be related to crop
type, percent cover, and moisture content.

For those readers interested in exploring the remote sensing applica-
tions literature further the following guide is offered. A bibliography of the
earth resources remote sensing literature has been complied by NASA
and is current to 1970. The third and fourth Earth Resources Program
Reviews [2.4, 5] (there have been none since 1972) provide descriptions
of a large number of investigations funded by NASA. The second and
third Earth Resources Technology Satellite (ERTS) Symposia in 1973



Automatic Remote Sensor Image Processing 9

Table 2.3. Geology

Application Type of data Data use
required
Petroleum and Surface and sub- Lithology studies
minerals detection  surface patterns Outcrops
Plot magnetic fields
Earth folds

Drainage patterns

Soil compacting and
stability

Soil density

Surface stratification
and electrical

conductivity
Volcano Surface feature Temperature variation
prediction changes Lithologic

identification

Spatial relations

Earthquake Surface stress and  Linear microtemperature
prediction discontinuities anomalies

Slope distribution

Crust anomalies

Soil moisture

Engineering Geothermal power Temperature anomalies
geology sources Surface gas
Landslide Soil moisture
- prediction Slope distribution

Crust anomalies

(NASA GSFC) describe much of the remote sensing done with the
4-channel multispectral scanner in the ERTS satellite. '
Since 1962 the Environmental Research Institute of Michigan and
the University of Michigan have co-sponsored annual remote sensing
symposia with the papers published as Proceedings of the n-th Interna-
tional Symposium on Remote Sensing of Environment. In 1972 the
University of Tennessee Space Institute also began organizing annual
remote sensing symposia. The conference proceedings of these symposia
are obtainable from the respective universities and contain unreviewed
papers (abstracts only are reviewed). The annual proceedings of the
American Society of Photogrammetry have remote sensing related
application papers (also unreviewed). In 1969 the journal Remote
Sensing of Environment was begun and it along with Photogrammetric
Engineering and Modern Geology contain much of the refereed literature.
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Table 2.4. Geography

Application Type of data Data use
required
Transportation Identify features Locate terminals,
buildings
Locate roads, tracks
Traffic count
Locate new Make maps at scales of
facilities 1:25000 to 1:250000
Cultural factors
Economic factors
Navigation Topography Make maps at scales of
1:100000 to 1:250000
Urban planning Locate Boundary and topography
settlements
Type of Color, texture, contrast
settlements

Distribution of
settlements
Occurrence of
recreation areas
Population
distribution
Classification of
facilities

Pattern of housing density
Color, texture, shape
Population count

Industrial planning
1:50000 scale maps
Cultural/economic factors
Land use intensity
Spectral signature

Heat budgets
Table 2.5. Environment
Application Type of data Data use
required
Air quality Backscatter SO, and NO,
monitoring pattern analysis concentration and
Spectroscopy distribution
Forecasting

Water quality
monitoring

Violation
detection

QOil slicks, Effluent
Salt water intrusion

Spatial/temporal
source data

Color tones
Spectral signatures

Locate land or sea coordi-
nates of pollution source
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2.2 The Image Processing Problem

Remote sensor data systems are designed to obtain information about
various aspects of an environment by remotely measuring the electro-
magnetic transmittance, reflective, or emissive properties of the environ-
ment. To obtain information about the “pertinent” aspects of the
environment, the sensor system must preserve or mirror the “pertinent”
structure of the environment onto the data structure. Automatic remote
sensor data processing or pattern recognition is concerned with evaluat-
ing, inventorying, and identifying those environmental structures which
are and which are not preserved through the sensor’s eyes.

There are two modes of automatic processing: one mode requires
special purpose hardware, uses film format or analog tape input, and
operates in near real time; the other mode requires a general purpose
computer, uses digital tape input, and operates relatively more slowly.
The first mode—a hardware system mode—is capable of limited sorts
of processing while the second mode—a software system mode—is
capable of rather sophisticated processing. Neither of these modes has
reached the stage of production volume pattern recognition of remotely
sensed data; progress has, however, brought them out of the experimental
stage, into the prototype stage, and as shown by the corn blight experi-
ment, significant amounts of data can be processed [2.13].

Fu et al. [2.14] discussed the general pattern recognition approach
to the automatic processing of remotely sensed data. HARALICK et al.
[2.15] described some pattern recognition techniques for crop discrimina-
tion on radar imagery. CENTNER and HIETANEN [2.16] used automatic
pattern recognition techniques to distinguish between cultivated land,
urban land, wooded land, and water. ANUTA and MacDonNALD [2.17]
discussed automatic recognition of crop types from multi-band satellite
photography. Horrer et al. [2.18] described how automatic pattern
recognition can supplement manual photo-interpretation methods
for the recognition of crop types. TURINETTI and MINTZER [2.19] discuss-
ed computer analysis of day and night thermal imagery for land-use
identification. SwAIN [2.20] treated pattern recognition theory for
remote sensing data analysis. LANDGREBE [2.21] discussed the machine
processing approach for remotely sensed imagery. Thus, there is no lack
of data indicating that automatic processing techniques can be applied
to remotely sensed images. The most recent review of digital image
processing activities for remotely sensed images was prepared by
NAGyY [2.22].

To examine the remotely sensed imagery processing problem, we
will consider the case where we have obtained a multi-image set by a
combination of perhaps radar images of various frequency-polarization
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conditions, multispectral scanner images, or multi-band photography.
Some of the images may be time-simultaneous and others time-sequential.
To be realistic, we will suppose that all sensors which rely on the sun
for the illumination source have obtained their pictures at perhaps
different solar altitude angles, solar azimuth angles, and meridian
angles (see [2.23-25] for documentation of spectral reflectivity variation
with angle).

If we assume our problem is an agricultural crop identification
problem, we would first like to separate out crops from non-crops
(crop detection); then we would like to make an accurate identification
of the detected crops and produce a thematic land use map or make
estimates of the acreages of the various crops.

To be able to do this rather well-defined interpretation task auto-
matically, we must register or congruence the individual images, calibrate
or normalize the grey tones on each image, extract the relevant features re-
quired to detect and identify crops, use a decision rule which in some sense
makes the best identification possible relative to the extracted features,
and finally estimate the decision rule error. Section 2.3 discusses pre-
processing procedures; Section 2.4 discrimination, feature extraction,
and clustering methods; and Section 2.5 approaches to the quantification
of image texture. Sections 2.6 and 2.7 describe some hardware and soft-
ware aspects of the problem. The glossary of terms used in the remotely
sensed image pattern recognition area prepared by HARALICK [2.26]
is.a general reference for the technical terms used in this paper.

2.3 Preprocessing Problems

2.3.1 Grey Tone Normalization

Each type of remote sensor has its own internal type of calibration or
lack of calibration. For most remote sensors, this internal calibration
cannot be done accurately or consistently from sensor to sensor and
from day to day. Photographic sensors are particularly plagued with
calibration problems since little controlled attempt is usually made to
compensate for exposure, lens, film,-print, developer, and off-axis
illumination fall-off differences. PETTINGER [2.27], for example, document-
ed variability in color image quality for photography flown over the
Phoenix area. He ascribed the color balance variability to exposure,
film (age and storage), and processing differences. The environment
compounds the problem by varying atmospheric variables such as
haze and cloud cover. '
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side of the image to the other result in different received radiances even
from the same kinds of objects because reflectivity is a function of look
angle.

When the spectral bandwidths are small enough, it may be assumed
that the product R, 7 for one spectral band is close enough to the product
Rt for an adjacent spectral band so that they may be considered to be
equal. Then, when the backscatter in both bands is small enough to be
negligible, the ratios of the viewed radiances of adjacent bands will be
equal to the ratios of the object reflectivities.

R, =R, 1,0, +b,, energy and reflectivity
relationship for band 1

R,,=R,7,0,+b,, energy and reflectivity
relationship for band 2

in general, (2.2)

R, =R 110;] energy and reflectivity relationship

! . . (2.3
R, =R, 1,0, when backscatter is negligible,
R,, Rty Isratio of received radiances when (2.4
R, R,t,0, backscatter is negligible, '
R

n =2 hen R, 71, =R, 1,. (2.5
Rr2 Ql

Thus, fof a 12-channel scanner, the original 12-tuple (x;, X,,..., X; ),
x; being the energy from the i-th channel, would be normalized to the
11-tuple (xy/x,, X5/X3,..., X11/X;,). Note that with this normalization
procedure, one dimension is lost due to the fact that no information is
obtained when the twelfth channel is normalized.

It is possible to generalize the normalization procedure to take into
account the backscatter if some additional assumptions are made: the
adjacent spectral bands are small enough so that the product Rt is
equal for each three adjacent bands and the backscatter b is equal for
each three adjacent bands. Under this assumption, the ratio (R, — R, )/
(R,,—R.,) equals (¢, —0,)}/(¢, —05). Thus for a 12-channel scanner the
12-tuple (x,...,x;,) would be normalized to the 12-tuple [(x;—x,)/
(2= x3), (X3 = X3)/(x3—Xg), ., (10— %1 )/0x1 1 —X;,)]. KRIEGLER et al.
[2.28] and CrANE [2.29] first reported these normalization techniques.
SMEDES. et al. [2.30] noted that normalization results in more accurate
maps with fewer training areas. NALEPKA and MORGENSTERN [2.31]
indicated that percent identification accuracy can improve especially
for pixels at the edges of an image by the use of these normalizations.
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There are several ways to operate on such uncalibrated imagery to
bring it into various normalized forms. We will discuss a few of them
which are implementable in both hardware and software data pro-
cessing systems. :

Multi-Image Normalization for Viewing Angle, Atmospheric, and Intensity
Variations

Sometimes, due to camera design, the illumination intensity across the
film is not uniform. More light energy falls on the center of the film than
on the edges (off-axis illumination fall-off). Sometimes, due to incorrect
camera exposures or sun and cloud variations, atmospheric haze, or
viewing angle variations, parts of frames or whole frames may be lighter
or darker than normal. Similar sorts of problems occur with moisture
variation in multi-frequency radar imagery and with cloud shadows on
multispectral thermal imagery.

When the variations are only in intensity, normalization of intensity
can be done. In intensity normalization, the assumption is made that the
relevant information concerning crop detection and identification is in
hue and not in color intensity; that is, the information is in the rela-
tionships of one emulsion or channel to another. The procedure is to
take the densities of each emulsion or channel at each resolution cell and
divide them by some weighted sum of the emulsion or channel densities
at that location. The weights in the weighted sum are chosen so that the
resulting sum is proportional to total illumination intensity. In this way
the color in each resolution cell on the multi-image can be standardized
to the same intensity.

When the variations are due to atmospheric aerosol and haze
differences, in addition to look angle differences, the normalization is
imperfect and is more complicated. The usual model relating reflectivity
to energy received is

R.=Rgt0+b, 2.1

where R, is the radiance received at the sensor, R, is the irradiance of the
source, ¢ is the reflectivity of the object, b is the backscatter and sky path
radiance, and 7 is the atmospheric transmissivity.

