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We describe a nonparametric pixel appearance probability model to represent
local image information. It allows an optimal image analysis framework that in-
tegrates low- and high-level stages to substantially improve overall accuracy of
object reconstruction. In this framework, feature detection would be an overall
consequence rather than an intermediate result. The pixel appearance probability
model is a probability density function obtained by grid quantization. The grid
is found by a genetic algorithm and a local refinement algorithm. The density
values are computed by smoothing neighboring cells. We apply the pixel appear-
ance probability model to represent features of echocardiographic images. We
illustrate the substantially improved performance on left ventricle surface recon-
struction due to the proposed pixel appearance probability model.

1. Introduction

The ultimate goal of medical image analysis is to acquire quantitative represen-
tations of objects that are of medical concern from observed images. In echocar-
diography, one objective is to create a three-dimensional (3-D) left ventricle (LV)
surface model, including the epicardium (EPI), the outer surface of the LV, and the
endocardium (ENDO), the inner surface of the LV. A standard two-stage approach
to achieve this aim comprises feature detection and object reconstruction. Feature
detection is a procedure to classify each pixel into categories such as edges and re-
gions. Established techniques based on pixel intensities and their derivatives, known
as low-level operators, are able to reliably perform feature detection on images of
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good quality. Detected features are fed into an algorithm for object reconstruction,
known as high-level methods. Such a two-stage framework is computationally effi-
cient and can work well in many applications when image quality is not a major
concern. However, noisy imagery is particularly common in ultrasound imaging.
Under uncertainty due to low signal-to-noise ratio, low-level feature detection by
only inspecting information in the local neighborhood of each pixel is inaccurate. To
overcome the unreliable feature detection, we advocate an image analysis framework
that integrates low- and high-level stages to substantially improve overall accuracy
of object reconstruction.

Rather than using detected features to represent information in the images,
we will adopt a much richer representation of the low-level information using a
grid quantization technique. Statistical and computational efficiency considerations
lead to this choice. This representation is nonparametric and carries less biases
than a parametric one such as an appearance based model using a multivariate
normal distribution. The intension of designing a new nonparametric technique is
to alleviate the online computation and storage burden of standard nonparametric
ones. The quantization grid is trained either in conjunction with a high-level model
or directly from low-level groundtruth.

The grid quantization technique is used to obtain the pixel appearance prob-
ability model in three steps. In the first step, a globally good grid is found by a
genetic algorithm; in the second step, the grid is refined by a fast local algorithm; in
the last step, probability density values are obtained for each cell in the grid. This
technique is more practical and is subject to less biases than other methods.

Training of the pixel appearance probability model usually involves much more
than a single run of grid quantization. The reason is that the pixel classification is
not available or unreliable. We provide a generalized EM algorithm to handle such
situations when only images and object models are available with no edge infor-
mation. The algorithm completely solves the optimal estimation of the probability
density functions in the integrated model for object reconstruction.

We applied the pixel appearance probability model in reconstructing the 3-D
left ventricle surface model from 2-D images. We are able to reduce the error by
about 2.6mm when compared with a standard two-stage approach.

In this chapter, we will first review related work to pixel appearance probability
models in Section 2. We describe the integrated framework in Section 3 and explain
the role of a pixel appearance probability model in an integrated framework. In
Section 4, we deal with the technicalities of grid quantization. We introduce a pixel
appearance probability model for echocardiographic images in Section 5 and a pixel
class prediction probability model in Section 6. A method to train the two models is
given in Section 7, when low-level edge information is not available. We illustrate the
performance of 3-D left ventricle surface reconstruction in Section 8. In Section 9,
we summarize this chapter.
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2. Related Work

Chakraborty et al integrate gradient and region information when performing pixel
classification.1 The region information is modeled by Markov random fields with no
shape statistics applied. Cootes et al model image pixels by the statistical active
appearance models,2,3 which are equivalent to parametric multivariate normal prob-
ability models. They combine the active appearance models and the active shape
models to find the best 2-D contour from images. Pixel classification decisions are
still made but might change during the model fitting iterations. This iterative classi-
fication scheme allows shape statistics to guide the local feature detection, although
it may not necessarily be optimal in the Bayesian sense. As far as we have found
in the literature, only Mignotte and Meunier have explored the idea of modeling
shapes from images without an explicit feature detection stage.4 Their treatment is
more or less intuitive and lacks for a systematic account. By contrast, we will use
the Bayesian framework to integrate the low-level image information and high-level
prior shape knowledge through a pixel class prediction mechanism. We model the
low-level image information by a statistically effective and computationally efficient
grid quantization technique.

To represent image feature vectors, parametric statistical models are widely used
in general and Gaussian distributions in particular. However, in a noisy imaging
environment, Gaussian models or other simple parametric models are not effective
because of their large modeling biases. Standard nonparametric kernel methods
are seldom employed owing to their low efficiency when dealing with millions of
feature vectors, which do not really form an especially large sample size for pixel
based applications. An alternative to kernel methods is quantization, which is a
function that maps a larger set to a smaller one. Two steps are performed during
quantization: discretization and representation. The discretization step determines
the size and shape of the cells by partitioning the larger set into smaller subsets.
The representation step assigns summary statistics to each cell.

For discretization, equal bin width histograms or their simple extension in multi-
dimensions are often adopted, because they are computationally efficient to obtain
and apply. However, they are not statistically effective for two reasons. First, the
cells are blindly allocated in advance, not adapting to the data. Second, the nor-
malized frequency may be zero for many cells and there is no guarantee for the con-
sistency of the density estimates. The statistically equivalent blocks approach is an
early tree structured partitioning scheme.5 The CART algorithm is a tree-structured
classifier.6 Grid-based partition scheme are studied, e.g., multivariate ASH,7 STING
algorithm,8 OptiGrid algorithm,9 STUCCO algorithm10 and Adaptive Grids.11 All
the multivariate discretization approaches proposed are sub-optimal algorithms;
most of them are greedy. For tree-based algorithms, it is evident since a tree is
constructed level by level using a certain greedy method and does not possess a
global optimal measure. A grid can be acquired randomly.12,13 The grid lines can
be equally spaced.7 A grid is improved by merging adjacent intervals by hypothesis
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testing.10 The adaptive grids technique merges dense cells.11

Splines or local polynomials have been used to delineate a probability den-
sity function over the cells, but they are not computationally efficient in a multi-
dimensional space. On the other hand, using the empirical density leads to empty
cells. Existence of empty cells is particular prominent in a high dimensional
space, due to the increased sparsity of data. WARPing14 and averaging shifted
histograms15 smooth cell density estimates. Otherwise there are relatively few meth-
ods. We will present a closely related smoothing method for grid quantization.

3. A Framework to Integrate Low- and High-Level Stages

Although the pixel appearance probability model to be discussed can be used sepa-
rately from high-level object reconstruction, it is best understood under a framework
that integrates the low- and high-level processes. We explain here the integrated
framework. We use a Bayesian framework to formulate the overall object recon-
struction problem:

max
Θ

p(Θ|Z) (MAP Rule),

where Θ is the object model, Z is the feature vector of a pixel, p(Θ|Z) is the posterior
probability of Θ given Z. This formulation is known as the maximum à posteriori
(MAP) rule. By Bayes’ Theorem, the MAP rule is equivalent to

max
Θ

p(Θ|Z) = max
Θ

p(Θ)p(Z|Θ)
p(Z)

∝ max
Θ

p(Θ)p(Z|Θ), (1)

where p(Θ) is the prior probability of object model Θ and p(Z|Θ) is the conditional
probability of observed feature vector Z given an object model Θ. We also call
p(Z|Θ) the object appearance model, capturing the overall imaging system behavior.

