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Abstract

Pose estimation is an essential step in many machine vision prob-
lems involving the estimation of object position and orientation rel-
ative to a model reference frame or relative to the object position
and orientation at a previous time using a camera sensor or a range
Sensor.

Solutions for four different pose estimation problems are pre-
sented. Closed form least squares solutions are given to the over
constrained 2D-2D and 3D-3D pose estimation problems. A glob-
ally convergent iterative technique is given for the 2D perspective
projection—-3D pose estimation problem. A simplified linear solution
and a robust solution to the 2D perspective projection—2D perspec-
tive projection pose estimation problem are also given.

Simulation experiments consisting of millions of trials having
varying numbers of pairs of corresponding points, varying signal to
noise ratio with either Gaussian or uniform noise provide data sug-
gesting that accurate inference of rotation and translation with noisy
data may require corresponding point data sets having hundreds of
corresponding point pairs when the signal to noise ratio is less than
40 db. The experiment results also show that robust technique can
suppress the blunder data which come from outlier or mismatch.
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1 Introduction

There are four pose estimation problems with point data. Each arises
from two views taken of the same object which can be thought of as
having undergone an unknown rigid body motion from the first view
to the second view. In model based vision, one “view” provides 3D
data relative to the model reference frame. In motion estimation and
structure from motion problems there is a rigid body motion of the
sensor, the object or both. In any case, in each problem correspond-
ing point pairs from the two views are obtained from some kind of
matching procedure. The pose estimation problem with correspond-
ing point data begins with such a corresponding point data set. Its
solution is a procedure which uses the corresponding point data set
to estimate the translation and rotation which define the relationship
between the two coordinate frames.

In the simplest pose estimation problem, the data sets consist of
two-dimensional data points in a two-dimensional space. Such data
sets arise naturally when flat 3D objects are viewed under perspec-
tive projection with the look angle being the same as the surface
normal of the object viewed. In the next more difficult pose estima-
tion problem, the data sets consist of three-dimensional data points
in a three-dimensional space. Such data sets arise naturally when 3D
objects are viewed with a range finder sensor. In the most difficult
pose estimation problems, one data set consists of 2D perspective
projection of 3D points and the other data set consists of either a
3D point data set, in which case it is known as absolute orientation
problem, or the other data set consists of a second 2D perspective
projection view of the same 3D point data set, in which case, it is
known as the relative orientation problem. The latter case occurs
with time-varying imagery, uncontrolled stereo or multi-camera im-
agery.

This paper describes a solution to each of the four problems and
characterizes the performance under varying conditions of noise. The
simplest case is when the point positions are perturbed by indepen-
dent additive Gaussian noise. Here, when the signal to noise ratio de-
creases below 40 db, the mean error skyrockets in the more complex
pose estimation problem unless there are hundreds of correspond-
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ing points pairs. Other than this phenomenon, the only interest in
the additive Gaussian noise case is to establish a baseline reference
against which more realistic and potentially devastating noise can be
compared.

The noise having dominant effect in point correspondence is due
to incorrect matches. An incorrect match makes a point in the first
view correspond to an incorrect point in the second view. Noise which
models the incorrect match may be described in a variety of ways.
A pair of points in one view may be incorrectly matched to a pair
of points in a second view by a simple interchange. A point in one
view may be matched to a point chosen at random in the second view.
Or the independent additive noise may be from a distribution having
tails so broad that the distribution does not have finite variance. One
such distribution is the slash distribution which can be obtained as
a Gaussian random variable with mean 0 and variance o? divided
by a uniform random variable over the unit interval [0, 1]. The slash
density function has the form

o (1 — e_’;“(’.z;)z)
22y/271

and it is often used in characterizing the performance of robust esti-
mators.

This paper argues that the estimators used by machine vision
procedures must be robust since all machine vision feature extrac-
tors, recognizers, and matchers seem to make occasional errors which
indeed are blunders. Blunders make typical estimators such as ordi-
nary least squares estimators the estimators of least virtue. Thus it
is important to pay attention to the reliability of estimators under
conditions when the data has blunders.

Least squares estimation can be made robust under blunders by
converting the estimation procedure to an iterative reweighted least
squares one, where the weight for each observation depends on its
residual error and its redundancy number. It is therefore meaning-
ful to first find the form for the least squares solution, establish its
performance as a baseline reference, put the solution technique in an
iterative reweighted form, and finally evaluate the performance using

i(2) =
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non-normal noise such as slash noise. This paper represents some
initial steps in this strategy.

Section 2 derives a closed form least squares solution to the pure
2D-2D pose estimation problem. And subsequently we derive an
iterative weighted least squares solution using a robust method. Sec-
tion 3 derives a closed form least squares solution to the pure 3D-3D
pose estimation problem using a singular value decomposition tech-
nique. The least squares solution for both the 2D-2D and 3D-3D
pose estimation problems are constrained to produce rotation ma-
trices which are guaranteed to be orthonormal. Section 4 discusses
an iterative solution to the 2D perspective projection 3D pose esti-
mation problem. The technique appears to be globally convergent
from any initial starting value. Section 5 discusses a solution to the
2D perspective projection—2D perspective projection pose estimation
problem. The robust algorithm is also presented.

2 2D-2D Estimation

There are a variety of model based inspection tasks which Tequire
the coordinate system of an object model to be aligned with the
coordinate system of a set of observations before the actual inspec-
tion judgements can be made. One example is surface mount device
inspection on printed circuit boards. Here, the image processing
produces, among other measurements, the observed center position
of each device. The model stores, in the printed circuit board co-
ordinate system, the center positions, orientations, and sizes of all
devices. To determine whether each device which should be present
is present, and whether everything observed to be present is actu-
ally present and in its correct position and orientation first requires
determining the relationship between the coordinate system of the
observed image and the coordinate system of the model. Usually this
relationship is given by a two-dimensional rotation and translation.

As mentioned in Section 1, in the matching process, the noise is
be a big factor that disturbs the pose estimation. The noise of a great
concern is incorrect matching of the data points. The incorrect match
makes a data point of the model correspond to an incorrect point of
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the image. (These incorrect points will be called "outliers” through
the report.) The outliers may affect the accuracy and stability of the
pose estimation.

We have recognized that some data points, which arise from heav-
ily tailed distribution or are simply bad sample data points due to
errors degrade the performance and accuracy of the least-squares ap-
proach. The estimated parameter values may be useless or unreliable
in the presence of such erroneous data points. Therefore, we need a
new method to weaken the effect of the outliers and then to improve
the performance and reliability of the least-squares method.

For the purpose of removing the outliers from the pose estimation,
we make use of a robust method. The robust method has been
developed to modify the least squares method so that the outliers
have much less influence on the final estimates. Since the outliers
are eliminated or weakened, the estimation of the 2-D pose will be
more accurate, reliable and stable.

The section of 2D-2D pose estimation is organized as follows.
Section 2.1 gives a precise statement of this problem as a weighted
least squares problem. In Section 2.2, we introduce a derivation of the
solution using the least squares method. In subsequent sections, we
introduce the robust method using an iterative weighted least squares
method. In Section 2.4, we present numerical results of the two
methods and discuss the performances of them. From the numerical
results, we conclude that the robust method produces a better and
more stable performance than the least squares method in the 2D-2D
pose estimation.

2.1 Statement of Problem

In the simple two-dimensional pose detection problem, we are given
N two-dimensional coordinate observations from the observed im-
age: &1,...,2x. Lhese could correspond, for example, to the observed
center position of all observed objects. We are also given the cor-
responding or matching N two-dimensional coordinate vectors from
the model: ¥4, ..., yn. In the usual inspection situation, establishing
which observed vector corresponds to which model vector is simple
because the object being observed is fixtured and its approximate po-



6 Robert M. Haralick et al.

sition and orientation are known. The approximate rotational and
translational relationship between the image coordinate system and
the object coordinate system permits the matching to be done just
by matching a rotated and translated image position to an ob Jject
position. The match is established if the rotated image position is
close enough to the object position.