In general, all parameters may be functions of spectral waveband,
viewing angle, direction, and distance. In processing remotely sensed
imagery, the object reflectance g is usually the feature wanted and under
ideal conditions the received radiance at the sensor can indeed be pro-
portional to ¢. The atmospheric aerosol and haze variations make the
transmissivity ¢ and the backscatter b variable from day to day and from
spectral band to spectral band. The differences in look angle from one
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Single Image Quantization

Consider now a single image in a multi-image set. Perhaps this image had
been in the developer too long or it is visibly pre-fogged or it is over-
exposed or the film was unusually sensitive. Perhaps the scanner detector
lost some of its sensitivity or the A/D converter changed its calibration.
Quantization can make single images invariant to these sorts of changes.

In general, the quantization process divides the range of grey tones
or grey tone levels into K intervals (4, 4,), (A3, A3)..., (Ag, Ag 1) de-
termined in some fashion. A new quantized image is generated from the
original image. Any resolution cell on the original image having a grey
tone lying in the first interval (4, 4,), is assigned on the new image to the
first quantization level; any resolution cell on the original image having
a grey tone lying in the second interval (4,, A;) is assigned on the new
image to the second quantization level, and so on. The quantized image,
therefore, has only K possible grey tones.

There are two common ways which are used to determine the
quantization intervals, depending upon the kind of assumption one is
justified in making as to the nature of the uncalibrated changes. In
equal interval quantizing, the assumption is that the density change can
be described by a simple linear scaling and that the overall darker or
lighter appearance can be described by the addition or subtraction of
some grey tone. To perform equal interval quantizing, the lightest grey
tone A; and the darkest grey tone Ag,, on the original uncalibrated
image are determined. The range Ay ., — A, of grey tones is then divided
into K equal length intervals, each of length (A5, ; —4,)/K. The interval
end points are determined by

A=Ay 4= D0 —A)K, =12 ,K—1.

In this way, two images which are the same except for a linear scaling and
grey tone translation will produce the same equal interval quantized
image. Thus, equal interval quantizing is invariant with respect to
linear transformations.

Another normalization procedure that achieves the same kind of
invariance as discrete equal interval quantizing is to determine the mean
and standard deviation of the grey tones on-the original image and
generate a normalized image by subtracting the mean and dividing by
the standard deviation.

In equal probability quantizing, it is assumed that the original image
differs from the ideal calibrated image by some monotonic function
which can be linear or nonlinear; this assumption implies that any object
which is darker than another object on the original uncalibrated image

W
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will also be so for the ideal calibrated image. To perform equal probability
quantizing, the range of grey tones is divided into K intervals, each of
equal probability. In other words, for any interval (1,, A, ;) of grey tones,
the number of resolution cells on the original image having a grey tone
in that interval is the same as for any other interval and is in fact equal
to (1/K)-th of the total number of resolution cells on the image.

If equal probability quantizing were applied to two images, one a
calibrated image and the other an uncalibrated image differing from the
calibrated image only by a monotonic grey tone transformation, then
the two equal probability quantized images produced from them would
be identical. Hence, equal probability quantizing is invariant with
respect to any monotonic grey tone transformation.

2.3.2 Image Registration, Congruencing, Rectification

In order to create a multi-image set from separate images which might
have been taken of the same area but perhaps at different times or with
different sensors, each individual image must be aligned or spatially
fit with every other image in the set so that there is no geometric distortion
and all corresponding points match. This alignment problem occurs for
multi-image sets which have time simultaneous image combinations from
different sensors (such as radar imagery with multi-band, or multi-band
with scanner imagery), or for time sequential imagery from any sensor(s).
When the individual images are of the same scale and geometry, the
alignment can be done by rotating and translating one image with
respect to another until the cross-correlation between the images (or
between the derivatives of the images) is maximal. The process of aligning
the image by translation and rotation is called registration and devices
which do such translation and rotation are often called image cor-
relators.

When the individual images in the multi-image set have different
geometry, the alignment process is more difficult. Geometrical irregularity
can be caused by 1) a multi-image set containing a combination of
images taken by different types of sensors, each introducing its own kind
of geometric distortion due to the way the sensor operates, or 2) the same
type of sensors having slightly different “look angles” or altitudes, or
3) various sorts of uncompensated platform motion. In this case the
alignment process is called congruencing, since it must literally bring
points into a point by point correspondence. When the congruencing
process has the additional constraint that the image geometry after
congruencing must be planimetric, the process is called image rectifica-
tion.
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Often congruencing or recitification for images in photographic
form is done by one or a sequence of projective transformations with
optical, electro-optical, or electronic equipment. The basic idea of a
projective transformation can be easily visualized by thinking of the
image being on a flat rubber surface. The projective transformation
places a quadrilateral frame on the surface and then pulls or pushes each
side of the frame at a different orientation angle to obtain the desired
geometry. The optical devices perform the projective transformation
on the entire image, while the electro-optical devices are capable of
dividing the image into regions and operating on each region with a
different transformation. The parameters for the transformation can be
determined from supplied ground control points, or by an automatic
cross-correlation scheme such as that employed by the BAI Image
correlator [2.32]. McEweN [2.32a] evaluated various analog tech-
niques for image registration.

A greater degree of flexibility is afforded by the use of a digital
computer to do digital image registration or image congruencing.
Projective transformations, affine transformations, and polynomial
transformations are all possible. Let R and C be the index sets for the
rows and columns of the image and G be the set of grey tones for the
image. Correcting for geometric distortion, or spatially fitting one image .
to another by registering or congruencing, corresponds to constructing
from the input image I, I: Rx C—G, an output image J, J: RxC—G
by some transformation f from the spatial coordinates of the output
image to the spatial coordinates of the input image, i.e. f: Rx C»RxC,
so that the congruenced image can be determined by ‘

Jr, o)=1(f(r, ).

This equation says that for each (row, column) coordinates (r, ¢) in the
output image, the grey tone which we put there is J(r, ¢), and this grey
tone is obtained as the grey tone appearing on the input image I at
coordinates (r, ), where (v, c)= f(r,c). For affine transformations
[2.33,34]

r'=[ayr+a,c+ass]

) (2.6)
¢'=[ayr+ayctassl.
For projective‘transformations [2.35,36]
A r+ag,c+a
r_ 11 12 13 (27)
Q37+ dz,C+ass
Ay P+ 0y,C+dsg

A317+d3,C+d3;3
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For K-th order polynomial transformations [2.37]

r'= [ZLK= 0 th oi a; j"icj]
=K Kb e,

(Notation: [x] means the nearest integer to x.)

These kinds of spatial transformations are intended only to account
for the low (spatial) frequency, sensor-associated spatial distortions
(centering, size, skew, pincushion) and for distortions due to earth’s
curvature, sensor attitude and altitude deviations. Note that since the
pure projective affine or polynomial transformations do not, in general,
produce ¥ and ¢’ as integers, we take whatever values these transforma-
tions give for #" and ¢’ and either interpolate on the grey tones surrounding
these coordinates, or, as shown in our equations, convert them to the
corresponding nearest integers and take the nearest neighbor grey tone.
This means that in actual implementation, all the resolution cells of the
output image are examined and for each one the corresponding co-
ordinates on the input image are determined. Then in the nearest neighbor
interpolation approach, for example, the grey tone on the output image
is defined to be the grey tone appearing in the pixel of the input image
closest to the determined corresponding coordinates.

Having seen how the transformation is implemented, we must now
discuss how the parameters of the transformation are determined.
When the transformation is a simple translation

(2.8)

F=r+a

c'=c+b,
the translation parameters ¢ and b can be determined automatically
using cross correlation or distance measures. If I is the image which

needs to be translationally registered so that it fits image J, the parameters
a and b can be chosen so that

O roer < clr+a, c+b)J(r, ¢)}?
Yiroerxc 2 +a,c+b) Y oerx eI (r ©)
> D trerxcl(F+o, e+ B)J(r, o)}
" Yo+ e+ )Y ger < AT, ©)

for all o, f§ (cross correlation measure),
or (2.9

' Z(r,c}eR X Cu(r+ a,c + b) - J(}", C)HJ é Z(F,C)ER X CII(r + x, C + ﬂ) - J(]", C)|P
for all o,  (distance measure) .
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The above summations over rows and columns are actually taken only
over those points (r,c)e RxC such that (r+a,c+b)eR xC. ANUTA
[2.38] discussed the spatial registration problem from the cross-correla-
tion point of view and implemented the algorithm using the fast Fourier
transform technique. BARNEA and SILVERMAN [2.39] described a sequen-
tial similarity detection algorithm for translational registration. Essential-
ly it is a distance approach implemented in a fast way by not requiring
all terms in the summation to be computed for each translation (c, f).
WEBBER [2.40] combined an affine transformation with a sequential
similarity detection algorithm to determine all the parameters of the
affine transformation.

When the image registration or congruencing problem is more
involved than simple translation it is more difficult to determine the
spatial transformation parameters automatically. Usually, corresponding
ground control points are identified by normal photo interpretation
methods. Care is taken so that the ground control points are not con-
centrated in any one area of the image but to the best possible degree
are spread uniformly across the image. Then a least squares fit is perform-
ed to determine the parameters. In the K-th order polynomial registration
method for K=2, the coefficients of the high-order terms can become
strong functions of the location of the matching ground control points.
This is undesirable. Ya0 [2.41] discussed a piecewise rubber sheeting
process which is less sensitive to ground control point placement.

MARKARIAN et al. [2.37] developed the polynomial approach to
spatial registration and discussed how a point shift algorithm can be
used to speed up the calculations when the actual amount of geometric
correlation needed is small. RTFFMAN [2.42] compared nearest neighbor,
bilinear, and cubic interpolation methods as regards the problem of
generating the grey tone on the output image from non-integer spatial
coordinates on the input image. As expected, the nearest neighbor
interpolation method yields pixel jitter especially for high contrast areas.
The bilinear interpolation is free from pixel jitter but reduces resolution.
The cubic convolution chosen to approximate a (sinx)/x kernel has no
pixel jitter and does not reduce resolution but requires more computa-
tion time.

SzeTO [2.35] described a linear interpolation scheme based on
projective transformations for the rectification of digitized images. He
decomposed the image into quadrilateral subimages and derived a
bound on the maximum error between the interpolation scheme and the
true projection within each quadrant. When the precomputed error in
any quadrilateral subimage exceeds a prespecified limit, the subimage is
further divided and the calculation is repeated.

kY
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2.4 Image Pattern Recognition

2.4.1 Category and Training Data Selection

Once the image data set has been registered or congruenced and the
images appropriately normalized and/or quantized, the most time
consuming task of processing may begin. This task involves familiariza-
tion with the data and the selection of the categories and appropriate
“training data” for them.