The prior probability p(Θ) can be assessed through ways depending upon the
application. For a surface object model, it can be the prior probability characterizing
smoothness, or the shape of the objects, or several user input points. p(Z) is the
probability of observing a particular feature vector Z, the knowledge of which is
only necessary when the exact posterior probability is desired. Computing p(Z|Θ)
directly is difficult because of the many degrees of freedom of the feature vector Z.

Feature detection precisely avoids finding the functional form of p(Z|Θ). We use
Y to denote the class label of a pixel, marking each pixel to be visible as either on
or off the object. If we can detect the class labels for each pixel, we can search for
an object model Θ∗ that fits the class labels best, instead of fitting to the original
images. These two stages, i.e., feature detection and model fitting, form a standard
approach of object reconstruction, summarized as Alg. 1. P (Y |Z) is the posterior
of a class label Y given the feature vector Z. p(Z|Y ) is the likelihood of the class
label Y for the feature vector Z. p(Θ|Y ) is the posterior of the object model Θ
given the class label Y . P (Y |Θ) is the likelihood of the object model Θ for the
class label Y . Estimation of p(Z|Θ) is not necessary in this framework. Instead we
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Algorithm 1 Two-stage object reconstruction.
Stage 1. Feature detection. Find Y ∗ that solves

max
Y

P (Y |Z) ∝ max
Y

P (Y )p(Z|Y );

Stage 2. Model fitting. Find Θ∗ that solves

max
Θ

p(Θ|Y ∗) ∝ max
Θ

p(Θ)P (Y ∗|Θ).

estimate p(Z|Y ) and P (Y |Θ), as well as apply suitable priors P (Y ) and p(Θ). If
we can detect the class label Y from the feature vector Z with strong confidence,
the two-stage approach can work well. However, if we have to detect class labels on
fuzzy images, the two-stage framework does not yield an optimal Θ∗ because the
detected class label Y ∗ from the first stage may be unreliable.

In the integrated approach to be proposed, we will not assign a class label to each
pixel, but will profile each pixel by probabilities of having different class labels. We
still need the class label Y to avoid direct off-line estimation and online computation
of p(Z|Θ). Although it is not directly observable, a class label serves as a hidden
bridge between the feature vector Z and the object model Θ. Under the assumption
that an object model Θ1 inferred from both the feature vector Z and the class label
Y has the same probability distribution as the object model Θ2 inferred from only
the class label Y , we can obtain the following theorem.16

Theorem 1: (Integrated object inference) The posterior probability of an object
model Θ given the observed feature vector Z can be written as

p(Θ|Z) =
p(Θ)
p(Z)

K∑
y=1

P (Y = y|Θ)p(Z|Y = y), (2)

with the assumption p(Θ|Z, Y ) = p(Θ|Y ).

The integrated object inference theorem leads to the integrated approach of object
model optimization

Θ∗ = argmax
Θ

p(Θ)
∑

y

P (Y = y|Θ)p(Z|Y = y), (3)

where Θ∗ is an optimal object model. The interpretation behind the integrated
approach is as follows. Every image pixel is assigned a likelihood profile of being
different classes p(Z|Y ). Another class probability P (Y |Θ) profile is predicted from
an object model. When the likelihood profile P (Y |Z) and the predicted class prob-
ability profile P (Y |Θ) match well, the object model that generates the predicted
class probability profile is a good explanation of the images. If p(Z) can be calcu-
lated, we can get the posterior p(Θ∗|Z) which indicates the goodness of the solution
Θ∗. When P (Y |Z) has a single narrow peak, the maximization of p(Θ|Z) can be
approximated by the two-stage approach. However, the two-stage approximation
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generally is not optimal in the sense of the Bayesian framework and may lead to
less consistent results. We call P (Y |Θ) the Pixel Class Prediction (PicPre) proba-
bility model, meaning that the class label Y can be predicted probabilistically from
a given object model Θ. We call p(Z|Y ) the Pixel Appearance (PixApp) probability
model, because p(Z|Y ) depicts probabilistically the appearance of a pixel with the
class label Y .

4. Grid Quantization

Grid quantization we describe is a nonparametric statistical pattern recognition
technique. It partitions the space into hyper-rectangular cells shown in Fig. 1 and
estimates the probability density for each cell. Nonparametric methods do not nec-

Fig. 1. The grid partition pattern.

essarily guarantee a minimum variance estimate. However, it does not have the
potentially large modeling biases inherent in parametric models that do not fit
reality. Nonparametric models usually require larger sample size than parametric
models, since the degrees of freedom of nonparametric models are usually much
greater than parametric models. However, larger sample size almost always implies
more CPU cycles and memory capacity. Best control variables in a nonparametric
model are typically determined during the time consuming off-line training, which
might be affordable in many situations, for example, some medical imaging appli-
cations. The online CPU cycles and the memory requirement are evidently high for
standard nonparametric models, which might be unacceptable in some applications.
For example, a kernel method often estimates the density value for a single point
from the sample directly, typically involving the entire data with the implication
that time and space are at least in proportion to sample size.

Grid quantization intends to alleviate the online computation and storage bur-
den of standard nonparametric techniques. Grid quantization finds the most effec-
tive nonparametric representation of the data, for given computation resources, in
terms of CPU cycles, memory requirement and the targeted performance. It re-
quires an intensive off-line training in order to determine the best representation.
Grid quantization possesses the scalability to trade more resources for performance.
In contrast, it is prohibitive to scale most other nonparametric models. A grid quan-
tization locates the most important regions in the feature space which are then finely
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quantized, while unimportant regions are coarsely quantized. What determines im-
portance relies on the pattern recognition task. We will use average log likelihood,
entropy, classification accuracy, or convex combination of them. Kernel methods
treat equally everywhere in the space and for unimportant regions, there exists the
potential of wasting resources. A concern might arise for the quantization effect,
but to accomplish acceptable results does not necessarily entail infinite resolution
quantization. Since a grid is constructed by adapting to the data, the quantization
effect can be minimized for a particular pattern recognition task.

We choose grid quantization pattern because it is a reasonable tradeoff between
computational and statistical efficiencies. Other options are less attractive. For an
equal spacing grid, retrieval efficiency is linear in the dimension and does not depend
on the number of cells. However, an equal spacing grid may not be statistically effi-
cient. Variable spacing grid lines can dramatically improve the statistical efficiency
while having low computational complexity. A tree structured quantization pattern
can have very high statistical efficiency and low computational complexity, but to
optimize a tree for a global criterion is a hard problem. Almost all tree structured
quantizers use greedy approaches. An irregular quantization pattern can further im-
prove statistical efficiency, but the computational complexity could be much higher
– more expensive to use than a kernel method. Another consideration to choose
a grid pattern is that smoothing can be carried out efficiently. The purpose of
smoothing is to improve the generalization ability of a quantizer. Smoothing of a
grid quantizer is analogous to pruning a tree structured quantizer.

A quantizer is constructed off-line on training data by optimizing a certain per-
formance measure. Training is two fold. The first is to achieve as good performance
as possible on the training data. The second is to obtain a consistent density esti-
mate of each cell by smoothing. Our smoothing strategy is a close approximation
to the kN spacing approach. The latter subdivides the space into cells such that
each cell contains kN data points. It has been shown that the kN density estimate is
both L1

17 and L2
15,18 consistent. A quantizer is used online by table-lookup. A cell

is located for a given data vector and then the density value of that cell is returned.
The density value can finally be used to address a particular pattern recognition
task.