In the ideal case, the simple two-dimensional pose detection prob-
lem is to determine from the matched points a more precise estimate
of a rotation matrix R and a translation ¢ such that Yn = Rz, + ¢,
n =1,...,N. Since there are likely to be small observational errors,
the real problem must be posed as a minimization. Determine R and
t which minimize the weighted sum of the residual errors €2

N
& =3 wnllgn — (Ron + 1) (1)
n=1
The weights w,,n = 1,..., N satisfy w, > 0 and Eff:l w, = 1. If
there is no prior knowledge as to how the weights should be set, they
can be defined to be equal: w, = 1/N.

2.2 Least Squares Method

Upon expanding Eq. 1 out we have

N
e = Z Wy, [(y71 —t)' (Yyn—1t) = (yn —t)' Rep — 2, R' (y.— t) + :c:,.R'R:un]

n=1
(2)
Since R is a rotation matrix, it is orthonormal so that R—! = R’
Also, since (y, —t)' Rz, is a scalar it is equal to its transpose. Hence,

€ = 3 0n[(4n — 1) (Un ~ 1) — 2(4n ~ 1) Ren + 220]  (3)

n=1
Taking the partial derivative of €? with respect to the components of
the translation ¢ and setting the partial derivative to 0, we obtain

N
g= Z Wn[ — 2(yn — 1) + 2Rz, (4)

n=1
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Letting
N N
S Z wpz, and §= Z WnlYn (5)
n=1 n=1
there immediately results
7=Rz+1 (6)

Substituting § — RZ for ¢ in the expression for the residual error
we can do some simplifying.

N

¢ = X wa|n - (7 - B2~ (9 - R))
i_g(yn — (7 — R&))' Ren + 242,
= f} Wn [(9n — 9)'(9n — 9) + 2(3n — 7)'RZ + 3'R'Rz
j(yn — §)'Ran — 28R Ran + 2he,|
e éwn (¥ = 9)(9a — 9)
:(yn — ) B(2n — 2) + (20 — 2)'(2n — 2)] @

The counterclockwise rotation angle 8 is related to the rotation ma-
trix by

cosf —sind
8= ( sinf cosf ) (8)
We want to take the partial derivative of €2 with respect to §. Now

we need a notation in which the two components of z,, and the two
components of ¥, can be written explicitly. Letting

Tin Yin
- if = =
-=(on)s w= ()
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_ Iy = (51
T = and 7=
(%) e o= ()
then

(yn - g)'R(mn = 5) =
(Yn1 — 71) €05 8(zn1 — Z1) + (Yn1 — 1)(— sin8)(zny — Z;)
+(Yn2 — F2) sinO(2n1 — Z1) + (yn2 — 92) cos §(zny — Z3) (9)

Setting to zero the partial derivative of € with respect to § results
in

N
0 = -2Y w, [(ym — §1)(~ sinb)(zn1 — 21)

n=1
+(¥n1 — F1)(— cos @) (z s — T3)
+(Yn2 — 2) c0sO(zny — 1) +

(¥m2 ~ F2)(— sin6) (203 — 25)] (10)
Letting
N
A= E W [(Yn1 — 71)(Zn1 — Z1) + (Yn2 — 72)(Zna — Z3)]
n=1
(11)
N
B = Z Wr, [(Yn1 — F1)(2n2 — Z3) — (Yn2 — F2)(Zn1 — z)]
n=1
Then
0= Asin8 + Bcosh
Hence,
cosf = —4 and sinf = H (12)
B VLB
or
cosf = o

A
—— d sinf = ————_ 13
L and sin YERw:E (13)

The correct value for 8 will, in general, be unique and will be
that @ which minimizes 2. Thus the better of the two choices can
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always be easily determined by simply substituting each value for 6
into the original expression for €*.

In this subsection, we assumed that w, is given. To remove or
lessen the effect of the outliers and thereby improve the performance
and stability of the pose estimation, the weights need to be deter-
mined based on the data. For this, we need a method to assign a
weight based on the residual error. The outliers are forced to have
small or zero weights, lessening their effect on the pose estimation.
It is also reasonable that the data points with small noise are as-
signed larger weights than those with large noise error. From this
assumption, we may expect better performance and stability in the
pose estimation. The method to assign appropriate weights to the
data points is done by a robust method using an iterative weighted
least squares method, which is described in the next subsection.

2.3 Robust Method

In the previous subsection, we have presented the weighted least
squares method where the weights are given. In this subsection, we
will introduce an iterative weighted least squares method where the
weights are data dependent. The purpose is to make the outliers
have zero or small weights and thus to eliminate the effects of them
in the pose estimation.

M estimator

In M estimator, the solution of an 8 is given by a minimization
problem of the following form

N

méian(m.; - 6) (14)

=1

or by an implicit equation

N
> (i —0)=0 (15)
=0
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where N is a sample size. p is an arbitrary non-negative monotoni-
cally increasing function (called the object function). ¥(z; — ) is a
derivative of p(z; — ) with respect to 6 and is called an M-estimator.

$(z: — 0) = op(e: - 0) (16)

Eq. 15 can be written equivalently as

N
Y wi(z;—08)=0 (17)
1=0
where o )
i — 5
’w,’:‘ﬁ, ’&21,...,N (18)

This gives a formal representation of  as a weighted mean

N
> wit;
1=1

0= —_——
n
2w
i=1

with weights depending on the data.

Among many forms of functions p and 1 proposed in the litera-
ture, Tukey’s form is investigated in this experiment. The Tukey’s
biweight 1(z) is

(z) = { 21— (Z)22, if|z] < c5; (20)

0, otherwise.

(19)

c is a tuning constant which typically lies in the range 6 to 12. In
the experiments, we adopted 6 as a value of c. § is a scale estimator
which is usually MAD (median of absolute deviation). ¢S is called
"rejection point.”

The corresponding object function of the Tukey’s biweight, p(z) is

e { VGG s
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The weight function of Tukey’s biweight is

w(z) = { [1- (&) if |z] < e5; (22)

0, otherwise.

Since it is difficult to find a closed from for the estimated parameter
0, an iterative method is usually used.
Iterative weighted least squares method

The residual error ¢; for nth data sample is
& =y; — (Re; + t)

where ¢ = 1,..,N. N is a sample size. The robust estimation pro-
cedure is implemented as the following iterative method. Given the
data sets z; and y;, where Z =1,..., N.

e Step.l Select initial starting values for R and t¢.

e Step.2 R and ¢ give weights w; where ¢ = 1,...,N. To find
weights, we use Eq. 22. z? is replaced by the residual error,
|€;||?, where €; = y; — z;R' — E;t and i=1,..,N. Thus, w; is

expressed as
€i 2
{ H’] if le]] < e85 (23)

otherwise
The new R and t are obtained from the new weights.

e Step.3 If some degree of convergence in R and ¢ are obtained,
go to Step.4. If not go to Step. 2

e Step.4 From the final W, we normalize the weights and find
estimates for rotation angle and translation using the solution
derived in Section 2.2. Stop.
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2.4 Experimental Results