The investigator usually has some kinds of land-use categories in
mind between which he would like to distinguish. Hopefully, the senso1(s)
are sensitive enough to spectral, tone, or texture differences so that the
categories can, in fact, be distinguished to a large degree purely on the
basis of the images in the multi-image data set. If this is not the case,
there is no point to going on and either a redefinition of more distingish-
able and reasonable categories must be made or different, more sensitive
sensors must be used. » ‘

Determining the categories to be used is more than a simple matter
of naming them. For example, the naming of the category “wheat” in an
agricultural remote sensing problem is not enough. Not only are there
many kinds of wheat, but the percent of covering of wheat over the
ground for wheat of the same maturity may vary from field to field, and
the percent of weeds in the wheat field may vary. Does a small-area
ground patch the size of a resolution cell consisting of 25% weeds and
75% wheat fall into the wheat category, the weed category, or a mixed
category? What percent cover must the wheat have for the category
identification to change from bare ground to wheat? How are these
variations reflected in the spectral or temporal signatures of these
categories?

How can the investigator tell if his categories form a reasonable set?
The first step is to examine the data structure by looking at histograms or
scattergrams of sampled regions from the different categories. If these
histograms or scattergrams show little overlap between data points of
different categories, then the categories are resonable. If a pair of cate-
gories shows significant overlap for histograms of each channel and/or
scattergrams for each pair of channels, then there is a definite problem
with distinguishing that pair of categories,

"~ Another way of determining possible categories is by cluster analysis
(a topic which we will discuss at greater length in Subsect. 2.4.5) [2.43].
Clustering the training data can determine subclasses having character-
istic centroids and. typically unimodal distributions over the measure-
ment space. A comparison of the data points in each cluster with their
corresponding ground truth characteristics will allow the investigator
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to choose category classes whose data points fall in distinct clusters. He
thereby assures himself that data points from each category are likely
to be discriminated correctly by the decision rule in the pattern identifica-
tion or classification process. Davis and SwamN [2.44] advocated the
clustering approach to category selection. '

When the investigator is satisfied with his category choices, he is
ready to choose his training data from the multi-image. The training data
is given by a specially prepared subset of pixels from the multi-image. The
preparation consists of labeling each point in the training data with its
true category identification. This identification can come from- either
ground truth observation or photo interpretation.

Since the training data are to be used to determine a decision rule
which will make a category assignment for each pixel in the whole
image data set, there are two points to which attention must be paid:
1) the training data for each category must be representative of all data
for that category; 2) the training data for each category must come close
to fitting the distributional assumptions on which the decision rule is
based. For example, point 1) says that if one category is wheat, and there
are some dry and wet wheat fields which are distinguishably different on
at least one image of the multi-image set, then data points from both
kinds of wheat fields must be included in the training data for wheat.
Point 2) says that if the histograms or scattergrams of wheat indicate that
wheat has a bimodal distribution, one mode corresponding to the wet
fields and one mode corresponding to the dry fields, and if the decision
rule is to be based on some unimodal distributional assumption (such as
normal or Gaussian), then for the purposes of the decision rule determina-
tion, the wheat category ought to be split into two subcategories: dry
wheat and wet wheat. Then after the decision rule has made its identifica-
tion assignments for the whole data set, the wet wheat and dry wheat
subcategories can be collapsed to the one category, wheat.

The process of defining training set subcategories when using a
unimodal distributional assumption is important not only for categories
which have obvious subclasses but also for those categories which may
not seem to have subclasses. This observation is prompted by the fact
that in an agricultural context, multispectral data from a single crop field
usually exhibit a unimodal structure, yet the pooled data from several
fields of the same species often exhibit a multimodal character, the
number of modes being nearly equal to the number of fields. Thus
while the unimodal assumption might be appropriate for a single field
it may not be appropriate for a group of fields.

Monte Carlo experimental results by WACKER [2.45] using the
Gaussian classifier verify that increasing the number of subcategories
defined for each category increases the average classifier accuracy over
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many fields and in a pronounced way decreases the classifier variability
on a field by field basis. In other words, having subcategory training
sets when using a Gaussian classifier simultaneously increases identifica-
tion accuracy over the entire image and more evenly or randomly
distributes the identification errors.

A final item to which attention must be paid is the number of samples
for each (sub)category in the training set. Parametric classifiers which
make the unimodal distributional assumption should have a number of
samples per category which at a minimum is between 3 and 10 times the
dimensionality of the pattern vector [2.46]. Non-parametric classifiers
such as a discrete table look-up rule can require orders of magnitude
more samples per category than the parametric classifiers. KANAL and
CHANDRASEKARAN [2.47], and FoLEY [2.46] discussed the relationship
between sample size and dimensionality.

2.4.2 Decision Rule Determination

We first discuss how the training data determine a distribution-free
decision rule, for it is here that we can focus on the essence of decision rules.
Then we will describe some decision rules determined from certain
kinds of distributional assumptions or approximations. In what follows
we denote by “d” the typically 3- or 4-tuple multi-spectral feature vector
and by “c” a land use category. The set of all features is D and the set of
all categories is C. ‘

To determine a distribution free decision rule, the first step is to
estimate the set of conditional probabilities {P,(c)ldeD,ceC}. P/c)
denotes the probability of category “c” being the true category identifica-
tion of a small-area ground patch given that measurements of it generated
feature vector “d”. The conditional probability of category “c” given
feature “d”, P,(c), can be estimated by the proportion of those data
points having true category identification “c” in that subset of the training
data whose measurements generate feature “d”.

Once these conditional probabilities have been computed, commion
sense should reveal the optimal decision rule. Consider the decision
rule’s problem when it tries to assign a category identification to a data
resolution cell with feature vector or pattern “d”. The conditional
probabilities Py(c,), Py(c,)...., P,(cg) have been estimated for categories
C15Cp,...Cx. To decide the category identification for a data point with
feature “d” is an easy matter. Assign it to any category “c,” having
highest conditional probability; that is, assign it to a category “c,” if
and only if

Pd(ck)gpd(ci)7 l=1’ 25"':K'
Such an optimal decision rule is called a simple Bayes rule.
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Sometimes it is more convenient to estimate the set of conditional
probabilities {P{d)|lde D, ceC}. P[(d) is the probability of obtaining a
feature “d” from a small-area ground patch given that the small-area
ground patch has true category identification “c”. The conditional
probability of feature “d” given category “c”, P,(d), can be estimated by
the proportion of training data points having feature “d” in the subset of
training data points having true category identification “c”. Using these
conditional probabilities, the only logical assignment a decision rule
can make of a data point with feature “d” is to assign it to any category
“c,” such that

P, (@)=P(d), i=12, K.

Such a decision rule is called a maximum likelihood rule,

The relationship between the maximum likelihood rule and the
simple Bayes rule is easy to develop. Let us denote by P(d) the proportion
of measurements in the training data having feature “d”, by P(c) the
proportion of measurements in the training data having true category
identification “c”, and by P(d,c) the proportion of measurements
in the training data having feature “d” and true category identification
“c”. Then by definition of conditional probability

P(d d
Po— 1()(21;)’ Pi)= "L }(,(’Cf).

(2.10)

By multiplying the inequality P, (c,)= P,(c;) on both sides by P(d) we
obtain :

Pc)P(d)= Py(c;)P(d). (2.11)
But, P(c,)P(d)= P(d, c;)= P, (d)P(c;). Hence,
Pc)zPyc;) ifandonlyif P,(d)P(c,)=P.(d)P(c;). (2.12)

When the category prior probabilities are all equal, P(c;)=1/K (j=1,
2, ..., K), we obtain Pyc,)= P(c) if and only if P_(d)= P, (d). Therefore,
the simple Bayes rule and maximum likelihood rule are identical if the
prior probabilities P(c), ce C, are all equal.

Use of a distribution-free rule in the digital computer is only possible
under those circumstances in which it is possible to store the set of
conditional probabilities. This storage possibility is strongly conditioned
by the number of categories and the number of quantized levels to which
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each component of the feature vector is expressed. For example, if there
are 10 categories, and if the feature vector has 4 components, and each
component is quantized to 5 levels, then a total of 10 x 5* = 6250 words
1s needed to store the conditional probabilities. This is a reasonable
storage requirement. However, if each component were to be quantized
to 10 levels, then a total of 10 x 10*=10° words of storage are needed
to store the conditional probabilities. This is usually an unreasonable
storage requirement.

There are two approaches to handling the unreasonable storage
problem: The table look-up approach reduces the storage requirement
by careful storage and use of only essential information; the parametric
approach assumes that the conditional probability P,(d) can be expressed
by a formula having only a few parameters which need to be estimated.
The table look-up approach uses more storage than the parametric
approach but is much quicker in performing category assignments than
the more computationally complex parametric approach. The two
approaches are consistent with the observation that memory storage
often can be traded for computational complexity.

Tuble Look-Up Approach

BROONER et al. [2.47a] used a table look-up approach on high altitude
multiband photography flown over Imperial Valley, California, to deter-
mine crop types. Their approach to the storage problem was to perform an
equal probability quantizing from the original 64 digitized grey levels to
ten quantized levels for each of the three bands: green, red, and near
infrared. Then after the conditional probabilities were empirically
estimated, they used a Bayes rule to assign a category to each of the 10°
possible quantized vectors in the 3-dimensional measurement space.
Those vectors which occurred too few times in the training set for any
category were deferred assignment. Figure 2.3 illustrates the decision
regions associated with such a table look-up discrete Bayes decision
rule. Notice how the quantized multispectral measurement vector can be
used as an address in the 3-dimensional table to look up the correspond-
ing category assignment. :

The rather direct approach employed by BROONER et al. has the
disadvantage of requiring a rather small number of quantization levels.
Furthermore, it cannot be used with measurement vectors of dimension
greater than four; for if the number of quantization levels is about 10,
then the curse of dimensionality forces the number of possible quantized
vectors to an unreasonably large size. Recognizing the grey level precision
restriction forced by the quantizing coarsening effect, EPPLER et al. [2.48]
suggested a way to maintain greater quantizing precision by defining a
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7 Alfalfa 5 Lettuce

2 Barley 6 Onion
3 Safflower 7 Pasture
4 Sugar beet 8 Bare soil

Fig. 2.3. Viewed as an expanded cube, each dimension representing the spectral region of
the three multiband images whose density values have been quantized to ten equally
spaced levels, this sketch depicts the decision rule boundaries for each land-use category
used by the discrete’ Bayes rule

quantization rule for each category and measurement dimension as

follows:

1) fix a category and a measurement dimension component;

2) determine the set of all measurement patterns which would be assigned
by the decision rule to the fixed category;

3) examine all the measurement patterns in this set and determine the
minimum and maximum grey levels for the fixed measurement
component; .

4) construct the quantizing rule for the fixed category and measurement
dimension pair by dividing the range between the minimum and
maximum grey levels into equal spaced quantizing intervals.

This multiple quantizing rule in effect determines for each category

a rectangular parallelepiped in measurement space which contains all

the measurement patterns assigned to it. Then, as shown in Fig. 2.4, the

equal interval quantizing puts a grid over the rectangular parallelepiped.
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Fig. 2.4. Tllustrates how quantizing can be done differently for each category, thereby
enabling more accurate classification by the following table look-up rule: 1) quantize the
measurement by the quantizing rule for category 7, 2) use the quantized measurement as
an address in a table and test if the entry is 1 or 0, 3) if it is 1 assign the measurement to
category 7; if it is 0, repeat the procedure for category 2, etc.