4.1. Notations, Definitions and Problem Statement

Let the random vector X ∈ RD represent an individual data or pattern. X(d) is the
d-th dimension random variable of X. We call the sequence XN = {x1, x2, · · · , xN}
a data set or a sample of size N . This set contains i.i.d. data vectors from x1

to xN . Let K be the total number of classes and {1, 2, · · · ,K} be the class label
set. Let random variable Y ∈ {1, 2, · · · ,K} be the class assignment of X. We call
the sequence YN = {y1, y2, · · · , yN} the class assignment set of XN , where x1 has
class label y1, x2 has class label y2 and so on. We also consider a more general case
where the class assignment is not exclusive, but instead weighted. Let random vector
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W ∈ [0, 1]K be the weighted class assignment vector. W (y) is the weight for class
y. We also require

∑K
y=1W (y) = 1. We call the sequence WN = {w1, w2, · · · , wN}

the weighted class assignments of the data set XN .

Definition 2: A quantizer Q is a function that maps RD to I. I, called quantization
index set, is a finite set of integers or integer vectors.

Definition 3: A quantization cell of Q is a set C ⊂ RD such that for any x1, x2 ∈ C,
Q(x1) = Q(x2).

For each cell, we assign an index q ∈ I to it. We use the function notation q = Q(x)
to denote that x is quantized to q or x belongs to cell q. We use N(y) to denote the
total number of class y data in XN , that is

N(y) =
N∑

n=1

wn(y).

Let Nq be the total number of data in cell q. Let Nq(y) be the total number of data
of class y in cell q, that is

Nq(y) =
∑

n∈{n|q=Q(xn)}

wn(y).

Let L be the number of cells. The index to the first cell is q = 1, and the last cell
q = L.

Let pX|Y (x|Y = y) be the class y conditional probability density function
(p.d.f.). We use p̂X|Y (x|Y = y) to denote the estimated p.d.f. In most cases, we
shall drop the subscript X|Y from pX|Y (x|Y = y) and p̂X|Y (x|Y = y) to simplify
the notation. The overall grid quantization problem is to estimate the p.d.f.s

pX|Y (x|Y = 1), pX|Y (x|Y = 2), · · · , pX|Y (x|Y = K),

such that a certain quantizer performance measure T (), which we will define later,
is maximized for the training data XN , YN or WN . It is equivalent to solving

max
Q

T (XN , YN ) or T (XN , WN ). (4)

4.2. The Performance Measure of A Quantizer

The quantizer performance measure includes three components: log likelihood, en-
tropy and correct classification probability. We explain each of them as follows.

4.2.1. Log Likelihood

Kullback-Leibler divergence from p̂(x) to p(x) is

D(p||p̂) =
∫
p(x) log

p(x)
p̂(x)

dx = E[log p(X)]−E[log p̂(X)],
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which, being non-negative (zero if and only if p̂(x) = p(x)), should be minimized.
As p(x) is fixed, maximizing E[log p̂(X)] is equivalent to minimizing DKL(p||p̂).
Let p(q|y) be the density of cell q. Then E[log p̂(X|Y )] can be estimated by

1
N(y) log

∏L
q=1 (p(q|y))Nq(y). The overall average log likelihood of a quantizer Q is

J(Q) =
1
N

K∑
y=1

N(y)E[log p̂(X|y)] =
1
N

K∑
y=1

log
L∏

q=1

(p(q|y))Nq(y)
.

When the class number ratio N(1) : N(2) : · · · : N(K) is representative for the data
population, the overall average log likelihood is preferred, with the log likelihood of
popular classes being emphasized.

The mean class average log likelihood is

J(Q) =
1
K

K∑
y=1

E[log p̂(X|y)] =
1
K

K∑
y=1

1
N(y)

log
L∏

q=1

(p(q|y))Nq(y)
.

When the class number count N(y) is randomly decided or every class is considered
to have equal importance, the mean class average log likelihood is preferred, with
every class contributing equally to the log likelihood of the quantizer.

4.2.2. Correct Classification Probability

Let P (y) be the prior probability of class Y . Within cell q, the Bayes’ rule is equiv-
alent to

y∗q = argmax
y

P (y)
Nq(y)
N(y)

.

Let Nc(q) be the number of correct decisions in cell q, i.e.,Nc(q) = Nq(y∗q ). We
define the correct classification probability in two situations. The overall correct
classification probability is

Pc(Q) =

∑L
q=1Nc(q)
N

. (5)

The mean class correct classification probability is

Pc(Q) =
1
K

K∑
y=1

L∑
q=1

I(y = y∗q )
Nc(q)
N(y)

. (6)

In the above two equations, I is indicator function. The choice of either should
follow the same considerations for the choice of average log likelihood.

4.2.3. Entropy

Similar to the case of average log likelihood, we give two options: overall entropy and
mean class entropy. Again, the choice of either should also follow the considerations
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for the choice of average log likelihood and correct classification probability. We
define the overall entropy by

H(Q) =
Nq

N
log

N

Nq
. (7)

We define mean class entropy by

H(Q) =
1
K

K∑
y=1

L∑
q=1

Nq(y)
N(y)

log
N(y)
Nq(y)

. (8)

Entropy has been used as a class impurity measure. But we use entropy as a measure
of the consistence or generalization ability of the quantizer.

4.2.4. The Performance Measure Function

We define the quantizer performance measure function, by linearly combining aver-
age log likelihood, entropy and the log of correct classification probability, as follows

T (Q) = WJJ(Q) +WHH(Q) +Wc logPc(Q), (9)

where WJ ,WH and Wc are given non-negative weights for average log likelihood
J(Q), entropy H(Q) and log of correct classification probability logPc(Q), respec-
tively.

4.3. Preprocessing

The performance of classifiers does not increase with dimensions monotonically
when sample size is fixed, because the required sample size will grow exponen-
tially to achieve a similar performance. Dimension reduction may be necessary.
Popular techniques including principal component analysis, projection pursuit and
independent component analysis. In addition to dimension reduction, for data in
a high dimension, we may also want to view the data in a new coordinate system
such that the most interesting dimensions come first, where we would like to use
more quantization levels. Let z1, z2, ..., zN ∈ RM denote the feature vectors, each
representing a pixel. Normalization may also be necessary to make the dimension
reduction sensible. We use matrix B to represent the normalization and matrix W
to represent dimensional reduction and coordinate change. A feature vector z is
projected to x ∈ RD by x = WTBz.

4.4. Relative Quantization Levels

The choice of a proper total number of quantization cells L depends on the sample
size and the underlying distribution. It is also limited by available storage resource.
When the sample size is large enough, it would be mostly determined by the avail-
able storage resource, as a small quantization cell is always preferred for asymptotic
optimality, which means at least a large L. Once L is fixed, quantization levels
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L1, · · · , LD for each dimension are to be assigned. The information content of a
random variable can be measured by its entropy. We assign the number of quanti-
zation levels for each dimension based on the marginal entropy in that dimension.
We use the scale invariant portion of the continuous histogram entropy, or the dis-
crete histogram entropy to guide the assignment of quantization levels. Let Hd(X)
be the marginal histogram entropy for the d-th dimension of X. The bit-allocation
rule is defined by

H1(X)
logL1

=
H2(X)
logL2

= · · · = HD(X)
logLD

(10)

logL1 + logL2 + · · ·+ logLD = logL. (11)

Solving the above equations for Ld, d = 1, · · · , D, we get

Ld = L
Hd(X)PD

m=1 Hm(X) , d = 1, 2, · · · , D. (12)

4.5. Obtaining a Grid Quantizer

Having defined the quantizer performance measure function and applied certain
pre-processing of the data, we obtain a grid quantizer by three steps performed by
three algorithms. The first algorithm attempts to find a good grid in a global sense
using a genetic algorithm. The second algorithm refines a grid locally by adjusting
the grid lines one by one. The third algorithm obtains a smoothed density estimate
for each grid cell.