For each trial, object data points were generated uniformly in the
square [—2,2] X [-2, 2]. A rotation angle was chosen from the inter-
val [-15, 15] (in degrees) according to a uniform distribution and the
translation vector was chosen from the square [—1,1] x [-1,1] also
according to a uniform distribution. Independent Gaussian noise
was added to the rotated and translated points and the signal to
noise ratio (SNR), defined as 20 log peak-to-peak signal /normalized
interquartile range, was varied between 0 db and 52 db. The normal-
ized interquartile range is defined as the interquartile range of the
noise divided by the interquartile range of a Gaussian variate having
variance 1. For noise which is Gaussian the normalized interquartile
range is just the noise standard deviation. For distributions such as
the slash distribution which does not have finite variance, the normal-
ized interquartile range is a suitable estimate of dispersion. For each
different combination of SNR and number of corresponding point
pairs, one thousand trials were made. First, we made experiments
without generating any outliers and examined the performance of
the least squares method. The results are shown in Figures 1, 2, and
3. Figure 1 shows the mean absolute error of the rotation angle as
a function of SNR for number of corresponding point pairs varying
between 8 and 200. For number of corresponding point pairs equal
to 8, the SNR must exceed 40 db to guarantee mean absolute error
of less than 1 degree while for 100 corresponding point pairs the SNR.
can go as low as 25 db while maintaining a less than 1 degree mean
absolute rotation error. The pattern for mean translational distance
error is similar. This is shown in Figure 2. To maintain a mean trans-
lational distance error of .01, which is a relative error of about .25%,
requires 100 corresponding point pairs at a 32 db SNR. Using only
8 corresponding point pairs, even a SNR of 52 db provides a mean
translation distance error of about .03, or .75%. Figure 3 shows rota-
tional error as a function of number of corresponding point pairs for
a few values of SNR. Figure 3 suggests a rapid increase in expected
error when there are fewer than 50 corresponding point pairs for a
35 db SNR. In the next experiments, we examine the performance
of the least squares and robust methods with outliers present in the
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image. To generate the outliers, we intentionally moved the positions
of some data points by randomly selecting arbitrary positions in the
image generated according to a uniform distribution. We applied the
least squares and robust methods to estimate the pose and observed
the performance. The percentage of the outliers was varied from
10 % to 50%. Figs. 4 and 5 show the mean rotational and trans-
lational errors as a function of the SNR. for the PO (percentage of
the outliers) varying between 10 % and 50 % when the least squares
and robust methods are used. The number of corresponding point
pairs is 20. As we increase the PO, the performance is degraded.
The robust method shows better performance than the least squares
method when the SNR is greater than 10 db. If the SNR is less
than 10 db, the performances of the two methods are almost identi-
cal. This indicates that below 10 db, there is not enough consistency
within the data to enable a distinction between outliers and non-
outliers. Figs. 6 and 7 show the mean rotational and translational
errors. The number of corresponding point pairs is changed from 20
of Figs. 4 and 5 to 50. Other parameters are unchanged. The robust
method shows better performance than the least squares method.
We can notice the improved performance in the translational error.
Figs. 8 and 9 show the mean rotational and translational errors as
a function of the number of corresponding point pairs for the PO
varying between 10 % and 50 % when the least squares and robust
methods are used. The SNR is fixed 10 db. As we increase the PO,
the performance is degraded. The least squares method experiences
unstability when the PO is 40 %. This unstability is common in the
least squares method. But, we do not observe any severe unstability
in the robust method, which provides us with reliable results. Since
the SNR is 10 db, the performances of the robust method does not
show large improvement compared with the least squares method.
In Figs. 10 and 11, we changed the SNR from 10 db of Figs. 8 and
9 to 30 db and observed the performance. The other parameters
are unchanged. Since we has increased the SNR, the robust method
clearly shows better performance and stability than the least squares
method. In Figs. 12 and 13, we compare the mean rotational and
translational errors of the least squares and robust methods. The



14 Robert M. Haralick et al.

number of corresponding point pairs is varied between 10 and 50.
The PO is fixed 20 %. We changed the SNR from 10 db to 50 db.
The rotational and translational errors of the robust method show
better performance than those of the least squares method. When
the SNR is 10 db, the performance of the two methods does not show
much difference as observed before. Finally, we tried an interesting
experiment. All outliers were intentionally removed from the data
sets. Then, we applied the equal weight least squares method. Fig.
14 shows the performance of the mean rotational and translational
errors as a function of the SNR for different POs. The number of
the corresponding point pairs is 20. Comparing it with Figs. 4 and
5, we observe that the performance of this experment is better than
that of the robust method. This observation reveals some interest-
ing properties of the robust method. First, in the robust method,
the outliers are not perfectly eliminated. Ideally, the weights as-
signed to the outliers should be zero or very small. But, in practice,
some outliers have significant weights, which indicates that the ro-
bust method does not detect such outliers. Second, there are some
data points which are not outliers and have weights which indicates
that they are considered as outliers. For example, during the experi-
ment, some data points having large noise were detected as outliers.
Finally, in computing the rejection point, ¢§ of the Tukey’s biweight,
we adopted 6.0 for the tuning constant, c. But, the optimum ¢ should
be found. However, since it involves the complicated mathematics,
we did not take it into account in the analysis.
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MEAN ROTATIOMAL ERROR (DEG)

4 10 20 38 49 50 68
SIGNAL TO NOISE RATIO (SHNR)

Figure 1: Mean absolute rotational error as a function of signal to
noise ratio for the 2D-2D pose estimation problem.
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MEAN TRANSLATIOMAL ERROR

SIGNAL TO NOSIE RATID (SHR)

Figure 2: Mean translational distance error as a function of signal to
noise ratio for the 2D-2D pose estimation problem.
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MEAN ROTATIONAL ERROR (DEG)

SNR=5Bdb
SNR=48dh
SNR=35db
SNR=25db

SNR=28dhb

4! 44 2% 128 164 2688
THE NUMBER OF DATA POINTS, N

Figure 3: Mean absolute rotational error as a function of the number
of corresponding point pairs for the 2D-2D pose estimation problem.
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18

SNR N=2@8, ROBUST

Figure 4: Mean absolute rotational error of least squares method
and robust method as a function of SNR for the 2D-2D pose estima-
tion problem. The number of corresponding point pairs is 20. The
percentage of the outliers is changed from 10% to 50%.
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8 18 208 1% 49 a8 66
SNR. N=28. ROBUST

Figure 5: Mean translational distance error of least squares method
and robust method as a function of SNR for the 2D-2D pose estima-
tion problem. The number of corresponding point pairs is 20. The
percentage of the outliers is changed from 10% to 50%.
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18

4 18 20 36 48 an 1%
oNR. N=5@. ROBUST

Figure 6: Mean absolute rotational error of least squares method
and robust method as a function of SNR for the 2D-2D pose estima-
tion problem. The number of corresponding point pairs is 50. The
percentage of the outliers is changed from 10% to 50%.
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SNR. N=5B. ROBUST

Figure 7: Mean translational distance error of least squares method
and robust method as a function of SNR. for the 2D-2D pose estima-
tion problem. The number of corresponding point pairs is 50. The
percentage of the outliers is changed from 10% to 50%.
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38% Outlier
48%

ROBUST METHOD .