Notice how for a fixed number of quantizing levels, the use of multiple
quantizing rules in each band allows greater grey level quantizing
precision compared to the single quantization rule for each band.

A binary table for each category can be constructed by associating
each entry of the table with one corresponding cell in the gridded rect-
angular parallelepiped. Then we define the entry to be 1 if the decision
rule has assigned a majority of the measurement patterns in the cor-
responding cell to the specified category; otherwise, we define the entry
tobe 0.’

The binary tables are used in the implementation of the multiple
quantization rule table look-up in the following way. Order the categories
in some meaningful manner such as by prior probability. Quantize the
multispectral measurement pattern using the quantization rule for cate-
gory ¢,. Use the quantized pattern as an address to look up the entry in
the binary table for category ¢, to determine whether or not the pre-
stored decision rule would assign the pattern to category c,. If the
decision rule makes the assignment to category c, the entry is 1 and all
is finished. If the decision rule does not make the assignment to category
¢y, the entry is 0 and the process repeats in a similar manner with the
quantization rule and table for the next category.

One advantage of this form of the table look-up decision rule is the
flexibility of being able to use different subsets of bands for each category
look-up table and thereby take full advantage of the feature selecting
capability to define an optimal subset of bands to discriminate one
category from all the others. A disadvantage of this form of rule is the
large amount of computational work required to determine the rect-
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angular parallelepipeds for each category and the still large amount of
memory storage required (about 5000 8-bit bytes per category).

EpPLER [2.49] discussed a modification of the table look-up rule
which enables memory storage to be reduced by five times and decision
rule assignment time to be decreased by two times. Instead of pre-
storing in tables a quantized measurement space image of the decision
rule, he suggested a systematic way of storing in tables the boundaries
or end-points for each region in measurement space satisfying a regularity
condition and having all its measurement pattern assigned to the same
category. :

Let D=D,xD,x...xDy be the measurement space. A subset
RCD,; xD,x...x Dyisaregular region if and only if there exist constants
L, and H, and functions L,, L, ..., Ly, H,, Hs, ..., Hy

(Ln:Dl ><I)ZX"' XDn*l_)(—ooa OO):

H,:D xD,x...xD,_;—(—00, ) @13)
such that
R={(x{,....,xy)eD|L, <x,<H,
Lalxi)=x;, = Hy(x,) (2.14)
LN(xl,x2,'...,xN_l)nggHN(xl,xz, e Xn—1)}

From the definition of a regular region, it is easy to see how this table
look-up by boundaries decision rule can be implemented. Let d=(d;, ...,
dy) be the measurement pattern to be assigned a category. To determine
if d lies within a regular region R associated with category ¢ we look up
the numbers L, and H, and test to see if d, lies between L, and H,. If
so, we look up the numbers L,(d,) and H,(d,) and so on. If all the tests
are satisfied, the decision rule can assign measurement pattern d to
category c. If one of the tests fails, tests for the regular region correspond-
ing to the next category can be made.

The memory reduction in this kind of table look-up rule is achieved by
only storing boundary or end-points of decision regions, and the speed-up
is achieved by having one-dimensional tables whose addresses are easier
to compute than the three- or four-dimensional tables required by the
initial table look-up decision rule. However, the price paid for these
advantages is the regularity condition imposed on the decision regions
for each category. This regularity condition is stronger than set con-
nectedness but weaker than set convexity.

Another approach to the table look-up rule can be based on ASHBY’S
[2.50] technique of constraint analysis. ASHBY suggested representing
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in an approximate way subsets of Cartesian product sets by their projec-
tions on various smaller dimensional spaces. Using this idea for two-
dimensional spaces we can formulate the following kind of table look-up
rule.

Let D=D, x D, x ... x Dy be the measurement space, C be the set of
categories, and JC{1,2,..., N} x {1,2,..., N} be an index set for the
selected two-dimensional spaces. Let the probability threshold o be
given. Let (i, j)eJ; for each (x,, x,)eD; x D; define the set S;(x,, x,) of
categories having the highest conditional probabilities given (x;, x,) by
Sifx1, x;)={ceC|P,, .,(c)=;)}, where o;; is the largest number which
satisfies

eesiern Py O Z 00 (2.15)

S;{x,, x,) is the set of likely categories given that components i and j of
the measurement pattern take the values (x,, x,).
The sets S;;, (i, j)eJ, can be represented in the computer by tables.
In the (i, j)-th table S;; the (x,, x,)-th entry contains the set of all categories
of sufficiently high conditional probability given the marginal measure-
ments (x,, x,) from measurement components i and j, respectively. This
set of categories is easily represented by a one-word table entry; a set
containing categories ¢y, ¢4, ¢q, and ¢, ,, for example, would be represent-
ed by a word having bits 1, 7, 9, and 12 on and all other bits off.

The decision region R(c) containing the set of all measurement
patterns to be assigned to category ¢ can be defined from the S;; sets by

R(©)={(d,,d,, ....,dy)eDy x D, x ... x Dy|

2.16

{c}= m("i,j)eJ Sifd;, dj)} . ( )
This kind of table look-up rule can be implemented by using successive
pairs of components (defined by the index set J).of the (quantized)
measurement patterns as addresses in the just mentioned two-dimensional
tables. The set intersection required by the definition of the decision
region R(c) is implemented by taking the Boolean AND of the words
obtained from the table look-up for the measurement to be assigned a
category. Note that this Boolean operation makes full use of the natural
parallel computation capability that the computer has on bits of a word.
If the k-th bit is the only bit which remains on in the resulting word, then
the measurement pattern is assigned to category c,. If there is more than
one bit on, or no bits are on, then the measurement pattern is deferred
assignment (reserved decision). Thus we see that this form of a table
look-up rule utilizes a set of “loose” Bayes rules in the lower dimensional
projection spaces and intersects the resulting multiple category assign-
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ment sets to obtain a category assignment for the measurement pattern
in the full measurement space.

Because of the natural effect which the category prior probabilities
have on the category assignments produced by a Bayes rule it is possible
for a measurement pattern to be the most probable pattern for one
category yet be assigned by the Bayes rule to another category having
much higher prior probability. This effect will be pronounced in the
table look-up rule just described because the elimination of such a
category assignment from the set of possible categories by one table
look-up will completely eliminate it from consideration because of the
Boolean AND or set intersection operation. However, by using an
appropriate combination of maximum likelihood and Bayes rules,
something can be done about this.

For any pair (i, j) of measurement components, fixed category ¢, and
probability threshold B, we can construct the set 7;{(c) of the most
probable pairs of measurement values from components i and j arising
from category c. The set T;,(c) is defined by

Tij(c): {(x1, x,)eD; x Dj|Pc(x17 Xz)Zﬁij(C)} s (2.17)
where f;(c) is the largest number which satisfies

Z(xl,xz)eTij(c) Pn(xla xz) zﬁ .

Tables which can be addressed by (quantized) measurement components
can be constructed by combining the S;; and T;; sets. Define Q, (x;, x,) by

Qij(xla x,)={ceCl(x,, x,)e Tij(c)}USij(xlz X,). (2.18)

The set Q;(x,, x,) contains all the categories whose respective condi-
tional probabilities given measurement values (x;, x,) of components
i and j are sufficiently high (a Bayes rule criterion) as well as all those
categories whose most probable measurement values for components
i and j, respectively, are (x, x,) (@ maximum likelihood criterion). A
decision region R{c) containing all the (quantized) measurement patterns
can then be defined as before using the Q;; sets

R(c)={(d,,d,, ...,dy)eD{ X D,... X Dy
{c}= ﬂ(i,j)eJ Qu(di, dy)}.

(2.19)

A majority vote version of this kind of table look-up rule can be
defined by assigning a measurement to the category most frequently
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selected in the lower dimensional spaces

R(e)={(d,d,,....,dy)eD x Dy x ... x Dyl
{0 ))eJlce Qifd;, d)} = 4 {(i, Je JIc'€ Q;(d;, )
for every c¢’'eC—{c}}}. (2.20)

Multivariate Normal Assumption

The other approach to easing the storage requirement of the decision
rule entails making assumptions about the form the conditional prob-
ability P(d) takes. By expressing P/d) as a formula with only a few
parameters which have to be estimated, storage is saved and computa-
tional complexity is increased. The most frequent distributional assump-
tion made is the N-dimensional multivariate normal or Gaussian one.
Here, the conditional probability is a unimodal function and represented
as a formula of the form

1

—(x—pe) I ta(x —p,
Cry P2z |72 € # w2 (2.21)

Pd)=

where p. is the mean vector of categoryc,and X, is the covariance matrix
for category c. The maximum likelihood rule then takes the form: a
small-area ground patch having feature “d” is assigned to any category
¢, where

1

i e e e .
= s !me‘ pEENH2 Gy 0 KL (222)

e~ T He IS (x—pe,)/2

The simple Bayes rule takes the form: a smal] -area ground patch having
feature “d” is assigned to any category “c,” where

P(cy) R
oz, M

T e, ) Tat (6= ey )2

P(c;) VR ‘
:We Ge=pe,) Bt (x=pe,)/2 i=1,2,...,K. (2.23)

Taking logarithms on both sides of the inequality we can see that the
Bayes rule under a multivariate normal assumption takes the form of a
quadratic computation. When the covariance matrices are all equal,
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there is considerable simplification in the maximum likelihood rule
which then takes a linear form: a small-area ground patch having feature
“d” is assigned to any category “c,” where

apd—1t,; =0, foreach i=1,2 .. ,K, (2.24)
where

Qy=2" 1(Hck - ,Uci)
and

b= (1/2) (e, — 1e)' 2™ (e, + e, -

The functions fi(d)=aud—t,, i=1,2,..,K, k=1,2,.. K are called
linear discriminant functions. More detailed discussions of linear and
quadratic decision rules may be found in [2.51] and in the review article
by NaGy [2.52]. The book by SEBESTYEN [2.53] is also a good general
reference. See ANDERSON and BAHADUR [2.54] for a discussion of the
optimal linear decision rule under the multivariate normal assumption
for unequal covariance matrices.

2.4.3 Feature Selection

Multi-image data sets, whether stored in analog form on video tape or
on film, or stored in digital form on digital magnetic tape, typically
contain on the order of 10° distinctly resolvable data points with each
data point being-an N-tuple, N=3 for color film and up to N=12 or
more for a multispectral scanner. Most processing algorithms treat
each data point independently and this implies that there are on the order
of 10° separate decisions which the decision rule must make. In order to
enable the decision rule to do its job quickly and simply, it is prudent to
give the decision rule the least amount of simple non-redundant informa-
tion which enables it to do its job well. The process of selecting what
information to present to the decision rule is called feature selection.

Feature selection algorithms for multi-image data sets are usually
based on the fact that the images in the set contain highly redundant
information. This is easily understood if we consider the fact that images
in neighboring spectral bands taken at the same time or images taken
within short time intervals (a few days or weeks) in the same spectral
band are highly correlated. Feature selection can then be thought of as
choosing that set of, say, three or four images of the multi-image set
which minimize the errors which the decision rule makes.