4.5.1. Finding a Globally Good Grid

We cast the grid optimization problem into a genetic algorithms model19 in the
following way. An individual has a single chromosome, which is a grid. A gene is the
sequence of decision boundaries in a particular dimension of the grid. A nucleotide
is a single decision boundary in the gene. How well an individual adapts to the
environment is measured by the fitness function. The choice of a fitness function
depends on how selection is carried out. We use fitness proportionate selection, the
chance of selecting individual being in proportion to its fitness. Therefore, we would
normally require the fitness function be non-negative in order to directly relate it
with probabilities.

Definition 4: The fitness function of a grid is

ϕ(G) = exp(T (G)) = [exp(J(G))]WJ [exp(H(G))]WH [Pc(G)]Wc . (13)

ϕ(G) is non-negative since it is a real exponential function of T (G). exp(J(G))
corresponds to the geometric average of likelihood which is a probability. exp(H(G))
is the information content of the grid expressed in terms of the size of a code book.
Pc(G) is exactly the correct classification probability. T (G) is a weighted geometric
combination of the above components.
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Algorithm 2 Optimize-Grid-Genetic outlines the main steps of the grid optimiza-
tion genetic algorithm. It starts with an initial population of Np random grids. The
population evolves in the selection-reproduction-selection cycle as described in the
for loop from line 2 to 16. In each cycle, or generation, Np children are reproduced
in the for loop from line 7 to 15. Every execution of the loop produces two children
C1 and C2 by parents G1 and G2. G1 and G2 are randomly selected (line 8 and
9) from the population and the chance of their being selected is in proportion to
their fitness function values. Selection is illustrated in Fig. 2. A cross-over site dr is

Fig. 2. Grid selection. In a population of four grids, two (lower left and upper right) are randomly

selected as the parents by a chance in proportion to their fitness.

randomly decided for the parent chromosomes or grids G1 and G2. The cross-over
occurs with a probability of Pr. A cross-over example of a grid is shown in Fig. 3.
Once the cross-over is finished, two children C1 and C2 are produced (line 11). The

Fig. 3. Grid crossover. The quantization of the vertical axis in the top grid and the quantization
of the horizontal axis of the bottom grid are crossed over to form a next generation grid on the

right.

decision boundaries of each child grid are randomly changed by mutation (line 12
to 13), illustrated in Fig. 4. Then both children are added to the next generation
(line 14). The best grid is kept as G∗, and is returned after a certain number of
generations have evolved.
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Fig. 4. Grid mutation. The thick vertical grid line could be mutated to the dashed lines on its
sides. In this example it was mutated to the one on the right.

Algorithm 2 Optimize-Grid-Genetic(XN , YN , Np, Ng, Pr, Pu)

1: P0 ← a population of NP random grids;
2: for j ← 0 to Ng − 1 do
3: if ϕ(G∗) < max

G∈Pj
ϕ(G) then

4: G∗ ← argmax
G∈Pj

ϕ(G);

5: end if
6: Pj+1 ← φ;
7: for i ← 0 to Np − 1 with increment of 2 do
8: Select a grid G1 from Pj with a probability proportional to its fitness value;
9: Select a grid G2 from Pj with a probability proportional to its fitness value;

10: Randomly decide a dimension dr as the cross-over site;
11: Exchange the decision boundaries of dimensions 1 to dr between C1 and

C2 with probability Pr or do not exchange;
12: Mutation: adjust each decision boundary of C1 with probability Pu;
13: Mutation: adjust each decision boundary of C2 with probability Pu;
14: Pj+1 ← Pj+1 ∪ {C1, C2};
15: end for
16: end for
17: if ϕ(G∗) < max

G∈PNg
ϕ(G) then

18: G∗ ← argmax
G∈PNg

ϕ(G);

19: end if
20: return G∗;

4.5.2. Local Refinement of a Grid

When the current best solution is close to the global optimal, genetic algorithms
will be less efficient. Here we design a more efficient grid refinement algorithm by
adjusting the decision boundaries one by one. An adjusted boundary is accepted
only when the performance measure increases. The idea is explained in Fig. 5. By
definitions of J(G),H(G) and Pc(G), they are additive, i.e.,

J(G) =
L∑

q=1

J(q), H(G) =
L∑

q=1

H(q), Pc(G) =
L∑

q=1

Pc(q).
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Fig. 5. Grid refinement. We adjust the thick grid line within the shaded area until a local maxi-
mum is reached.

Therefore, when one decision boundary of a grid is moved, we need only recalculate
the change of the additive measures on those affected cells and data.

Algorithm 3 describes the Refine-Grid algorithm. The input includes a grid G,
data sets XN and YN , number of refinements NR and the convergence parameter δ.
J,H, Pc and T record the performance measures of current grid. The refinement is
done dimension by dimension in the for loop between line 6 and 20. The decision
boundaries of each dimension are refined one by one in the for loop from line 7 to
19. A sub-grid Gs is formed by all the cells that is affected by a current decision
boundary. The data that fall in the sub-grid are kept in sets XN ′ and YN ′ . Other
data will not affect the refinement of the current decision boundary. The additive
measures Js,Hs and P s

c are calculated for the sub-grid Gs. Line 12 finds the opti-
mal decision boundary that maximizes the overall measure T (Gs) and assigns the
optimal boundary to the optimal sub-grid G∗

s. The changes in the additive measures
of the sub-grid are calculated and the additive measures of the grid G are updated
by the changes (line 13 to 16). The optimal decision boundary replaces the original
one in G (line 17). The overall measure T is also updated. The refinement repeats
until convergence is achieved as measured by ∆T/T .

4.5.3. Density Estimation for Each Quantization Cell

The consistency of a quantizer is determined by the bias and variance of the density
estimates. To reduce the bias, the sample size N must be large, and Nq/N of each
cell must be small. To diminish the variance, the sample size Nq within a cell must
be large. Overfitting manifests the large variance in cell density estimates, as a result
of cell emptiness. Smoothing can reduce the variance of the density estimates. When
smoothing is over-done, quantizer gives very consistent result on both the training
sample or an unseen sample, but carries large biases.