Figure 8: Mean absolute rotational error of least squares method
and robust method as a function of corresponding point pairs for the
2D-2D pose estimation problem. The SNR is 10db. The percentage
of the outliers is changed from 10% to 50%.
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Figure 9: Mean translational distance error of least squares method
and robust method as a function of corresponding point pairs for the
2D-2D pose estimation problem. The SNR is 10db. The percentage
of the outliers is changed from 10% to 50%.
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48% Outlier

58% Outlier

18 2d % 48 56
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Figure 10: Mean absolute rotational error of least squares method
and robust method as a function of corresponding point pairs for the
2D-2D pose estimation problem. The SNR is 30db. The percentage
of the outliers is changed from 10% to 50%.
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4 ' X 48% Outlier
ol

ROBUST

Figure 11: Mean translational distance error of least squares method
and robust method as a function of corresponding point pairs for the
2D-2D pose estimation problem. The SNR is 30db. The percentage
of the outliers is changed from 10% to 50%.
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.8
5 m  SHR=58dh
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Figure 12: Mean absolute rotational error of the least squares and
robust methods as a function of the number of corresponding point
pairs for 2D-2D pose estimation problem. SNR is changed from 10
db to 50 db. The percentage of the outliers is fixed 20 %.
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10 + SNR=1@dhb

LEAST-SQAURES

m  SNR=58db
€ SNR=3ddb
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Figure 13: Mean translational distance error of the least squares and
robust methods as a function of the number of corresponding point
pairs for 2D-2D pose estimation problem. SNR is changed from 10
db to 50 db. The percentage of the outliers is fixed 20 %.
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Outlier
Outlier

Outlier
Outlier
Outlier

Outlier
Outlier

Outlier
Outlier
Outlier
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Figure 14: Mean absolute rotational and translational distance errors
of the least squares method as a function of SNR for the 2D-2D pose
estimation problem. The outliers are removed and the least squares
method is applied. The number of corresponding point pairs is 20.
The percentage of the outliers is changed from 10% to 50% with a

scale of 20 %.
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3 3D-3D Estimation

3.1 Statement of Problem

Let y;...yny be N points in Euclidean 3-space. Let R be a rotation
matrix and £ be a translation vector. Let z1,...,25 be the points in
Euclidean 3-space which match yi,...,yn. Each 2, is the same rigid
body motion of y,. Hence each y, is obtained as a rotation of z,
plus a translation plus noise.

Yn = Rz, +1+ n (24’)

The 3D-3D pose estimation problem is to infer R and ¢ from
Z1,.., 2N and Y1, ..., YN-

3.2 Derivation

To determine R and ¢ we set up a constrained least squares problem.
We will minimize 3"Y_; wy,||yn — (Ren +1)||? subject to the constraint
that R is a rotation matrix, that is, R’ = R~1. To be able to express
these constraints using Lagrangian multipliers we let

R = | r5 | where each r; is a 3 X 1 vector

The constraint R’ = R~1, then amounts to the six constraint
equations

mry =1
rare =1
rgry =1
rirg =0 (25)
rir3 =0
rory =0

The least squares problem with constraints given by Eq.(25) can
be written as minimizing €2 where
N 3

€ = Y. Walyak — rh2n — t)?

n=1k=1
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3

+ Z Ae(Prre — 1) + 2247y
k=1
+2A57‘§_T‘3 - 2A5Té?‘3 (26)

Tn1 Yn1 ty
o= Cna |y Yn=|UYn2|,and t= |t
Zn3 Yn3 t3

Taking the partial derivative of €2 with respect to t,, there results

8e?

N
5{“ = Z 2wﬂ(ynk - r;gzﬂ - tk) (_1)7 k= 1,2,3
k

n=1

Setting these partials to zero results in

N
> wa(yn — Rz —t) =0
n=1

By rearranging we obtain

t=y- Kz (27)
v N
g W .
where = ;‘% and 7= Enl_vl Wnln
n=1Wn n=1Wn

Thus once R is known, £ is quickly determined from Eq. 27. Sub-
stituting T — R7 for ¢ in the definition of €2, there results

N 3 3
& = > w3y, (ynk — Tp — T(Tn — E))z + ) Ar(rire — 1)
k=1

n=1 k=1
+2A4T'1T2 + )\57‘;_1"3 + As'l"!z?‘;; (28)

T Y1
z=\|2Z2|, ¥=1|79:]-
T3 Vs

Now we take partial derivatives of €2 with respect to the compo-
nents of each y,. To write things more compactly, by % We mean a

where

PO
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3 x 1 vector whose components are the partial derivative of € with
respect to each of the components of »,. Then,

He? i
. = 220 (Um — T2 = ri(an— 7)) (ea -~ B)(-1)+

87’1
2A1T1 + 2A4‘1"z + 2A5T3 (29)
08 _ 5~y T — 7 z ) f-1
o r; wn(yn2 — Ty —73(Ta — 3’)) (2n —7) (-1) +
2X273 + 22471 + 2673 (30)
Oe? o _ i _
Bry = 2 2un(she = Fe = h(en - 3)) (30 -2) (-1)+
2A37’3 + 21\51"1 + 2)\51"2 (31)

Setting these partial derivatives to zero and rearranging we obtain

N
Z Wn(Tn —T(2n — T)'P1 4+ A171 + Agra + Asra

N
= Z wn(ynl = ?1)(:1.'“ = —f) (32)

Z Wn(Zn — T)(2n — Z)'r3 + Aar1 + Aara + Aers

= an(ynz 7;)(zn — T) (33)

N
Z wn(mn — ﬁ.‘")(ﬂ!n = 5)'7’3 + Agry + Agrg + AsTs

N
= Z Wn(Yn3 — ¥3)(2n — T) (34)
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Let A = Z n—Z)(2n — F)'

Al Ad s
A = )\4 Az Aﬁ
As Xs Az

N
and B = (blbzb_g) when bk = Z wﬂ(ynk = ?Ic)(wﬂ - E)

Then Eg. 33 can be simply rewritte:_:s

AR + RA=B (35)
Multiplying both sides of Eq. 35 on the left by R we have

RAR + A=RB (36)

Since A = A', (RAR') = RAR'. Since both RAR’ and A are
symmetric, the left hand side must be symmetric. Hence, the right
hand side is also symmetric. This means,

RB = (RB) (37)
The solution for R now comes quickly. Let the singular value decom-

position of B be
B=UDV

where U and V are orthonormal and D is diagonal. Then
RUDV = (UDV)R

V'DU'R' (38)
By observation, a solution for R is immediately obtained as
R=V'U’ (39)

Solutions to this problem can be found in the photogrammetry lit-
erature beginning with Thompson (1958), Schut (1960), Tienstra
(1969), and Pope (1970). Blais (1972) gives a solution to the prob-
lem in the case where there may be a scale factor or magnification
different than 1. Sanso (1973) gives a solution to the problem using
quaternions. Huang (1987) and Haralick et al. (1987) have discussed
the singular value decomposition approach to the problem.
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3.3 Experimental Results

Over 144,000 simulation experiments were done in which 3D points
were chosen at random. A random rotation and translation are
chosen and a corresponding point data set was created by rotat-
ing and translating the initial set of points and adding noise as given
in Eq. 27. The rotation and translation was then estimated using
Eq. 27 and Eq. 39.

The number of corresponding point pairs was varied between 10
and 200 in 9 steps. The signal to noise ratio, which is defined as 20
log (dynamic range of 3D points/normalized interquartile range of
noise), was varied between 28 db and 160 db in 8 steps. The noise
distribution type was varied between Gaussian and uniform. For
each calculation one thousand trials were run.

Figure 15 illustrates a typical experimental result. It shows the
mean angle error of the rotation, in degrees, as a function of signal
to noise ratio with Gaussian noise. The plot indicates that when the
number of 3D points is 50, then the RMS error of the rotation angle
will be less than 3 degrees when the signal to noise ratio is greater
than 55 db.

Figure 16 shows the angle error of the translation vector as a
function of signal to noise ratio. The plot is comparable to the be-
havior of that in Figure 4. Figures 6 and 7 show similar experiments
using uniform noise.

Figure 19 shows rotation angle error plotted as a function of num-
ber of points in the coresponding point data sets for varying levels
of Gaussian noise. This plot clearly shows that when the number
of corresponding point data pairs is below 40, the estimated values
are unreliable. When the number of corrsponding point data pairs
is above 40, the estimates improve for increasing- sized sets.