Let I be an index set for the different bands of a multi-image. Let n,
the number of bands we wish the decision rule to work with, be given.
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Then for each subset S of I indexing exactly n bands of the multi-image,
application of a decision rule will produce a probability of error P(S).
P(S) is the probability that the decision rule will make an incorrect
assignment on some data point when allowed to use only those bands
indexed by S. Clearly, the best set of bands to use is that set S which
minimizes the probability of error; that is,

P(S)<P(S) forall S'CI satisfying
#8 =n.

It often is the case that the error probabilities are difficult to compute.
This is especially so when the domains of the parametric probability
density functions are large dimensional spaces. Thus measures have
been sought which are easier to compute for parametric functions and
which are closely related to probability of error.

If we let P(i,j;S) be the joint probability that a data point from
category j will be assigned by the decision rule to category i when the
decision rule is only allowed to use the n bands indexed by the set S,
then the probability of error P,(S) can be written as the sum of all the
above joint probabilities for which i=:

PS)=YE D P(i;S). (2.25)

JFi

If we consider the probability of error to be the probability of error
incurred by a Bayes decision rule, then dropping the notational dependence
on the index set S we may express P,(i, j) by

Pe(iaj): ngA; P(g~ cj) H (226)

where P(g, ¢;) is the joint probability of a pattern being in class ¢; and
having value g and

A;={geGlP(g,c)=P(g,c,),n=1,2,...,K}. (2.27)
Noticing that the set B;; defined by
B;j={geGl|P(g, c)=P(g, c))} (2.28)

contains the set of points 4; we must have

Pe(ia ]): ZQEA,‘ P(Qa C})é ZgEBij P(Q: Cj) . (229)
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HGDCS, Pe(i’ J)+Pe(]= 1)§ ZgéBij P(ga Cj)+ deBﬁ P(g’ Ci)= ZQGGmin {P(ga Cj)’
P(g, ¢;)}. Since min {a, b} <]/ ab, we have

Pe(ivj)+ Pe(j’ l)é deG I/ P(gv Ci)P(g’ Cj)
é / P(Ci)P(Cj) deG )/ Pc,(g)PcJ(g) . (230)

The number

Qij= deG / Pci(g)ch(g) (2.31)

is called the pairwise Bhattacharyya coefficient for categories ¢; and c;
and provides an upper bound on the error probability [2.55]

P(S)= Z{(:_1l Zf'(:iﬂ |/ P(Ci)P(Cj)Qij(S)§%ZiK;11 5'{=i+ 1 Qij(S)~

(2.32)

Using this inequality, one way of choosing the feature index set S
having n elements is to compute the upper bound over all possible index
sets having n elements and choose the one having the smallest upper
bound. When the number of bands is large, this exhaustive search is
rather expensive in terms of the number of possibilities it must account
for. A suboptimal procedure is to construct S iteratively. For the first
element of S, choose that feature which alone yields the lowest upper
bound on error probability. For the next element of S, take that feature
which when used with the previously chosen features yields the lowest
upper bound on error probability, and so on [2.56].

For categories having normal distributions, ¢;; can be computed in
terms of the mean and covariance matrices

—Ing;;= %(Mf"#j)'z_ Y _ﬂj)

+11n 2]
2121z,

A

, (2.33)

where X' =3(X;+X).

The Battacharyya coefficient is not the only measure of category
probability distribution separability employed to find bounds on error
probabilities. The use of divergence to measure separability between
distributions was first suggested by KuLrLBaCK [2.57]. MARILL and
GREEN [2.58] proposed it for use in recognition systems, and KAILATH
[2.59] suggested it could be used in signal processing applications and
showed its close relationship to probability of error in pattern discrimina-
tion problems. The divergence between two conditional probability
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functions for categories ¢; and c; is the number d;; defined by

Pig)
dij= Y.gec [Pef9)— P (9)]In Pl (2.34)

For categories having normal distributions, the divergence d;; can be
computed in terms of the mean and covariance matrices:

dij=jtrace(X,—Z )X =271
+7(:ui—.uj)(2i +Zj_1)(:ui_ﬂj)- (2.35)

Under the normal assumption, the Bhattacharyya coefficient and
divergence are related by an inequality

0;;=e” %8 with equality when X,=2,,
so that

YA Y ez Y Y e (2.36)
Since P()=3Y K" YK L 09

the inequalities go the wrong way to let the divergence establish a bound
on the error probability. Nevertheless, the criteria of maximizing the
minimum of the pairwise divergence or maximizing the average divergence -
d,.. have been proposed [2.60—62]

2 Kot

daye= KK—1) fmiv1 dij

(2.37)

Comparison between the use of the Bhattacharyya coefficient and the
average divergence for band or feature selection reveals the superiority
of the Bhattacharyya coefficient [2.63]. SwaIN and KING [2.63a] have

observed that minimizing the average of the transformed divergence dr
defined by

2 _ —dy;
dr= I—C(?—_l“)zfi DY ST (2.38)

is a better feature selection criterion than minimizing the average
divergence. The exponential form is, of course, motivated by the form of
the inequality relating divergence and the Bhattacharyya coefficient.
Fu et al. [2.14] discussed a general separability measure which
relates more closely than divergence does to the probability of error
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achievable by a minimax linear decision rule under a multivariate
normal assumption. They define the separability measure S;; between
the i-th and j-th classes by

bifdui— 1)
S..= i Hy 2.39
U B Eb) R+ (B 2 ) 239

i [ YA

where the vector b;;, the difference between the i-th and j-th linear
discriminant functions, takes the form

b= Zi+ (1= 24)Z) ™ (i — 1) (2.40)
and /;; is the Lagrange multiplier satisfying

b5 % —(1=2,)?Z)b;;=0, 0=<2;=1. (2.41)

ij

Then

P(S)= Y&, j'(: Pl )E Y Zj'(:l P(c))P(c)) IE‘; e dx
JFi JjFi (242)
so that the separability measure can be used as a bound on the error

probability achievable by a minimax linear decision rule and feature
selection can be done by choosing features which minimize

K YK Pe)P(c) [2, e 2dx . (2.43)
JjFi

A different form, slightly easier to compute than the error bound
indicated above, is the average separability which Fu et al. [2.14]
suggested maximizing

1K=_11 5‘<=i+1 P(Ci)P(Cj)Sij- (2.44)
Other distance or distance-like separability measures suggested for

feature selection have been:
1) The Jeffreys-Matusita distance defined by [2.64, 65]

{Doea [V Pel@) =)/ P 917} . (2.45)

2) The Kolmogorov variational distance defined by [2.59]

%deG |P(g7 ci)— P(ga Cj)l . . (246)
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3) The Kullback-Liebler number defined by [2.66]

P.(g9)
Lo P“ P.(9)

P.(g). (247)

4) The Mahalanobis distance defined by [2.67]

(=) " =) (2.48)
5) The Euclidean distance defined by

{Dgea [Pef9)— P (917} (2.49]

The Euclidean distance has been related to an upper bound on probability
of error [2.68] which is looser than the upper bound obtained by the
Bhattacharyya coefficient. The Kolmogorov variational distance is
Intimately related to probability of error [2.59]

Po(is )= 3(Pc))+ Ple) = 3 Y ge [Plg, ) — Plg. c)] - (2.50)

In this subsection we have used the criterion that the best features are
those which minimize the error probability. Clearly this is an optimal
criterion for selecting which bands to use and which ones not to use. A
different kind of feature selection problem can be posed by asking what
are the combinations of the multispectral bands that can best represent,
in a mean square error sense, the information contained in all the bands.
In this kind of problem a function is sought which represents each
measurement pattern in a compressed form in a smaller dimensional
space in such a way that if the original measurement pattern were to be
reconstructed from the compressed measurement, the average squared
error between the reconstruction and the original would be minimized.
The transformation which achieves this minimum turns out to be
linear and is obtained as the K x N matrix whose rows are the K eigen-
vectors with corresponding largest eigenvalues of the second moment
matrix of the entire data set. The representation is called the principal
components representation ([2.69]). VIGLIONE [2.70] discussed a feature
selection process which uses normality assumptions to determine
optimum quadratic discriminant functions in the subspace, and then an
interactive process based on minimizing an exponential loss function
using sample pattern separation to select, evaluate, and weight the
quadratic discriminant features and form a piecewise quadratic dis-
criminant boundary in the original signal space.
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Principal component feature selection has the advantage that it does
not depend on the choice of categories, and although examples can be
constructed illustrating how minimum mean square error may not pre-
serve distinctions between categories, READY et al. [2.71] provided evi-
dence that this tends not to happen with remote sensing spectral data. They
indicated that 3 or 4 principal component features may be used from
12-channel multispectral data with essentially no decrease in the prob-
ability of correct category identification. HARALICK and DINSTEIN [2.72]
used principal components as a feature selection method for their iterative
clustering procedure applied to remote sensing multispectral scanner
imagery. ReEapY and WiNTz [2.73] indicated that spectral feature
selection by principal components results in feature patterns with a
better signal to noise ratio than in the original image bands. TAYLOR
[2.74] described how the principal components representation can be
used to enhance false color combinations of multiband imagery.

2.4.4 Estimating Decision Rule Error

Once a decision rule has been determined, it is important to estimate the
percentage of errors which the decision rule makes. To do this another
subset of data from the multi-image must be chosen and each point in
this data set must be labeled with its true category identification. This
data set is called the “prediction data”, and for the error estimates to be
accurate, the prediction data set must be 1) as representative as the
training data set was required to be, and 2) independent of the training
data. )

For any given category “c” there are two types of errors which the
decision rule can make: it can assign a small-area ground patch whose

TP

true category identification is “c” to some category ¢'=¢, an error of

[T

misidentification or misdetection for category “c”; or, it can assign a
small-area ground patch whose true category identification is “c’”,
¢'+c, to category “c”, an error of false detection for category “c”. Both
these kinds of errors are easily estimated by applying the decision rule
to the prediction data and comparing the true category identification of
each point with the category identification assigned by the decision rule.
Let us denote by P;; the proportion of points in the prediction data
having true category identification “c;” and decision rule assigned

identification “c;”. The total probability of correct identification can be
estimated by

K Py Y Py (251)
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Given that a point has true category identification “c;”, the probability
that it will be misidentified is

Zf‘- 1 Py / Y5 P (2.52)

Given that a point has true category identification “ck”, ck:#ci, the
probability that it will be falsely identified as category “¢;” can be
estimated by

Y& P /[1— YK P, (2.53)

jEi

Sometimes a more easily interpreted false identification error probability

can be computed as Y ¥, P;; / Y%, P; which is the proportion of those
JjFi

small-area ground patches falsely identified as category “c,” out of the

set of all small-area ground patches identified correctly or incorrectly

@,

as category “c;

2.4.5 Clustering’

We introduce our discussion of clustering by contrasting it to the
decision rule algorithms used in pattern discrimination. With pattern
discrimination techniques, a training set of data is gathered for which the
correct category identification of each distinct entity in the data is
known. Then estimates are made of the required category conditional
probability distributions and a decision rule is determined from them.
The decision rule can then be employed to identify any other data set
gathered under similar conditions. With clustering techniques there is
no training data set or decision rule. Rather, natural data structures are
determined. Distinct structures are then interpreted as corresponding
to distinct objects or environmental processes.