We offer a smoothing algorithm to assign a density estimate to a quantization
cell. The algorithm is an approximation to the k nearest neighbor density estimate.
Let V (q) be the volume of cell q. Let Vk(q) be the volume of a minimum neighbor-
hood of cell q that contains at least k points. Let kq be the actual number of points
in the neighborhood. A smoothed probability density estimate of cell q is

p(q) =
kq

Vk(q)
∑

r
kr

Vk(r)V (r)
. (14)

Searching for the exact k-th nearest neighbor is computationally expensive. We
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Algorithm 3 Refine-Grid(G, XN , YN , NR, δ)
1: J ← J(G), H ← H(G), Pc ← Pc(G);
2: T ←WJJ +WHH +Wc logPc;
3: j ← 0;
4: repeat
5: T− ← T ;
6: for d← 1 to D do
7: for q ← 1 to Ld − 1 do
8: Form a sub-grid Gs by the cells sharing the decision boundaries G[d, q];
9: G∗

s ← Gs;
10: XN ′ ,YN ′ ← {(xn, yn)|xn(d) ∈ (Gs[d, 0], Gs[d, 2]]};
11: Js ← J(Gs), Hs ← H(Gs), P s

c ← Pc(Gs), all on XN ′ ,YN ′ ;
12: G∗

s[d, 1]← argmax
Gs[d,1]

T (Gs) on XN ′ ,YN ′ ;

13: ∆J ← J(G∗
s) − Js, ∆H ← H(G∗

s) − Hs, ∆Pc ← Pc(G∗
s) − P s

c , all on
XN ′ ,YN ′ ;

14: J ← J + ∆J ;
15: H ← H + ∆H;
16: Pc ← Pc + ∆Pc;
17: G[d, q] ← G∗

s[d, 1];
18: T ←WJJ +WHH +Wc logPc;
19: end for
20: end for
21: j ← j + 1;
22: ∆T ← T − T−;
23: until j = NR or |∆T/T | < δ ;

introduce an approximate, but no less than k, nearest neighbor smoothing algorithm
after giving some basic definitions.

Definition 5: We call cell a and b neighbor cells if they share at least a partial
decision boundary.

Definition 6: The radius 0 neighborhood of cell q is a set that contains exactly the
cell itself. We use N (q, 0) to denote the radius 0 neighborhood of cell q.

Definition 7: The radius R (R ∈ Z+) neighborhood of cell q, N (q,R), is the union
of the radius R− 1 neighborhood N (q,R− 1), and the set of all the neighbor cells
of the cells in N (q,R− 1).

Figure 6 shows the neighborhoods of a cell with different radii. In Fig. 6(a), the
cell of interest is the cell in gray. The cell itself is also its radius 0 neighborhood.
Figures 6(b) and (c) draw its radius 1 and 2 neighborhoods.
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(a) R = 0 (b) R = 1 (c) R = 2

Fig. 6. Radius R neighborhood of a cell.

Definition 8: k neighborhood of a cell is the smallest radius R neighborhood of
the cell that contains at least k points.

Algorithm 4 Radius-Smoothing is based on the k neighborhood concept. The algo-
rithm searches for a minimum radius R neighborhood with at least k data points
for a current cell. The density of the k neighborhood is assigned to the cell as its
density estimate. M is the total mass on the density support. M can be considered
an adjusted data count by smoothing and is closely related to N . For cells with less
than k data points, the initial guess of R is the radius of the k neighborhood of
a previously processed neighbor cell. To make this initial guess more realistic, we
shall go through the cells in an order that every pair of cells visited consecutively
are neighbor cells. kq is the actual total number of data points in current radius R
neighborhood. Based on the data count in current radius R neighborhood, we either
increase R until there are at least k data points in the neighborhood, or decrease R
until the R− 1 neighborhood contains less than k data points.

The extent of smoothing is usually controlled by a parameter on the size of the
local neighborhood. This naturally brings up the question of how to measure the
quantizer consistency as a function of the control parameter. We use cross-validation
to determine an optimal control parameter k∗ for smoothing, such that it maximizes
the average quantizer performance.

5. A Pixel Appearance Probability Model for Echocardiographic
Images

The appearance of a pixel is defined by its local information, such as intensity,
contrast, directional derivatives, gradient, and etc. It is a result of the imaging
process of a point on the object with some structural type corresponding to the
pixel location. However, it may not be strictly a function of structural types. As
we have discussed earlier, the PixApp probability model is used to capture such
appearance uncertainty. We present in this section a particular PixApp probability
model that we have designed for echocardiographic image pixels.

Figures 7(a)(d)(g) show ultrasound images of the left ventricle and
Figs. 7(b)(e)(h) show the same images with the visible left ventricle boundary over-
laid. Figures 7(c)(f)(i) overlay the complete contour of the underlying left ventricle
surface on the original images. It is quite evident that the pixels on the underlying
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Algorithm 4 Radius-Smoothing(Q, k)
1: M ← 0, R← −1;
2: for each cell q do
3: if N(q) = k then
4: R← 0, kq ← N(q);
5: else
6: if R < 0 then
7: R← 0, kq ← N(q);
8: else
9: A ← N (q−, R) ∩N (q,R);

10: kq ← kq− |N (q−, R)−A|+ |N (q,R)−A|;
11: end if
12: while kq > k and R > 0 do
13: kq ← kq − |N (q,R)−N (q,R− 1)|, R← R− 1;
14: end while
15: while kq < k and R < Rmax do
16: kq ← kq + |N (q,R+ 1)−N (q,R)|,R← R+ 1;
17: end while
18: end if
19: ρ(q)← kq

V (N (q,R)) , M ←M + ρ(q)V (q), q− ← q

20: end for
21: for each cell q do
22: p(q)← ρ(q)

M ;
23: end for

surface contour do not have uniform appearance everywhere: some pixels are bright
with high contrast, while others do not differ too much from the background. The
background pixels also have variable appearance.

During ultrasound imaging, signals arriving at an interface between media with
different acoustic impedance produce strong echo when the angle of incidence is near
perpendicular; signals arriving at an interface at near tangential angles produce very
weak echo. Thus the image intensity and its spatial variation are important. The
derivatives carry spatial variation information. We fit a cubic facet model20 to the
pixel intensities in a local window centered at each pixel. A facet is a smooth surface
patch in 3-D. We analytically derive all first- and second-order derivatives for each
pixel by fitting a facet centered at the pixel. Each pixel feature vector contains

(1) the spatially and temporally smoothed pixel intensity value, capturing absolute
strength of echo signals. A 3-D median filter, with a window of 5 pixels × 5
pixels × 5 frames, is used to obtain the smoothed pixel values;

(2) the third-order facet model approximation of the pixel intensity value, giving
the absolute strength of echo signals but on a larger scale. A window of 21 pixels
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(a)
Parasternal

long axis

view.

(b) With
visible con-

tours.

(c) With
complete
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(d) Short

axis view.

(e) With
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(f) With

complete
contours.

(g) Apical 4
chamber

view.

(h) With
visible con-

tours.

(i) With
complete

contours.

Fig. 7. An ultrasound image of the left ventricle and surface model contours.

× 21 pixels is used to compute each facet;
(3) the directional derivative along the gradient direction, providing a local measure

of edginess. A window of 21 pixels × 21 pixels is used to compute each facet;
(4) the minimum second directional derivative, among second derivatives along all

directions, indicating relative strength of echo signals. A window of 21 pixels ×
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21 pixels is used to compute each facet;
(5) the directional derivative from a point inside the LV, to help distinguish ENDO

and EPI surfaces. The inner point is derived from user input points. A 3-D
median filter with a window of 17 pixels × 17 pixels × 17 frames is first applied
to get the smoothed pixel values. Then a window of 21 pixels × 21 pixels is
used to compute each facet.

Examples of the feature vector maps are shown in Fig. 8.

(a) The

original.

(b) Fea-

ture 1 map.

(c) Fea-

ture 2 map.

(d) Fea-
ture 3 map.

(e) Fea-
ture 4 map.

(f) Fea-
ture 5 map.

Fig. 8. An original parasternal long axis view image and its five feature maps.