Figure 20 illustrates the translation error angle as a function of
the number of corresponding point data pairs for varying signal to
noise ratios and Gaussian noise. Figures 10 and 11 show comparable
plots for uniform noise.
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ROTATION ANGLE ERROR (Deg)
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Figure 15: Mean rotation angle error versus signal to noise ratio with
Gaussian noise. Corresponding point data set sizes vary between 10
and 200 pairs. Each point on the graph represents 1,000 trials.
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TRANSLATION VECTOR ERROR (Deg)
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Figure 16: Mean translation vector error versus signal to noise ratio
with Gaussian noise. Corresponding point data set sizes vary be-
tween 10 and 200 pairs. Each point on the graph represents 1,000
trials.
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ROTATION ANGLE ERROR (Deg)
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Figure 17: Mean rotation angle error versus signal to noise ratio with
uniform noise. Corresponding point data set sizes vary between 10
and 200 pairs. Each point on the graph represents 1,000 trials.
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TRANSLATION VECTOR ERROR (Deg)
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Figure 18: Mean translation vector error versus signal to noise ratio
with uniform noise. Corresponding point data set sizes vary between
10 and 200 paris. Each point on the graph represents 1,000 trials.
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ROTATION ANGLE ERROR (Deg)
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Figure 19: Mean rotation angle error versus number of points with
Gaussian noise.
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TRANSLATION VECTOR ERROR (Deq)
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Figure 20: Mean translation angle error versus number of points with
Gaussian noise.
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ROTATION ANGLE ERROR (Deg)
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Figure 21: Mean rotation angle error versus number of points with
uniform noise.
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TRANSLATION VECTOR ERROR (Deg)
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Figure 22: Mean translation angle error versus number of points with
uniform noise.
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4 2D Perspective Projection—-3D Pose Esti-
mation

Let y1,...,y~ be the observed 3D model points in Euclidean 3-
space. Let R be a rotation matrix and ¢ be a translation vector.
Let (#n1,%n2),m = 1,...,N be the corresponding 2D perspective
projection of the 3D points. Then, the relationship between the 3D
model points and the 2D perspective projection points is given by

_ fTMYnt
Uny = f——rF
T3Yn + t3
T2Yn + t2
Upa = 40
n fTSyn + t3 ( )
t= (tls t25 t3)

where f, the focal length, is the distance of the image plane in front of
the origin which is the center of perspectivity. In the 3D coordinate
system of the camera, the perspective projections are given by

Unl Uni
Un = (Unz) :.f('urﬂ) = fun (41)
f 1

where %n1 = fvn and upg = fons.

The problem of pose estimation is to determine the unknown ro-
tation matrix R and the translation vector ¢ given the 3D model
points and the corresponding 2D perspective projection points on
the image plane. This problem is known as the exterior orienta-
tion problem in the photogrammetry literature. The dissertation by
Szczepanski (1958) surveys nearly 80 different solutions beginning
with one given by Schrieber of Karlsruhe in the year 1879. The first
robust solution in the computer vision literature was Fischler and
Bolles (1981). Wrobel and Klemm (1984) discuss the fact that there
are configurations of points for which the solution is unstable.
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4.1 Iterative Least Squares Solution

This section describes iterative procedures for determining a least
squares solution for R and . In the following subsections, we use the
superscript or subscript k& to denote the values in the k*® iteration

step. Let
Zni Yn1
mnz(mng):R(yng)-{—t (42)
Tn3 Un3

be the rotated and translated point of y,. Let d, be the estimated
depth of each point z, relative to the camera coordinate system.

Method 1

One iterative procedure for determining a least squares solution for
R andtis

o (1) Choose initial reasonable values for the depth d° of each
point. The initial values could, for example, be the same con-
stant for each point, the constant representing an initial guess

of how far the object is from the perspective center.

o (2) Iterate. Suppose the depth values d%,n = 1,...,N are
given. Define the depth values for the (k + 1)t iteration by:

— (2.1) Find the rotation matrix Ry and the translation vec-
tor tr which minimizes

N
€& = ) Wnl|Rkyn + ti — divn | (43)
n=1
where the {w, | n = 1,..., N} are non-negative weights

reflecting the goodness of the observations. Ry, and tj con-
stitute the solution to the 3D-3D pose estimation problem.

— (2.2) Define dkt! = zk. where

m,‘:: = Ry, + tr.
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— (2.3) Define
D
d-’;ez+1 — (D—y) zﬁa_
where
i g 2k
b PR PO
and

N
Dy = Z ”yn - ?7”2
n=1

N
D, = ZII%—EIP (44)
n=1
A typical convergence characteristic of the computed depth values
is shown in Figure 23. This experiment is performed in a noise free
environment with N = 10. The depth values of the first five points
are plotted against the iteration number. The correct depth values
are 33.27, 34.98, 38.81, 40.39, and 42.68.

Method 2 Replace the step (2.2) of Method 1 with (2.4). Define
dktl by
gF+1 — (Reyn + tr)'vn

45
vlv, ( )
It can be shown that €, < ef.

N
€y = E Wo||Reg1Yn + thgr — di¥1o, |2

n=1

N

< an”Rkyn + 1 — dEt1y, )
n=1

N
= D wnll(eh — dhva) + (dhvn — ditiu,)|?
:1

N
= 3 walll(zk — dhva)l® + 2(2k — dkv, ) (dk — dE+1)a,
n=1

+ (dy — dptt)?||va ]
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Figure 23: illustrates the convergence characteristics of Method 1.
Convergence is achieved in about ten iterations.
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N
= &+ Z wy(dy, — dfx-l-l) [Z(zﬁ - dﬁ'”n)"”n 4 (di - dzﬂ)”"’nHz}
n=1

N
= G+ wa(dh — k)] 22k'v, — 20 v, |2
n=1

+(d} — ) ea|?)
N
= e+ ) wa(dh —dit) [2ek'vn — (dh - diH)|[ua]?]

n=1

N kit k!
zr'u, zr vy,
= fizc + E wn”'”n“z [(dﬁ+1)2 - 2”1} szﬁ-i-l + 2”,0 szf; - (dﬁ)zjl
n n

n=1
N ki 2 k! 2
LAV 25 v,
= e+ ) wallva|? [(dﬁ“ — W) = (dﬁ— W) ] (46)
n=1 B

Consider the terms in the bracket as a function of dfl"'l. The
function reaches a minimum when

k41 _ mrk;’?-’n
" [|vnl[?