The advantage of the discrimination techniques is that the scientist is
able to decide the types of environmental categories among which he
wishes to distinguish. The decision rule then determines, as well as
possible, to which environmental category an arbitrary datum belongs.
The disadvantage of the discrimination techniques is that they are
sensitive to mis-calibrations which cannot be normalized out. Any
difference between the sensor calibrations or state of environment for
the training data and the new data will cause error.

! See also [2.75].
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The advantage of the clustering techniques is that they are not
sensitive to calibration errors which shift or stretch measurement space
in minor ways. Two small-area patches of corn growing in the same field
will be detected as being similar because they have similar grey tones
associated with them. The disadvantage of the clustering techniques is
that they are not able to name the distinct environment structures they
determine.

A wide variety of iterative procedures can be used to cluster remotely
sensed image data and there is no general theory of clustering [2.76-79].
Each scheme involves grouping together of similar data. Perhaps the
most popular clustering technique for remotely sensed data is the K-
means or ISODATA technique [2.80-83]. Here each data point is put
into that cluster for which the squared distance between it and the cluster
mean is least. Then new cluster means are computed and the whole pro-
cedure repeated. On each repetition the total squared distance between
the data points and the cluster means is guaranteed not to increase.
There are numerous variants concerned with what to do when a cluster
is too big, too small, etc.

Many clustering procedures deal with measurements in ways that do
not consider the natural order or arrangement of the measurements.
Indeed, for many problems, the order in which the measurements are
taken or the spatial distribution of the units under consideration are
irrelevant to the clustering process. This is not the case for remotely
sensed image data. When the resolution of the image data is properly
selected, each object of interest yields many measurements. Therefore,
resolution cells in the same neighborhood are likely to belong to the
same object. We call procedures that take into account these kinds of
spatial relations between neighboring resolution cells spatial clustering
procedures.

Some of the spatial clustering ideas being explored by investigators
in the remotely sensed data area closely parallel those of investigators
in the artificial intelligence community, which has been an active user
of spatial information from scene data. Much artificial intelligence work
has gone into the definition of homogeneous region and into edge
detection. BRICE and FENNEMA [ 2.84] described a procedure for partition-
ing an image into a large set of primitive regions each of which is typically
a connected component having the same grey tone. Then a merging
algorithm can be applied to group together those regions having similar
tone. Gradient and derivative algorithms can be used to find edges
[2.85-88]. So we see that scene analysis and spatial clustering can have
much in common.

HarALick and KELLY [2.89] discussed a spatial clustering procedure
designed to take into account the spatial dependencies which nearby
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pixels have in remotely sensed imagery. Spatial clusters are grown around
those resolution cells having grey tone n-tuples of high relative frequency
in their own local neighborhoods. The spatial growing proceeds by
taking in resolution cells spatially neighboring those resolution cells
already in the cluster and having grey tone n-tuples which neighbor in
measurement space some of the grey tone n-tuples of the resolution cells
already in the cluster.

NAGy et al. [2.90] based a spatially oriented clustering procedure on a
chaining idea proposed by BONNER [2.47]. In the first step, points are
assembled into row strips. This is based upon the assumption that
“spatially adjacent grey tone n-tuples tend to belong to the same type
of ground cover except at field boundaries”. Examining the resolution
cells along the scan lines, similar resolution cells are assigned to strips.
Each strip is terminated only when the addition of the grey tone n-tuple
of the next resolution cell would increase the internal scatter of the strip
above a given threshold. At that point, the formed strip is assigned to a
cluster (or designated to start a new cluster), and the formation of a new
strip begun. The assignment of a strip to a cluster is done by a measure-
ment space comparison of the strip to the cluster centers. The search for
a cluster is done in decreasing order of cluster size in order to save
computation time and to eliminate small groups of abnormal grey tone
n-tuples.

JAYROE [2.91] introduced a three step spatial clustering procedure for
multi-images. Two gradient images are obtained by computing the
measurement space Euclidean distance between nearest neighbors in the
horizontal and vertical directions. A boundary map is then prepared by
thresholding of gradient images. In the second step, clusters are formed
by scanning the boundary map with a fixed size square of resolution
cells. When the square hits a region in which there are no boundary cells,
that region is assigned to cluster 1. The square is then moved farther, and
if no boundary cells are encountered, all the resolution cells within the
square are assigned to cluster 1. The scanning continues until all possible
cells are assigned to that cluster. Next, the square is moved until it hits a
new region with no boundary cells, and the process is repeated. In the
third step, clusters are merged according to their spectral measure-
ments. :

ROBERTSON et al. [2.92] describe a procedure for successively parti-
tioning a multi-image into rectangular blocks. However, the final
clustered images produced by the algorithm yield images which suffer
from excessive blockiness.

HaraLICK and DINSTEIN [2.72], like JAYROE [2.91], discussed a
spatial clustering procedure based on gradient images. In the first step
the gradient image is computed, thresholded, and cleaned, thereby
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creating a binary image showing homogeneous areas. In the second step,
the maximally connected spatial regions of the cleaned image are
computed. In the third step a measurement space clustering procedure
is applied to the distinctly labelled connected regions to determine
spatial regions of similar spectral character.

2.5 Image Texture

Spatial environments can be understood as being spatial distributions
of various area-extensive objects having characteristic size and reflective
or emissive qualities. The spatial organization and relationships of the
objects appear as spatial distributions of grey tone on imagery taken of
the environment. We call the pattern of spatial distributions of grey
tone, texture.

Figure 2.5, taken from [2.93], illustrates how texture relates to
geomorphology. It shows plains, low hills, high hills, and mountains in
the Panama and Columbia area, as seen by the Westinghouse AN/APQ97
K-band radar imaging system. The plains have an apparent relief of
0-50 m, the hills 50350 m, and the mountains more than 350 m. The
low hills have little dissection and are generally smooth convex surfaces,
whereas the high hills are highly dissected and have prominent ridge
crests. '

The mountain texture is distinguishable from the hill texture on the
basis of the extent of radar shadowing (black tonal areas). The mountains
have shadowing over more than half the area and the hills have shadowing
over less than half the area. The hills can be ranked from low to high on
the basis of the abruptness of tonal change from terrain front slope to
terrain back slope.

Figure 2.6, taken from [2.94], illustrates how texture relates to
geology. It shows igneous and sedimentary rocks in Panama, as seen by
the same radar system. Figure 2.6i, k, | show a fine-textured drainage
pattern which is indicative of non-resistant fine-grained sedimentary
rocks. The coarser texture of Figure 2.6h, left half, is indicative of coarser-
grained sediments. A massive texture with rugged and peaked divides
(Fig. 2.6a—e) is indicative of igneous rocks. When erosion has nearly
base-leveled an area, the texture takes on the hummocky appearance of
Fig. 2.6g.

Figure 2.7, taken from [2.95], illustrates how texture relates to land
use categories. Here, there are six land use categories as they appear on
panchromatic aerial photography. Notice how the texture of the wooded
area is coarser and more definite than that of the scrub area. The swamp
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Mountains

Plains

n 0
Fig. 2.5a—p. Illustrates how texture relates to geomorphology. (Taken from [2.93])

and marsh generate finer textures than the wood or scrub areas. The
swamp texture is finer than and shows more gradual grey tone change
than the marsh texture.

Figure 2.8 is taken in the Pisgah Crater area and shows some examples
-where the same type of terrain generates a variety of textures within the
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Fig. 2.6a-1. Illustrates how texture relates to geology. (Taken from [2.94])

same texture family. Here, the texture changes are due to the way the
vegetation increases in size and disperses.

There have been six basic approaches to the measurement and
characterization of image texture: autocorrelation functions [2.96],
optical transforms [2.97], digital transforms [2.98-100], edgeness [2.88],
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No. 1, Scrub No. 66, Marsh No. 41, Swamp
(ETL No. 815-N2) (ETL No. 4373B) (ETL-No. 43-TB)

No. 56, Marsh No. 7, No. 27, River
(ETL No.53-T3A) Heavily wooded (ETL No. 88-R)
area (ETL No.
697—-N1A)

Fig. 2.7. Illustrates how texture relates to land use categories. (Taken from [2.95])

structural elements [2.101,102], and spatial grey tone co-occurrence
probabilities [2.103; 104]. The first three of these approaches are related
in that they all measure spatial frequency directly or indirectly. Spatial
frequency is related to texture because fine textures are rich in high
spatial frequencies while coarse textures are rich in low spatial frequen-
cies.

An alternative to viewing texture as spatial frequency distribution is
to view texture as amount of edge per unit area. Coarse textures have a
small number of edges per unit area, while fine textures have a high
number of edges per unit area.

The structural element approach uses a matching procedure to
detect the spatial regularity of shapes called structural elements in a
binary image. When the structural elements themselves are single
resolution cells, the information provided by this approach is the auto-
correlation function of the binary image. By using larger and more
complex shapes, a more generalized autocorrelation can be computed.

The grey tone co-occurrence approach characterizes texture by the
spatial distribution of its grey tone. Coarse textures are those for which
the distribution changes only slightly with distance and fine textures are
those for which the distribution changes rapidly with distance.
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Fig. 2.8. Shows some examples where the same type of terrain generates a variety of textures
within the same texture family

2.5.1 Optical Processing Methods and Texture

O’NEILL’s [2.105] article on spatial filtering introduced the engineering
community to the fact that optical systems can perform filtering of the
kind used in communication systems. In the case of the optical systems,
however, the filtering is two-dimensional. The basis for the filtering
capability of optical systems lies in the fact that the light amplitude
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distributions at the front and back focal planes of a lens are Fourier
transforms of one another. The light distribution produced by the lens
is more commonly known as the Fraunhofer diffraction pattern. Thus,
optical methods facilitate two-dimensional frequency analysis of
images.

The paper by CutroNa et al. [2.106] provided a good review of
optical processing methods for the interested reader. More recent books
by GoobMAN [2.107], SHULMAN [2.108], PrestoN [2.109] and HUANG
[2.110] comprehensively survey the area.

In this section, we describe the experiments done by LENDARIS and
STANLEY [2.97], EGBERT et al. [2.111], and SWANLUND [2.112] using
optical processing methods for aerial or satellite imagery. LENDARIS and
STANLEY illuminated small circular sections of low altitude aerial
photography and used the Fraunhofer diffraction pattern to derive
features for identifying the sections. The circular sections represented
circular areas on the ground 750 feet in diameter. The major category
distinction they were interested in making was man-made versus non-
man-made. They further subdivided the man-made category into roads,
road intersections, buildings, and orchards.