The PixApp probability model describes the pixel appearance uncertainty under
noise for a given structural type. Let classes Y = 1 and Y = 2 correspond to EPI
and ENDO pixels, respectively. An additional class Y = 3 labels the background.
Thus, the PixApp probability model for echocardiographic images include three
p.d.f.s: p(Z|1), p(Z|2) and p(Z|3). We use grid quantization to represent them. Our
technique requires larger sample size in order to obtain a better representation for
the pixel appearance than a multivariate normal model. For a multivariate sample
of size on the order of millions, not uncommon for image pixels, we are reasonably
grounded. The PixApp probability model can be estimated using the technique
described in Section 4 directly if the pixel class information Y is available for each
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pixel. Section 7 introduces a strategy to estimate PixApp probability models without
explicit knowledge of pixel classes.

6. A Pixel Prediction Probability Model for Ultrasound Imaging

When pixel classification is not available for observed training images, the PixApp
probability model can not be trained directly. If high-level object models are given
for the observed training images, which is more common in practice, a pixel class
can be predicted probabilistically through the PicPre probability model using an
object model. In this section, we describe a PicPre probability model for ultrasound
imaging. In Section 7, we describe how this model is trained simultaneously with
the PixApp probability model.

Pixel class prediction associates every pixel on an imaging plane with some phys-
ical properties of a given object model and its environment. Pixel class prediction
and classification are fundamentally different. Pixel classification assigns class label
information to each pixel based on observed images, not from an object model. We
denote the deterministic prediction from an object model to pixel class by Y |Θ, by
which each pixel has an exclusive class assignment. We represent the probabilistic
prediction by the conditional probability P (Y |Θ), which provides a soft pixel class
prediction, allowing a more precise relationship to be captured.

Deterministic prediction methods can be considered special cases of the prob-
abilistic prediction methods to be described. To predict the output of a physical
system, we need to model both systematic and random behaviors of the system.
Well understood systematic behaviors are often described by functional models.
Less studied and more complex physical processes, often represented by probabilis-
tic models, account for the random behaviors, as well as random noises from the
environment. The overall probabilistic prediction is shown in the diagram in Fig. 9.
A surface model Θ is used to produce simulated images via a physical simulation.
By the distance transform, the distance d(y) to and the intensity I(y) of the clos-
est surface y pixel are calculated. Details of d(y) and I(y) will be explained shortly.
Then the pixel class probability profile P (Y |Θ) is obtained by probability modeling.

Surface model

Θ
Simulated

images

d(y)
I(y)

Pixel class

probability

profilep (Y  |Θ)

Physical

simulation

Distance

transform

Probability

modeling

Fig. 9. Probabilistic pixel class prediction.

When a 2-D image is scanned from a 3-D object in ultrasound imaging, two
phenomena occur:

(1) a 3-D point on the object is transformed to a 2-D pixel on the image by plane
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intersection. The plane is defined by ultrasound beams in a single B-scan.
(2) the physical properties of the 3-D point yield a 2-D pixel intensity, determined

mostly by the reflective properties of the object.

Simulation generates images from an object model by functional modeling of a
real imaging system. We have implemented an ultrasound imaging simulation sys-
tem to synthesize echocardiographic images from 3-D surface models of the left
ventricle.21,22 The object model of LV include two geometric surface models, one
for EPI and the other for ENDO. The simulation software is capable of performing
backscattering, attenuation, and reflection, implemented by a ray-tracing algorithm.
We only do reflections in this study, since our purpose is to predict the systematic
image dropout rather than the stochastic behavior of the speckle noise. The dropout
is mostly due to weak reflection at interfaces. The randomness is accounted for in
the PixPre and PixApp probability models.

The distance from a pixel p to its closest class-y neighbor pixel q on the simulated
image is denoted by d(y). The intensity of the neighbor pixel q is denoted by I(y).
d(y) and I(y) of every pixel on a simulated image can be efficiently found by the
distance transform.20,23

During imaging, a point on the surface may be transformed to a pixel looking
more like the background; a point not on the surface may be transformed to a
pixel as if on the surface. The PicPre probability model allows such variations than
simply saying that a pixel coming from a point on surface y must have label y.
In addition, we have further considerations in the PicPre probability model for
the following observations. An off-surface point closer to an on-surface point may
appear as a pixel with similar location and intensity with the type of the pixel from
the on-surface point. An off-surface point that has a stronger on-surface neighbor
point is more likely to appear as a pixel that is similar to the type of a pixel from
the on-surface neighbor point. To satisfy the above considerations, we design the
following generic parametric PicPre probability model P (Y |Θ):

P (Y = y|Θ)
f(I(y), d(y)|λy)

=
P (Y = K|Θ)

β
, y = 1, 2, · · · ,K − 1, (15)

with the constraints
K∑

y=1

P (Y = y|Θ) = 1 and P (Y = y|Θ) ≥ 0, y = 1, · · · ,K. (16)

In Eq. (15), f(I, d|λ) : [0,∞)× [0,∞)→ (0,∞) is a decay function decreasing with
d but increasing with I, λ1, λ2, · · · , λK−1 are non-negative decay rates of different
classes, and β is a non-negative parameter which corresponds to the strength of a
pixel being the background. Solving Eqs. (15) and (16), we get

P (Y = y|Θ) =


f(I(y),d(y)|λy)

β+
PK−1

k=1 f(I(k),d(k)|λk)
, y = 1, 2, · · · ,K − 1

β

β+
PK−1

k=1 f(I(k),d(k)|λk)
, y = K

. (17)
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In the above model, the probability of a pixel being class y should be in proportion
to some monotonically decreasing function of its distance to the nearest pixel coming
directly from surface y; the probability of a pixel being on background should be
in proportion to some function of the smallest distances for this pixel to all other
types of non-background pixels. Meanwhile, a pixel is more likely to be from surface
y if its neighbor pixel coming directly from surface y has a larger intensity.

In our study, we design the intensity exponential decay model with f(I, d|λ) =
Ie−λd, that is

P (Y = y|Θ) =


I(y)e−λyd(y)

β+
PK−1

k=1 I(k)e−λkd(k) , y = 1, 2, · · · ,K − 1
β

β+
PK−1

k=1 I(k)e−λkd(k) , y = K
. (18)

We will illustrate this particular PicPre probability model by examples in next
section.

7. Training PixApp and PicPre Probability Models without
Low-Level Edge Groundtruth

In some situations, examples of object models Θ and their images are given, but the
class labels Y are not available. In other situations, the class labels Y are too inac-
curate to use. To achieve the overall optimality, we need to consider simultaneous
estimation of the PixApp and PicPre probability models. Our strategy will allow
each pixel to participate in a different manner on a scale of 0 to 1 in the PixApp
probability models for different classes. We solve the problem of joint estimation of
the PixApp and the PicPre probability models by a generalized EM algorithm. In
the off-line training phase, the underlying goal is to make an accurate and consistent
estimation of p(Z|Θ). We use the Kullback-Leibler divergence as the criterion for
the density estimation, equivalent to the expected log likelihood. A caveat is that
the target of estimation is not Θ, but the conditional p.d.f. p(Z|Θ).

It is necessary to inspect how the models are estimated in the two-stage ap-
proach, i.e., the feature detection and model fitting approach. In the feature de-
tection stage, the PixApp probability model p(Z|Y ) is used. Estimation of p(Z|Y )
requires the knowledge of class labels. However, the class labels are not observed
data and they are typically produced by human experts. A class label has to be
unique for each pixel. In the model fitting stage, the PicPre probability model
P (Y |Θ) is used. Using the class labels and known surface models, P (Y |Θ) can be
estimated. The only problem with these two estimations is that the uncertainty of
class label Y as described by P (Y |Θ) is not taken into account in the estimation of
p(Z|Y ). The isolation can degrade the performance seriously when the uncertainty
of class labels for given surface models is prominent.