The resulting value of the terms in the bracket at the minimum is

k' 2
- (df‘ "o |F) 48)

This value cannot be positive. Since wy||v,]|? > 0, when

(47)

k+1 mﬁlvn
" leall?

each term in the summation is not positive and from this we can
infer

(49)

€i+1 <€ (50)

A typical convergence characteristic of the computed depth values

is shown in Figure 24. This experiment is performed in a noise free

environment with N = 10. The depth values of the first five points

are plotted against the iteration number. Notice how the convergence

is monotonic. The correct depth values are 33.27, 34.98, 38.81, 40.39,
and 42.68.
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Figure 24: illustrates the convergence characteristics of Method 2.
Convergence has been observed to be monotonic and is achieved in
a few hundered iterations.
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4.2 Least Squares Adjustment by Linearization

Let ¢,6, and % be the three angles that define the rotation matrix
R such that

R = R.(¢)Ry(0)R.(¥)

( cos fcostp cos @sin 1 —sinf
— cos ¢ sinp+ cos ¢ cos P+ :
= sin ¢ sin @ cos 7 sin ¢ sin @ sin ¢ 8in ¢ cos ¢
sin ¢ sin ¥+ —sin ¢ cos i+ _—

\ cos ¢sinf cos cos ¢ sin @ sin 1)

As there always exists random errors in the measurement of the
image coordinates, let

Uni = + vy =1,2, n=1,...,N (51)

where (ul,,ul,;) are the measured image points and (v,1,,2) are the
corrections needed to account for the random error in the measured
coordinates. Similarly, let

b=+ A4
6=26°+ A6
5=+ Ap (52)

t =10+ Al;,i=1,2,3

where ¢%,8°,4°,19,3 and tJ are some approximations, and A¢, A6,
A, Aty, At; and Atz are their corresponding corrections. We as-
sume that the corrections A’s are small and the collinearity equations
are linear over the small intervals between the true values of these

parameters and their corresponding approximation.
Let

T1ln ‘|‘ tl
Fo=uy-— f—=2—-= 53
1 1 frsyﬁt3 (53)
Toln + 1
Fig = upy— fiin T2 (54)

T3Yn + t3
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These equations can be linearized by Newton’s first order approxi-
mation as follows:

Fri o~ F+ vn1 4 bniiAg + bpiaAb + bpyzAgs +
br1aAty + bu1sA ty + bpigAts
Fy + Vn2 + bno1i Ad + bpazAb + brys A +
bnoa Aty + brasA ty + bnagAts

Fﬂ2

1

where
0

bni1 = (%%L)O, bniz = (%%L)

bniz = (gg‘&,‘l‘)o: banis = (%Ii:?l.)
0 0

s = (%581) s bus = (%32)

for 4 = 1,2, where the superscript 0 implies that the function val-

ues are computed with the approximations (¢°,8°,4°,19,3,¢3). In
matrix notation, the linearized equation can be expressed as

0

o

oY B

bizn bz ... bus v
biar  bizz ... bize AF —F{Jz Via
) " ; Ay | _ .
. 5 . Atl = . - .
bvii bNiz ... bwie Aty —FRy VN1
bna1 bwnaz ... bwae Aty —Ff, VN2
or simply
BA=F —v (55)

This equation can be solved using the singular value decomposition
method. The computed corrections A = ( A¢, Af, Ap,Aty, At,,
Atz )" from one iteration are used to update the parameters A =
(¢°,6°,4°,12,19,43)" and then these updated parameters are used as
approximations in the next iteration. The whole iteration process is
repeated until the corrections becomes negligibly small.

4.3 Robust M-Estimation

This section repeat some robust techniques used in nonlinear Tegres-
sion problems as mentioned in section 2. In particular, it can be used
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to solve robustly the equation BA = F — v which results from the
linearization of the original pose estimation problem. Any estimate
Ty defined by a minimization problem of the form.

Inian(z,- - Ty) (56)
T =1
or by an implicit equation
> (i —Ti) =0 (57)
1=0
where p is an arbitrary function (called object function),
d
—Tg) = — - T
$lo —T4) = opple — Th) (58)

is called an M-estimate. This last equation can be written equiva-
lently as

Y wi(e; —Ti) =0 (59)
i=0

where o )
— Y\Ti — Lk o
w; = T, t=l. .00 (60)

This gives a formal representation of T as a weighted mean

n
5 wizT;
=1

Ty = ——
S
=1

with weights depending on the sample (Huber, 1981). It is known
that M-estimators minimize objective functions more general than
the familiar sum of squared residuals associated with the sample
mean. Among many forms of functions p and ) proposed in the lit-
erature, Huber’s and Tukey’s form is investigated in this experiment.
Huber derived the following robust p and 2.

el 0.5z2, if |z| < a;
PLEI= alz| — 0.5a%, otherwise.

(61)
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—a, ifz < —a;
1,&(2:) = z, if |:B| <ag;
a, ifz>a.

Tukey’s 9 function can be expressed as

¥(z) = {ﬂ’ ( - (“ﬁ')z)z’ if |z] < g (62)

0, if |z| > a.

where a is a tuning constant, 1.5 for Huber’s and 6 for Tukey’s.

The nonlinear regression problem can be formulated as follows.
Let f; : E™ — E,i=1,...,n be functions that map m-dimensional
space into a real line. Let 8 = (64,0s,...,6,) € E™ be the m-
dimensional unknown vector to be estimated. The solution to the
set of n equations

@) =9, i=1,...,n (63)
which minimizes o ; (0)
Yi— 1
,-=le (——S ) (64)

can be found in several different ways. To create a scale invariant
version of the M-estimator, the robust estimate of scale such as the
following is introduced.

_ median;|y; — £:(0)]

S
0.6745 (65)

where 0.6745 is one half of the interquantile range of the Gaussian
normal distribution N (0, 1). Here we take the median of the nonzero
deviations only because, with large m, too many residuals can equal
zero (Hogg, 1979).

In robust estimation, the estimates are obtained only after an
iterative process because the estimates do not have closed forms.
Two such iterative methods are presented here that can solve the
minimization problem stated above (Huber, 1981).
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Modified Residual Method In this method, the residuals are
modified by a proper % function before the least squares problem is
solved. The iterative procedure to determine 8 is

o (1) Choose an initial approximation 6°.

o (2) Iterate. Given the estimation 6* in step k, compute the
solution in the (k + 1)th step as follows.

— (2.1) Compute the modified residuals r} fort =1,...,n
s =1 (Sk) Sk

o=y — £i(6%)
medjan
e |r.;|/0 6745

— (2.2) Solve the least squares problem X§ = r*. where
X = [z;;] is the gradient matrix.

where

_ O Lenk
wu—aTjﬁ(B)

The solution for this equation can be found using the stan-
dard least squares method. If the singular value decompo-
sition of the matrix X is X = U;X,V", then the solution
is &= V2 U,

— (2.3) Set g++1 =gk 1 §,

Modified Weights Method Taking the derivative of the objec-
tive function p with respect to § and set it to zero, we get

Z"p (yi —S.‘fi(a)) 3;259) _ (66)

In the standard weighted form

S win 2B g (67)

i 7
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where

—

¥(3)
(3)

Therefore, the iterative procedure to determine 8 is

w,; =

(68)

5]

e (1) Choose an initial approximation 6°.

o (2) Iterate. Given 6* at kth step, compute 6*+1 as follows.

— (2.1) Solve
PX6 = Pr

where
Vwy
P =

Viy

— (2.2) If § is the solution in step (2.1), then set

grtl — gk —I—5

4.4 Experimental Results

To measure the performance of the pose estimation algorithms, sev-
eral hundred thousand controlled experiments were performed. This
section describes how the controlled experiments are constructed and
shows the results from those experiments. The result is presented as
a graph where the sum of errors of the three rotation angles, ¢, 8, 1,
is plotted against various control parameters such as the signal to
noise ratio (SNR), the number of matched points, or the number of
outliers, which will be defined later.

Data Set Generation A set of 3D model points

i = (yi1, Yio, ia)hi=1,..., N
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are generated within a box defined by

Yi1, Yizs ¥i3 € [05 10]

That is, the three coordinates are independent random variables each
of them uniformly distributed between 0 and 10. Next, three rotation
angles are selected from an interval [20, 70] and the translation vector
t = (ty,13,%3) is also generated such that ¢; and ¢; are uniformly
distributed within an interval [5, 15] and ¢3 is within [20, 50]. Having
these transformation parameters, the 3D model points are rotated
and translated in the 3D space forming a set of 3D points z;,7 =
1,...,N. At this stage, independent identically distributed Gaussian
noise N(0,0) is added to all three coordinates of the transformed
points z;. To test the robustness of the algorithms, some fraction of
the 3D points, z;, are replaced with randomly generated 3D points,
z; = (21, 2i2, 2i3), 2= 1,..., M. M is the number of the replaced 3D
points and

znp=ti1+rvn

Zig = ta + vip (69)

Zi3 = Zi3

where v;1,V2,% = 1,..., M are independent random variables uni-
formly distributed within an interval [-5, 5]. These random points,
z;, are called outliers in our experiments. To get the matching set
of 2D points, 2;,2 = 1,..., N are perspectively projected onto the
image plane. Given the 3D model points and the corresponding 2D
points on the image plane, each algorithm is applied to find the three
rotation angles and the translation vector.