The pattern vectors they used from the diffraction pattern consisted
of 40 components. Twenty components were averages of the energy in
rings on the diffraction pattern, and 20 were averages of the energy in
9° wedges on the diffraction pattern. They obtained over 90% identifica-
tion accuracy.

EGBERT et al. [2.111] used an optical processing system to examine
the texture on ERTS imagery of Kansas. They used circular areas
corresponding to a ground diameter of about 35 km and looked at the
diffraction patterns for the areas when they were snow covered and when
they were not snow covered. They used a diffraction pattern sampling
unit having 32 sector wedges and 32 annular rings to sample and measure
the diffraction patterns. (See [2.113] for a description of the sampling
unit and its use in coarse diffraction pattern analysis.) They were able to
interpret the resulting angular orientation graphs in terms of dominant
drainage patterns and roads, but were not able to interpret the spatial
frequency graphs, which all seem to have had the same character: the
higher the spatial frequency, the less the energy in that frequency band.

SWANLUND [2.112] has done work using optical processing of aerial
images to identify species of trees. Using imagery obtained from Itasca
State Park in northern Minnesota, photo-interpreters identified five
(mixture) species of trees on the basis of texture: Upland hardwoods,
Jack pine overstory/Aspen understory, Aspen overstory/Upland hard-
woods understory, Red pine overstory/Aspen understory, and Aspen.
They achieved classification accuracy of over 90%.
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2.5.2 Texture and Edges

The autocorrelation function, the optical transforms, and the fast digital
transforms (FFT and FHT) basically all relate texture to spatial frequency.
ROSENFELD and THURSTON [2.88] conceived of texture not in terms of
spatial frequency but in terms of edgeness per unit area. An edge passing
through a resolution cell is detected by comparing the values for local
properties obtained in pairs of nonoverlapping neighborhoods bordering
the resolution cell. To detect microedges, small neighborhoods must be
used. To detect macroedges, large neighborhoods must be used.

The local property which ROSENFELD and THURSTON suggested was
the quick RoBERTs gradient (the sum of the absolute values of the dif-
ferences between diagonally opposite neighboring pixels). Thus, a
measure of texture for any subimage is obtained by computing the
RoBerTs gradient image for the subimage and from it determining the
average value of the gradient in the subimage. TRIENDL [2.114] used the
Laplacian instead of the ROBERTS gradient.

SurtoN and HALL [2.115] extended the ROSENFELD and THURSTON
idea by making the gradient a function of the distance between the
pixels. Thus, for every distance d and subimage I defined over a neighbor-
hood N of resolution cells, they compute

g d)=¢.ney G P—1G+d, P +IE )= 1 —d, j)

The graph of g(d) is like the graph of minus the autocorrelation function
translated vertically. SurtoN and HarLrL [2.115] applied this textural
measure in a pulmonary disease identification experiment using radio-
graphic imagery and obtained identification accuracy in the 80 percentile
range for discriminating between normal and abnormal lungs when
using a 128 x 128 subimage.

2.5.3 Digital Transform Methods and Texture

In the digital transform method of texture analysis, the digital image is
typically divided into a set of non-overlapping small square subimages.
Suppose the size of the subimage is nxn resolution cells; then the n?
grey tones in the subimage can be thought of as the components of an
n?-dimensional vector. In the transform technique, each of these vectors
is re-expressed in a new coordinate system. The Fourier transform uses
the sine-cosine basis set, the Hadamard transform uses the Walsh
function basis set, etc. The point of the transformation is that the basis
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vectors of the new coordinate system have an interpretation that relates
to spatial frequency (sequency), and since frequency (sequency) is a close
relative of texture, we see that such transformations can be useful.

GRAMENOPOULOS [2.98] used a transform technique using the
sine-cosine basis vectors (and implemented with the FFT algorithm)
on ERTS imagery to investigate the power of texture and spatial pattern
for terrain type recognition. He used subimages of 32 by 32 resolution
cells and found that on Phoenix, Arizona, ERTS image 1049-17324-5,
spatial frequencies larger than 3.5 cycles/km and smaller than 5.9 cycles/
km contain most of the information needed to discriminate between
terrain types. The terrain classes were: clouds, water, desert, farms,
mountains, urban, riverbed, and cloud shadows. He achieved an overall
identification accuracy of 87 %.

HORNUNG and SmitH [2.99] have done work similar to that of
GRAMENOPOULOS, but with aerial multispectral scanner imagery instead
of ERTS imagery. MAURER [2.115a] used Fourier series analysis on color
aerial film to obtain textural features to help determine crop types.

KIrviDA and JOHNSON [2.100] compared the fast Fourier, Hadamard,
and slant transforms for textural features on ERTS imagery over Min-
nesota. They used 8x8 subimages and five categories: Hardwoods,
Conifers, Open, Water, City. Using only spectral information, they
obtained 74 % correct identification accuracy. When they added textural
information obtained from the slant transform, they increased their
identification accuracy on the training set to 99%. They found little
difference between the different transform methods, although per-
formance' using 4 x4 subimages was poorer than that using 8 x 8 sub-
images.

2.5.4 Spatial Grey Tone Dependence: Co-Occurrence

One aspect of texture is concerned with the spatial distribution and
spatial dependence among the grey tones in a local area. Bixsy et al.
[2.116] used restricted first and second order Markov meshes. DARLING
and JosepH [2.117] used statistics obtained from the nearest neighbor
grey tone transition matrix to measure this dependence for satellite
images of clouds and were able to identify cloud types on the basis of
their texture. READ and JAYARAMAMURTHY [2.118] divided an image into
all possible (overlapping) subimages of reasonably small and fixed size
and counted the frequency for all the distinct grey tone patterns. This is
one step more general than DARLING, but requires too much memory if
the grey tones can take on very many values. HARALICK and co-workers
[2.104, 119, 120] suggested an approach which is a compromise between
the two: to measure the spatial dependence of grey tones in a co-occur-
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rence matrix for each fixed distance and/or angular spatial relationship,
and use statistics of this matrix as measures of image texture. JULESZ
[2.121] provided evidence that the human visual perception system
discriminates texture on the basis of co-occurrence statistics.

The co-occurrence matrix P=(p;;) has its (i, j)-th entry p;; defined as the
number of times grey tone i and grey tone j occur in resolution cells of a
subimage having a specified spatial relation, such as being distance 1
neighbors. The textural features for the subimage are obtainable from the
co-occurrence matrix by measures such as

DY Y.ipd
and

ST
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HARALICK et al. [2.103, 104] listed 14 different such measures.

Using statistics derived from the co-occurrence matrix, HARALICK
performed a number of identification experiments. On a set of aerial
imagery of eight terrain classes (old residential, new residential, lake,
swamp, marsh, urban, railroad yard, scrub and wooded), he obtained
829% correct identification with 64 x 64 subimages. On an ERTS Monterey
Bay, California, image, he obtained 84% correct identification using
64 % 64 subimages and both spectral and textural features -on seven
terrain classes: coastal forest, woodlands, annual grasslands, urban
areas, large irrigated fields, small irrigated fields, and water. On a set of
sandstone photomicrographs, he obtained 89% correct identification on
five sandstone classes: Dexter-L, Dexter-H, St. Peter, Upper Muddy,
Gaskel. The wide variety of images on which it has been found that grey
tone co-occurrence carries much of the texture information is probably
indicative of the power and generality of this approach. ‘

2.5.5 A Textural Transform

Each of the approaches described above for the quantification of textural
features has the common property that the textural features were
computed for subimages of sizes such as 8x 8, 16x16, 32x32, and
64 % 64 resolution cells. To determine textural features for one pixel we
would center a subimage on the specified resolution cell and compute
the textural features for the subimage. If we had to determine textural
features for each pixel in an image, this would requirea lot of computation
work and would significantly increase the size of our data set. Thus the
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usual approach has been to divide the image into mutually exclusive
subimages and compute textural features on the selected subimages.
Unfortunately, this procedure produces textural features at a coarser
resolution than the original image.

In this section we use grey tone co-occurrence textural matrices to
define a textural transform, and show how by only doubling or tripling
the computation time required to determine the matrix it is possible
to produce a resolution-preserving textural transform in which each
pixel in the transformed image has textural information about its own
neighborhood derived from local and global grey tone co-occurrences
in the image. This kind of textural transform belongs to the class of
image dependent non-linear spatial filters.

Let Z. x Z_ be the set of resolution cells of an image I (in row-column
coordinates). Let G be the set of grey tones that can appear on image 1.
Then I: Z x Z,—G. Let R be a binary relation on Z, x Z, pairing together
all those resolution cells that are in the desired spatial relationship. The
co-occurrence matrix P, P: G x G—[0, 1], for image I and binary relation
R is defined by

_ # {((a, b), (c, d)eR|I(a, b)=i and I(c,d)=]}

P(i.) —

(2.55)

The textural transform J, J: Z, x Z,—(— o0, o), of image I relative to
- function f; is defined by

J0:)= i Viavmsrs /LU 0, T B (256

Assuming f to be the identity function, the meaning of J(y, x) is as
follows. The set R(y,x) is the set of all those resolution cells in Z.xZ.,
that are in the desired spatial relation to resolution cell (¥, x). For any
resolution cell (a, b)e R(y, x), P(I(y, x), I(a, b)) is the relative frequency by
which the grey tone I(y, x), appearing at resolution cell (1, x), and the grey
tone I(a, b), appearing at resolution cell (a, b), co-occur together in the
desired spatial relation on the entire image. The sum

Z(a,b)eR(y,x) P(I(y’ X), I(aa b))

is just the sum of the relative frequencies of grey tone co-occurrence over
all resolution cells that are in the specified relation to resolution cell
(», x). The factor [ 4 R(y, x)] !, the reciprocal of the number of resolution
cells in the desired spatial relation to (y, x) is just a normalizing factor.
Figure 2.9 illustrates the 0.82 to 0.88 micrometer band of some multi-
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Fig. 2.9a—c. Hllustrates the 0.82 to 0.88 pm band of some multispectral scanner imagery
taken at 10000 feet over the Sam Houston National Forest, March 21, 1973. The image
is shown in its original form, and after a 2 x 2 and 3 x 3 rectangular convolution. (a) 1 x 1
original of band 9 in edit No. 9, SAMH3 S19; (b) 2x 2 convolution of band 9 in edit
No. 9, SAMH3 829; (c) 3 x 3 convolution of band 9 in edit No. 9, SAMH3 $39

spectral scanner imagery taken at 10000 feet over the Sam Houston
National Forest, March 21, 1973. The image is shown in its original
form, and after a 2x2 and 3 x3 rectangular convolution. Figure 2.10
shows the respective textural transforms of the three images of Fig. 2.9
where the spatial relation R consists of all pairs of 8-neighboring
resolution cells in Z, x Z,. HARALICK [2.122] indicates that classification
accuracy improves when both spectral and textural transform features
are used on a Skylab S-192 image.