In the integrated approach, the conditional probability p(Z|Θ) is given in terms
of a summation over Y by

p(Z|Θ) =
∑

y

P (Y = y|Θ)p(Z|Y = y).
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In this form, we still need to estimate the PicPre probability model P (Y |Θ) and
the PixApp probability model p(Z|Y ), but we do not have to make a decision on
the class label Y of each pixel, because every possibility of Y is considered. Since
we have decided that P (Y |Θ) is a parametric model and p(Z|Y ) is a nonparametric
model, the overall model p(Z|Θ) is a hybrid model. On one hand, maximum likeli-
hood estimation for p(Z|Θ) requires joint estimation of the PixApp and the PicPre
probability models. On the other hand, joint estimation of a hybrid model poses a
computational challenge.

Although it is typically a solution to parametric density estimation with miss-
ing or hidden variables, the expectation maximization (EM) algorithm suitably
performs maximum likelihood estimation on p.d.f.s that can be written as an in-
tegral or summation. The missing or hidden variable is precisely the integral or
summation variable. Whether the targeted p.d.f. is parametric, nonparametric or
hybrid will affect neither the applicability nor the convergence of the EM algorithm.
In the integrated model, the goal is to maximize

E[log p(Z|Θ)] (19)

over all possible p.d.f.s p(Z|Θ) (not over Θ in our case.) When p(Z|Θ) is written
in the integrated form, Y is the missing or hidden variable. Instead of maximizing
Eq. (19), the EM algorithm maximizes an approximation of

E[log p(Y, Z|Θ)] (20)

over p(Y,Z|Θ) in its iterations.We will link p(Y,Z|Θ) to the PixApp and the
PicPre probability models soon. Through the EM algorithm, the maximization of
E[log p(Y, Z|Θ)] is substantially computationally easier than that of E[log p(Z|Θ)].
We initialize p(Y, Z|Θ) by an initial guess p0(Y,Z|Θ). It is then followed by it-
erations of expectation steps (E-steps) and maximization steps (M-steps). In the
E-step of iteration m, we first compute the conditional probability πm(Y |Z,Θ), us-
ing pm(Y, Z|Θ). Then we find the expectation φm(p(Y, Z|Θ)) = Eπm

[log p(Y,Z|Θ)],
using the conditional probability πm(Y |Z,Θ). In the M-step of iteration m, we find
a solution that maximizes the expectation φm(p(Y, Z|Θ)), assigning the optimal
solution to pm+1(Y, Z|Θ). The E-step and the M-step alternate until convergence
is achieved. When the M-step returns a sub-optimal solution that does not de-
crease φm(p(Y,Z|Θ)), the algorithm is known as a generalized EM algorithm. Both
the original and the generalized EM algorithms increase the targeted expected log
likelihood E[log p(Z|Θ)] monotonically as a function of the iteration number.24

Now we associate p(Y, Z|Θ) with the PixApp probability model p(Z|Y ) and
the PicPre probability model P (Y |Θ).By the conditional independence assumption
p(Θ|Z, Y ) = p(Θ|Y ), we have

p(Y,Z|Θ) = P (Y |Θ)p(Z|Y,Θ) = P (Y |Θ)p(Z|Y ).

The above equation implies that p(Y, Z|Θ) is exactly the product of the prediction
probability P (Y |Θ) and the appearance probability p(Z|Y ). Thus the M-step can
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be written as

max
p(Y,Z|Θ)

Eπm [log p(Y, Z|Θ)]

= max
p(Y,Z|Θ)

Eπm
[logP (Y |Θ)] + Eπm

[log p(Z|Y )]

= max
P (Y |Θ)

Eπm
[logP (Y |Θ)] + max

p(Z|Y )
Eπm

[log p(Z|Y )].

(21)

Thus we have broken the M-step into two independent optimization problems. One
is the parametric estimation of the PicPre probability model, and the other is the
nonparametric estimation of the PixApp probability model. Replacing p(Y,Z|Θ) by
P (Y |Θ)p(Z|Y ), we give Alg. 5 Estimate-Integrated-Model.

Algorithm 5 Estimate-Integrated-Model
Initialization:

P0(Y |Θ) and p0(Z|Y )

Iteration:

(1) E-step.

πm(Y |Z,Θ) =
Pm(Y |Θ)pm(Z|Y )∑

k Pm(Y = k|Θ)pm(Z|Y = k)
(22)

φm(P (Y |Θ)) = Eπm [logP (Y |Θ)] (23)

ψm(p(Z|Y )) = Eπm
[log p(Z|Y )] (24)

(2) M-step.

Pm+1(Y |Θ) = argmax
P (Y |Θ)

φm(P (Y |Θ)) (25)

pm+1(Z|Y ) = argmax
p(Z|Y )

ψm(p(Z|Y )) (26)

The Estimate-Integrated-Model algorithm differs in Eq. (22) from the two-stage
estimation solution. In the two-stage approach, every pixel is assigned a unique class
label y, equivalent to setting πm(Y |Z,Θ) = δ(Y −y). Here, πm(Y |Z,Θ) signifies the
probability profile of class labels for given images and the surface model. In addition,
Estimate-Integrated-Model iterates over the two steps, while the two-stage approach
does them only once.

Here is a summary of the overall training strategy. Training images and the cor-
responding ground-truth surface models are input data to the estimation. Training
images are pre-processed to remove noise and obtain feature vectors. Ground-truth
surface models produce simulated images after imaging simulation. Before the first
iteration, some initial guesses for PixApp and PicPre probability models are made.
With the PixApp probability model, feature vectors are optimally quantized to



August 31, 2005 15:20 WSPC/Trim Size: 9.75in x 6.5in for Review Volume pixapp

Nonparametric Pixel Appearance Probability Model 25

calculate the PixApp probability of each pixel for each class. K maps of PixApp
probabilities are generated per image. Meanwhile, the PicPre probability profile
of each pixel is calculated on the simulated images using the PicPre probability
model. A total of K PicPre probability maps are created for each image. With the
PixApp and PicPre probability maps, we can calculate a class probability profile
for each pixel given both the observed images and the ground-truth surface mod-
els. The class profile of each pixel, as a weight vector, participates in both finding
a grid quantization for PixApp probability model and the parameter estimation
of the PicPre probability model. With the weight vectors and the feature vectors,
we obtain an updated PixApp probability model. With the weight vectors and the
simulated images, we obtain an updated PicPre probability model. Then we start
the next iteration with the newly updated models, until the overall log likelihood
Eπm

[log p(Y, Z|Θ)] converges.

7.1. PixApp Probability Model Estimation

One of the two expectations to be maximized in the M-step is Eπ[log p(Z|Y )].
The expectation is with respect to both Y and Z. However the unknown condi-
tional probability P (Y |Z,Θ) is replaced by an approximation π(Y |Z,Θ). Hence
Eπ[log p(Z|Y )] can be written as

Eπ[log p(Z|Y )] =
∫
p(z|Θ)

K∑
k=1

π(Y = k|z,Θ) log p(z|Y = k)dz.

Taking the sample average log likelihood as the expected value, we obtain

L1 =
1
N

N∑
n=1

K∑
k=1

π(yn = k|zn,Θ) log p(zn|yn = k).