One can notice from the above description that there are three
parameters we can control in each experiment. They are the number
of 3D model points N, the standard deviation o of the Gaussian
noise, and the number of outliers M. In the experimental result,
we use SNR and the percent of outliers PO, in place of o and M
respectively, where

SNR = 201log l&qdb (70)

M
0=—x100
P N X % (71)
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Results For each parameter setting, (N, SNR, PO), 1000 experi-
ments are performed to get a reasonable estimate of the performance
of the algorithms. For each algorithm, we performed three different
sets of experiments (E1, E2, and E3), as follows.

e E1: Set N = 20. Estimate the sum of three rotation angle error
against SNR (20db to 80db in 10db step) for different PO (0%
to 20% in 5% step).

o E2: Set SNR = 40db. Estimate the sum of three rotation angle
error against PO (0% to 20% in 5% step) for different N (10 to
50 by steps of 10).

e E3: Set PO = 10%. Estimate the sum of three rotation angle
error against SNR (20db to 80db in 10db step) for different N
(10 to 50 by steps of 10).

Figure 25 shows the results of E1, E2, and E3 performed for the
initial approximation algorithm using iterative least squares solution
(A1), method 2 of section 4.1.1.2. Initial estimate for the approxi-
mate distance is set to 10 in all experiments. For the linearized algo-
rithms, the initial estimate of the three rotation angles are selected
randomly within 15 degrees of the true angles. The initial approx-
imate of the translation vector is selected randomly within +10 of
the true translation vector. Figures 26 and 27 show the result of the
least squares adjustment by linearization algorithm (A2), algorithm
in section 4.1.2, and the robust M-estimate algorithm (A3), modified
weights algorithm in section 4.5.2, respectively. Figure 28 compares
the three algorithms A1, A2, and A3 in the experiment set E1. Fig-
ures 29 and 30 compare the three algorithms in the experiment set E2
and E3 respectively. One more experiment is performed to compare
the algorithms A2 and A3. With N = 20 and PO = 10%, algorithms
A2 and A3 are applied for SNR from 20db to 40db in a step of 10db,
and the algorithm A2 is applied for N = 18, PO = 0% and SNR from
20db to 40db in a step of 10db. This compares the efficiency of the
robust technique against the non-robust technique in the case where
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Figure 25: illustrates the performance characteristics for the initial
approximation solution (Method 2).
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Figure 26: illustrates the performance characteristics of the least

squares adjust by linearization.
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Figure 27: illustrates the performance characteristics of the robust
M-estimate algorithm.
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Figure 28: illustrates the performance charcteristics of angle error
as a function of signal to noise ratio for the initial approximation
method, the non-robust linearized least squares adjustment, and the
robuts M-estimate.
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Figure 29: illustrates the performance characteristics of angle error
versus fraction of outliers for the initial approximation method, the
linearized least squares adjustment, and the robust M—estimate.
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Figure 30: illustrates the performance characteristics of angle error
versus fraction of outliers for the initial approximation method, the
linearized least squares adjustment, and the robust M—estimate.
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Figure 31: illustrates the efficiency of the robust technique operating
on a data set of 20 points, 18 points having Gaussian noise and 2
outliers, against the non-robust technique operating on a data set
having 18 points having Gaussian noise.
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the non-robust technique uses only the non-outlier points given to
the robust technique. Figure 31 shows the result of this experiment.

5 2D Perspective — 2D Perspective Projec-
tion Pose Estimation

The estimation of three-dimensional motion parameters of a rigid
body is an important problem in motion analysis . Its applications
include scene analysis, motion prediction, robotic vision, and on line
dynamic industrial processing. There has been much literature con-
tributed to 3D parameter estimation, but few of these contributions
systematically discuss the effect of noise. Thompson (1959) devel-
oped the nonlinear equations using the form resulting from the corre-
spondence of 2D perspective projection points on one image with 2D
perspective projection points on another image. He gave a solution
which determines a rotation matrix guaranteed to orthonormal. His
method was to linearize the non-linear equations and iterate. Roach
and Aggarwal (1980) developed a nonlinear algorithm and dealt with
noisy data. Their results show that accuracy can be improved by in-
creasing the number of corresponding point pairs; but the number
of corresponding point pairs in their experiments is too few (15 cor-
responding point pairs). The linear motion parameters estimation
algorithm was developed by Longuet -Higgins(1981) , extended by
Tsai and Huang(1984), unified by Xinhua Zhung, T.S. Huang, and
R. M. Haralick(1986), and simplified by Xinhua Zhung and R. M.
Haralick. The linear algorithm has an advantage of being simple and
fast over the nonlinear algorithm. Furthermore, it can always find
a unique solution except in degenerate cases. The linear algorithm
works very well when there is limited noise and no corresponding
point matching errors. However, the algorithm is highly sensitive to
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noise and matching errors. Experiments show that when combined
with real world image corresponding point data produced by a vision
systems, a disaster occurs. Increasing the number of corresponding
point pairs can to some extent suppress the noise effect. The main
problem in linear algorithm is the least squares estimation.

The method of least squares is based on evaluation of the magni-
tude of residuals and is sensitive to gross errors, matching errors and
outliers. Unlike the least squares estimator the robust estimator has
good resistance and robustness to gross matching error and outliers.
In this section a simplified linear algorithm presented by Zhuang and
Haralick (1986) is used to get the baseline noise behavior of the linear
algorithm. The principle of robust computation is presented. The
experimental design is discussed and the results shows that robust
algorithm has better performance and stability.

5.1 Simplified Linear Algorithm

Asshownin Fig. 32 we assume that the coordinate system is the cam-
era reference frame, the origin being the center of the lens. A rigid
body is in motion in the half-space z < 0. Let P = (z, y, z)t represent
a set of object points coordinate before motion and P’ = (z, y, 2/)t
represent the same set of object points coordinate after motion. The
point coordinate [z;,y;, 2] € p is corresponding to [z!,y!,2!] € P'.
Let (X,Y), (X',Y") represent the perspective coordinate of P and P’
onto the image plane z=1. These give

X =i
Y =y/fz
X!:a:l/zl
Y =g/, (72)

The rigid body motion equation is given as follows:
Pl= R, P4 T (73)

where R, is an 3 x 3 rotation matrix (orthonormal); T, is 3 x 1
translation vector. In terms of Euler angles 9,6, and ¢ the rotation
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matrix can be represented as follows:

cos 1 cosd sin) cos @ —sin @
— sin 1) cos ¢+ cos ¥ cos ¢+ ;
Ro = cos 1 sin ¢ sin 8 sin 4 sin @ sin ¢ SR LY
sin 1) sin ¢+ — cos 9 sin ¢+ - —

cos 1) sin 8 cos ¢ sin 7 sin @ cos ¢

The problem is to estimate rotation matrix R, and translation
matrix T,.