ZUCKER et al. [2.123] discussed a different kind of textural transform
based on spot detectors. Applying a spot detector to an image having
two different textures, the spot size matching the coarseness of one of the
textures, and then averaging the resultant image, they show that it is
easy to segment the image into its two textures.
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Fig. 2.10a—c. Shows the respective textural transforms of the three images of Fig. 2.9.
(a) 1 x 1 before and 1 x 1 after T x T, SAMH3 Q19; (b) 2 x 2 before and 1 x 1 after T x T,
SAMH3 Q29; (c) 3 x 3 before and 1 x 1 after 7 x T, SAMH3 Q39

5

2.6 Near Real Time Hardware Processing

The ease with which remote sensors can inundate the investigator with
data strongly indicates the virtue of a processing system which can
process the data quickly. Hardware processing, although limited to
performing rather simple basic functions, has the great advantage of
near-real-time operation. In this section we survey the typical kinds of
operations easily done in a near-real-time hardware system.

Basically, there are two types of image format inputs that a hardware
system can have: film or print, and video tape. Systems which have
black and white film or print inputs have the advantage of being usable
with the most common form of image format data. However, they have
the associated problem of registration. The analog tape input usually
comes from a multispectral scanner sensor so that the individual images
(channels) are already registered on the tape.

Hardware system outputs usually include forms of black and white
and color displays. The black and white display can be used for examining



Automatic Remote Sensor Image Processing 53

the images, one by one, or for showing simple two-category discrimina-
tions. The color display may be used to show a processed false color
enhanced image or a color map indicating multi-category discrimina-
tions.

Those hardware systems having registration problems usually input
the images using independently controllable flying spot scanners or
vidicons. The operator manually registers the images by adjusting the
rotation, translation, and scale controls of the input devices while
quickly flickering between the displayed images. Images which are not
in registration show on the flickered display a displeasing interference
movement which indicates in what way the images have to be rotated,
translated or scaled to be put in registration.

There are at least eight basic processing operations which a near-real
time hardware device can perform either singly or in various sequences
depending on the required processing function. They are:

1) level slicing or thresholding to produce binary images,

2) Boolean operations on binary images to produce new binary images,

3) differentiation for boundary detection,

4) linearly combining images for enhancement or calculation of discri-
minant functions,

5) quadratically combining images for enhancement or calculation of
discriminant functions,

6) determining which of a set of signals is the maximum for category
assignments,

7) analog to digital conversion or quantizing,

8) table look-ups for category assignments.

A level slicer or thresholder produces a binary {0, 1} output which is
1 whenever the video signal-it is operating on is between two adjustable
thresholds, and 0 at all other times. Two or more level slicers may
operate simultaneously on different signals and their binary outputs
may be ANDed together, thereby producing category decision boundaries
which are rectangular parallelepipeds. However, should the images be
linearly combined in two or more linear combiners and then level sliced
and ANDed, the category decision boundaries would take on the more
general form of parallelepipeds; should they be quadratically combined
in two or more quadratic combiners, then level sliced and ANDed
together, the category decision boundaries would be piecewise quadratic
surfaces. In general, the combiner/level slicer combination implements
a decision rule for a two-category problem.

If an image is differentiated and displayed, the boundaries can be
enhanced. If it is first differentiated and then thresholded, its boundaries
can be detected. If two or more images are differentiated, and then the
thresholded differentiated outputs are ORed together, all the boundaries
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on the set of images can be detected. In this case, the differentiator/
thresholder combination implements a two category decision rule:
boundary, no boundary.

The linear or quadratic combiners may be used by themselves to
produce a false color image enhancement. For example, if the images
are combined with one combiner driving each primary color in a color
display, false color image enhancement results.

The linear or quadratic combiners may be used in conjunction with
the maximum selector to implement a multi-category decision rule. In
this rule,-the combiners act as discriminant functions and the maximum
selector determines which combiner has the largest signal. The decision
rule then assigns the category associated with the combiner having the
largest signal being processed.

The papers by MARSHALL and KRIEGLER [2.124] and ANDERSON et al.
[2.54] describe the hardware processing systems at the Universities of
Michigan and Kansas, respectively. ~

2.7 Software Processing

Although software processing of image data on a general purpose digital
computer is more costly and definitely slower than near-real time, it has
the advantage of great versatility. In fact, software can be written to
mmplement any well defined processing task of finite length. LILLESTRAND
and Hoyt [2.125] reviewed the nature of the.rapidly evolving digital
systems for image processing. They characterize the system by the rate
at which digitized imagery can be processed, by the complexity of the
processing algorithms, and by the type of output produced. In this
section we discuss the different formats in which multi-images are
stored and the necessity of checking the A/D conversion process, and
describe some of the basic library programs which any software processing
system must have.

There are relatively few published descriptions of software systems.
JosepH et al. [2.126] discussed a pattern recognition system for re-
connaissance applications. In a continuing series of papers, JosepH and
co-workers [2.127-129] described a system for the interactive prepro-
cessing of image data. They discussed both the computer hardware
configuration and the required image processing functions. FRIEDEN
[2.129a] discussed the VICAR system developed at the Jet Propulsion
Laboratory. BeBB et al. [2.130] presented an overview of image proc-
essing systems. HOFFER [2.131] gave a brief user’s description of
LARSYAA, a software system designed to analyze multispectral scanner
data at Purdue University. JARVIS [2.132] discussed interactive image
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processing and pattern recognition systems based on minicomputers.
GamBINO and CROMBIE [2.133] described the DIMES software system
(Digital Image Manipulation and Enhancement System). TURINETTI
and HorFrMANN [2.134] explained how OLPARS (On-Line Pattern
Analysis and Recognition System) can be used to process remotely sensed
image data. An Electromagnetic Sensing Laboratory report [2.135] de-
scribes the IDIM system (Interactive Digital Image Manipulation).

2.7.1 Multi-Image Formats

Since image processing systems must handle such large amounts of data,
they are usually input-output bound. This makes the format in which the
multi-image data are stored quite important. There are two basic kinds
of formats for storing multi-image data. In what we shall call photo
format, all the grey tones from the first image are stored as integers in a
row by row logical record format on the first file. This file is followed by all
the grey tone integers from the second image, also stored in a row by row
logical record format, and so on. In what we shall call the corresponding
point form, the grey tone integer fromthe first image’s first resolution cell,
first line, is followed by the grey tone integer from the secondimage’s first
resolution cell, first line, ..., followed by the grey tone integer from the last
image’s firstresolution cell, first line, ..., followed by the grey tone integer
fromthe firstimage’s last resolution cell, first line, followed by the grey tone
integer from the second image’s last resolution cell, first line, and so on.
Each such multi-image line of integers is stored as a logical record.

A format perhaps more versatile than the photo or corresponding
point format is one which stores line 1 of image 1 followed by line 1of
image 2, ..., followed by line 1 of image N, and so on. Noticing that
logical records are subimages, we see that the line format can be genera-
lized to a subimage format where each logical record is a subimage of
say K, rows by K, columns.

Editing, congruencing, registering, digital printer displaying and
texture analysis are most quickly done with data in photo form, while
most other operations such as feature extraction, clustering or pattern
identification are done more conveniently in corresponding point
format. :

To conserve magnetic tape or disc storage space, speed up 1/O time,
and make more effective use of buffer space, the grey tone integers are
often packed two, three or four integers per computer word. The packing
is usually done by special machine language FORTRAN callable
subroutines which convert a line or subimage of compacted integers
at a time.
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2.7.2 Checking A/D Ceonversion of Image Data

The first problem any image processing software system has to handle is
the checking of the digital image conversion process. The digital tapes
must be checked to verify that the A/D conversion was done successfully.
Preliminary checking can be done by dumping the first few records on the
tape; however, this is by no means a complete check. The image display
program can make a complete check by outputting the tape in picture
format on the digital printer, creating the grey tones by overprinting.
If the number of resolution cells on the image is large enough to make
the printing of the digital image awkward, or display of it impossible, a
program may be utilized which reduces the image size by averaging
blocks of N x N resolution cells or by selecting every N-th row and
every N-th column.

Examination of the digital picture output should indicate what kind
of editing needs to be done on the sides and top and bottom of the image,
as well as indicating skewing and A/D conversion distortion. (Skewing
can occur because it may be impossible to start digitizing each line of the
image in exactly the same place. A/D conversion distortion can occur
when jitter or noise external to the A/D conversion makes the conversion
go awry.) If necessary, a deskewing program may have to be used to
remove skew, and a special smoothing-replacement program may have
to be used to operate on those resolution cells which were improperly
converted. Histograms are helpful in identifying and isolating failure of
individual A/D conversions.

2.7.3 User Oriented Commands and Library Programs

The heart of any image processing software system is its utility library
programs, written in modular form, which perform each kind of special
processing task. For ease of writing the library programs, transferring
them to various computers, or understanding them, the programs are
usually written in a universally available high level language such as
FORTRAN, rather than in machine assembly language. Each library
program or set of programs implements a specific user oriented command
which can be input in a free format form. The library typically contains
programs for image displaying, editing, scaling, registering, congruencing,
mosaicking, selecting, quantizing, filtering, clustering, feature extraction,
texture analysis, and pattern recognition.

The display commands can display an image either on a video CRT
screen [2.136] or by using the digital printer. The printer can overprint
characters to obtain shades of grey and use different color ribbons to
obtain color map displays.
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The editing commands can print out the grey tone values for any
subimage, replace all occurrences of one grey tone value by another,
change the grey tone in any one resolution cell from one value to another,
and locate the next occurrence of any specified grey tone. The image
scaling commands can either decrease the size of the image by sampling
grey tones at every K -th pixel vertically and K,-th pixel horizontally,
or increase the size of the image by duplicating each pixel K, times
vertically and K, times horizontally.

The registering command can translate any image vertically or
horizontally so that it is aligned with another image; then it can combine
the aligned images into a multi-image. The congruencing command can
change the geometry of any image to the geometry of another image and
then combine the images into a multi-image by the registering operation.
The mosaicking command can paste together images in a side by side
manner. The selecting or subimage command can construct a new image
consisting of any specified size subimage from any set of bands of a
multi-image.

The quantizing command can quantize or contrast stretch an image
by an equal interval or equal probability quantizing procedure. The
filtering command performs a spatial filtering of the image by a specified
point spread function.

The clustering, feature extracting, texture, and pattern recognition
operations are much more complex than the utility operations just
described. However, one processing operation universally included in
this set has the capability to compute histograms and scattergrams of
any portion of any image or for any ground truth category of an image.
Histograms or scattergrams are usually displayed on the line printer, or
more conveniently on a CRT with alphanumeric as well as line generating
abilities. '

Ideally, all user oriented programs should accept image data in a
standard format and accept data parameters and control information
in a free-format manner. System routines should provide for error pro-
cessing and dynamic storage allocation.

2.8 Conclusion

We have briefly discussed aspects of the automatic processing of remotely
sensed imagery. We have indicated the importance of various normalizing,
feature extraction, decision rule determination and clustering algorithms.
We have discussed processing from a hardware and software perspective.
Hopefully, we have provided enough insight about the vocabulary and
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concepts of the automatic data processing world to enable a scientist
to read and understand the remote sensing papers in his field which
deal with automatic data processing.
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