Since π(Y |Z,Θ) is given in the E-step, we simplify the notation by letting

πk
n = π(yn = k|zn,Θ). (27)

which can be thought of as a normalized class weight. Then L1 can be written as

L1 =
1
N

N∑
n=1

K∑
k=1

πk
n log p(zn|yn = k),

which is the weighted log likelihood of the sample. Thus maximization of
Eπ[log p(Z|Y )] is approximated by that of L1. As Z is usually a continuous vector,
p(Z|Y ) is a p.d.f. conditioned on the discrete variable Y . What assumption can be
made on p(Z|Y ) attributes directly to how well the imaging process is understood.
When there is complex and less studied noise during the imaging process, we would
like to make as few assumptions as possible. In the worst case where the least infor-
mation is available about the noise, we use the grid quantization technique described
in Section 4 to describe the density function p(Z|Y ).
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For the original pixel feature vector Z of 5 dimensions, we reduce it to a 3
dimensional vectorX. We perform grid quantization onX instead of Z. The optimal
3-D quantization grid we obtained for the three classes are displayed in Fig. 10,
where 1-D and 2-D combinations of the grid are drawn. We show the 1-D and 2-D
marginal densities of the 3-D PixApp probability densities p(X|Y ) in Fig. 11 and
Fig. 12, respectively. Figure 13 shows estimated PixApp probability maps for the
three classes of a given image.
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Fig. 10. The 3-D quantization grid.

7.2. PicPre Probability Model Estimation

The other expectation to be maximized in the M-step is Eπ[logP (Y |Θ)]. The
expectation is on both Z and Y , where Z is implicitly expressed in π(Y |Z,Θ).
Eπ[logP (Y |Θ)] is an estimate of E[logP (Y |Θ)] with P (Y |Z,Θ) replaced by
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Fig. 11. One-dimensional marginal densities of estimated PixApp probability model.

π(Y |Z,Θ). Therefore we have

Eπ[logP (Y |Θ)] =
∫
p(z|Θ)

K∑
k=1

π(Y = k|z,Θ) logP (Y = k|Θ)dz.

We can further obtain an estimate of Eπ[logP (Y |Θ)] by the average log likelihood
of the sample, that is

L2 =
N∑

n=1

K∑
k=1

π(yn = k|zn,Θ) logP (yn = k|Θ).

The average factor 1/N is not shown because it does not affect the maximization.
Therefore

L2 =
N∑

n=1

K∑
k=1

πk
n logP (yn = k|Θ),

which is the weighted log likelihood of the PicPre label assignments. Hence the
maximization of Eπ[logP (Y |Θ)] reduces to the maximization of the weighted log
likelihood L2. As we have defined P (Y |Θ) by a continuous parametric model pre-
viously, L2 is a function of the PicPre model parameters λ1, λ2, · · · , λK−1, β. Since
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Fig. 12. Two-dimensional marginal densities of estimated PixApp probability model.

the parameters are all nonnegative, we can re-parameterize them by

λk = τ2
k , k = 1, · · · ,K = 1

β = α2.

We denote the parameter vector by

u = [τ1, τ2, · · · , τK−1, α],

and the likelihood L2 by L2(u). We adopt a quasi-Newton method that has been
widely applied in many unconstrained continuous optimization problems, called the
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Fig. 13. PixApp probability maps of apical four chamber view.

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. It updates the Hessian matrix
with a rank two difference matrix during every iteration and guarantees the approx-
imated Hessian matrix is positive definite for minimization problems.25 The major
steps include finding a Newton search direction, the line search and the Hessian
update. Since we are to maximize L2(u), the objective function of the minimization
is −L2(u). Figure 14 shows the estimated intensity exponential decay PicPre prob-
ability model. Figure 15 illustrates the pixel class prediction process. We obtain a
simulated image shown in Fig. 15(a) through ultrasound imaging simulation. Then
we compute the distance transform of the epicardium and endocardium contours,
shown as Figs. 15(b) and (c). Figures 15(d) and (e) are the intensity maps of the
closest on-surface pixels. We apply the estimated PicPre probability model on the
distance and intensity maps and display the PicPre probability maps in Fig. 15(f)
to (h).

8. Surface Reconstruction for Left Ventricle Using the Estimated
Pixel Appearance Probability Model

In our experiment, we used a total of 45 in vivo clinical studies. There are 16
normal studies and 29 diseased studies. There are six condition groups among the
45 studies. Forty-four sets of image sequences were acquired from ATL ultrasound
machines; one set of image sequences was acquired from an HP ultrasound machine.
These image sequences were acquired for other studies by three operators over a
period of two years, so that they incorporate some amount of operator and system
setting variability. The frame rate was 30 per second. The horizontal and vertical
resolutions of the images were, respectively, 0.37− 0.46mm and 0.37− 0.41mm per
pixel. For each study, we selected subsequences of images from four or five different
views, including three or four long-axis views and one short-axis view. Each view
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Fig. 14. The estimated PicPre probability model.

was further cut into an upper sector and a lower division, divided by an arc passing
an inner point of the LV and centered at the transducer location. We selected
20 studies of good image quality as the training set. The remaining 25 studies
formed the test set. We performed the experiment at end diastole. We measured
the projection distance between the optimized and the ground-truth surface models.
The projection distance from surface A to surface B is defined as the mean vertex
projection distance from all the vertices of surface A to surface B. The projection
distance between surface A and B is the average of the projection distances from
A to B and from B to A.

In our study of 3-D left ventricle surface reconstruction from 2-D echocardio-
graphic images, we obtained much better results using the pixel appearance prob-
ability model with the integrated approach than the two-stage approach. In the
two stage approach, we used Canny edge detector to find boundaries and then re-
construct 3-D surface model from the detect edges. We were only able to obtain
meaningful results for the studies with the best quality images. The distance er-
rors between the manually delineated surfaces and the reconstructed ones range
from 3.1mm to 6.6mm for normal cases, which were far from the requirement for
practical clinical use. For the integrated approach, we were able to handle images
with modest image quality. On all the normal studies, we achieved distance er-
rors from 1.1mm/1.7mm (endocardium/epicardium) to 3.1mm/4.0mm, the average
being 1.9mm/2.4mm.16



August 31, 2005 15:20 WSPC/Trim Size: 9.75in x 6.5in for Review Volume pixapp

Nonparametric Pixel Appearance Probability Model 31

(a) The
simulated

image.

(b) d(1)

distance
map.

(c) d(2) dis-

tance map.

(d) I(1) in-

tensity
map.

(e) I(2) in-

tensity
map.

(f) P (1|Θ)
map.

(g) P (2|Θ)
map.

(h) P (3|Θ)
map.

Fig. 15. A simulated image and its intensity, distance and PicPre probability maps.

9. Conclusions

In this chapter, we have presented the pixel appearance probability model for rep-
resentation of local pixel information, and illustrated its usage in echocardiographic
image analysis. This technique is vastly different from standard feature detection
based low-level image processing techniques, in that it preserves much richer in-
formation from the original images. This model is obtained by a grid quantization
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technique, which is a statistically effective and computationally efficient approach
to estimating probability density functions. The pixel appearance model can be
used in its own right for purposes such as pixel classification. We have argued that
this model can be used much more effectively in an integrated object reconstruction
framework as opposed to the traditional low- and high-level approach. In our study,
the adoption of the pixel appearance probability model has reduced the error of the
left ventricle groundtruth surface reconstruction by about 2.6mm.
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