The Two-View Motion Equation

Choosing any nonzero vector T which is collinear with T, and taking
its cross-product with both sides of Eq. 73 we obtain

!
%T X (XY, 1) =T x [Ro(X,Y,1)!] (74)
Taking inner product of both sides of Eq. 74 with (X, Y7, 1) yields
(XY, 1)(T x R)(X,Y, 1) =0 (75)

where T x R, = [T x ry,T X r3, T X r3], and 71, 73, r3 are the columns
of R,. Define the motion parameter matrix E by

E=TxR,. (76)

For any image corresponding pair [(X,Y),(X’, Y")] the matrix E satis-
fies the following linear homogenous equations w. r. t. nine elements
of E:

(X, Y, 1)E(X,Y,1)! = 0. (77)

Relation (77) was originally shown by Thompson(1959). Suppose
that we have N correspondences. Then E can be estimated from the
following equation. Let

XX X3 X X Wh M % On o1
XiXs XY, X} ViX, ViV, Y X, ¥ 1

XX, X.Y, X!, Y!X, Y'Y, Y! X, Y, 1
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hi1 hy bhg
E = (h4 h5 he
hr hg he

B = (hls hz; h3: h4: h57 hﬁr h?’} hBa hg)t

Then the Eq. 77 can be transformed into the overconstraint linear
equation for h
Ah =0, (78)

Solving Eq. 78 in the least squares sense we seek an estimator h which
minimizes || Ah[|?. The 9 component vector h is found to be the right
eigenvector of A having smallest singular value. Any T X R, with
T x To = 0 satisfies Eq. 77. Moreover, such a colinear vector T has
one degree of freedom when T # 0 or three degrees of freedom when
To = 0. Thus the general solution of the Two-View Motion Eq. 77
has at least one degree of freedom when Ty # 0 or three degrees of
freedom when Ty = 0.

When Ty # 0, the nine elements of E must have a rank 8, and
To = 0 the nine elements of E must have rank 6. Under the surface
assumption (Zhuang, Haralick, and Huang, 1986) the number of im-
age corresponding point pairs must be at least 8 when T, # 0, or
greater than or equal to 6 when Ty = 0. The geometry interpretation
we use assumes that the object is stationary and the camera is mov-
ing. Let the origin of the camera system be O and O’ respectively
before and after motion. Then the surface assumption holds if and
only if the 3D points corresponding to the observed image points do
not lie on a quadratic surface passing through O and O’ when T, # 0
or a cone with its apex at O when Ty = 0.

Decomposing E

E has two decompositions; T X Ry and (—T) x Ry with Ry being
an orthonormal matrix of the first kind. In order to determine the
correct decomposition we note that £ = [T x r1,T x r2,T x r3].
Hence, its three columns span a 2D space and also ||E|| = /2|/T|.
Therefore we can get three constraints as follows:

Rank (E) = 2
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IE]l = 2[|T|| (79)
ET =0

We can use the least square method to solve Eq. 79 for T and obtain
the value of the T vector from the other two constraints. Since T is
colinear with 7y, Ty should have the same orientation as T or —7.
Taking a cross-product with both sides of Eq. 73 by (X’,Y’, 1)t we
obtain

z1(X, Y, 1) x [Ro(X, Y, 1) + (X, Y', 1)t x Tp = 0. (80)

Since z < 0, it implies that Ty has the same orientation as 1" or (—T)
if and only if (X',Y”,1)¢ X [Ro(X,Y, 1)!] has the same orientation as
(X, Y',1)! x T or [-(X',Y’,1)! x T]. This implies that it has the
same orientation if and only if

Z(X:, Y/, 1)* x [Ro(X;, ¥;, 1)Y)(X,,Y/,1)* x T > 0or < 0. (81)

Once the correct T is determined, the true Ry could be uniquely
determined through F = T x Ry as follows:

Rg:[EgXE;;,E;;XEl,ElXEg]—TXE (82)

where F = [El, Eg, Eg]

5.2 The Robust Algorithm

As mentioned in the previous section, Eq. 78 can be solved by least-
squares estimator. However, it is sensitive to gross errors. In this
section the robust algorithm is presented. The robust algorithm is
an iterative reweighted least squares estimation procedure where the
weights are recomputed each iteration and are computed as a bi-
weight. The difference between the biweight estimator and the least-
squares estimator is briefly discussed.
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Biweight Estimator

Let z; be the ih observation and # be estimated mean value of the
observations. The least squares method minimizes the residual error

e = zn:(:c,- — &)?

i=1

and the object function, p, is expressed as follows
plzi; &) = (= — &)3. (83)

To find the solution of problem we differentiate p w.r.t. & The deriva-
tive 7 satisfies

Z:‘(/J(z,;;:%) = ;(zz; == 'f:) = 0. (84)

As discussed in Hoaglin the least-squares estimator is linear and un-
bound.

The 1 function of the biweight estimator can be represented as
follows

0 otherwise

¢(u) — {u(l - u2)2 Iul <1 (85)

where

wi = 40

fi(€) : residual error function

8, : median value of f;(e)

¢ : tuning constant

Unlike the least-squares estimator, the 9- function of the biweight

estimator is bounded. When the value of tuning constant is small it
will delete a lot useful data. On the other hand, when the value is
large the outliers can not be removed from the images. Hence, the
tuning constant depends on the value of gross errors. A reasonable
value range for tuning constant is from 4 to 12. In here we let c=4.

Let 1(u) = w(u)u. Thus, the weight funtion w(u) can be represented

_ ) 1= iy <1
W) = { 0, otherwise. {26)
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Robust Estimation of E

From above equation we can see that the biweight estimator is a
weighted least square estimator. With the weight matrix we rewrite
Eq. 78:

WAh = 0. (87)

To find the value of h which minimizes |W Ah||? the singular value
decomposition can be used

WA=UY V- (88)

where

(31 0 . 0)

\0 . 0 0/
V,fxﬂ = ['U]_,‘Uz...,'vnj
Ume = ['[L]_, u?---,um]

The index n is 9 and m is the number of corresponding point pairs.
The eigenvector of V which corresponds to the smallest nonzero
eigenvalue in 3 is the solution of weighted least squares. Here it
will be denoted by vg. Multiplying the current solution for h by A
to get the new residual. Gross errors are not necessarily accompa-
nied large residuals as explained in Huber(1981). Hence, the residual
errors need to be adjusted according to the following

€

1-hy

fi(e) = (89)

where h;; is the diagonal element of the projection matrix H

H = (WA)(WA)(W A4))~ (W A).. (90)



70 Robert M. Haralick et al.

We can simplify the above equation by substituting U 3" V* for WA.
After some linear algebra manipulation Eq. 90 becomes

H = U (91)

where Uamxs = [U1, Ua...., Ug]

It is trivial to then obtain h; = 3 3_; u?,. Once hy; are obtained,
then they can be substituted into Eq. 89 to get the new residual error
function and to update the weight matrix. The initial weight matrix
is identity matrix. The iterations continue until some criteria are
satisfied. In our experiments when the error €2 is less than 0.001¢2
of first iteration or the iteration number is larger than 25, then the
iteration process stops. Usually it will converge after a few iterations.
The value of vg at the last iteration is the robust fitting solution.

5.3 Simulation Result and Discussion

In this section we discuss the experimental results of a large number
of controlled experiments using the linear algorithm and the robust
algorithm under a varying amount of noise, gross errors and corre-
sponding point pairs. As shownin Fig. 32, the image frame is located
at z = 1. By mapping 3D spatial coordinates into image frame, and
then adding noise to the points before and after motion, we obtain

z(1)
(V) = (32 120 3)(3@)%2:%3) )

Signal is related to object image size, and noise may come from cam-
era error, digitization, or corresponding point extraction error. De-
fine SNR = 201og "i%:"-‘idb, where ¢ is the standard deviation. In the
simulation experiments , the 3-D spatial coordinates before motion
(x,¥,2), true matrix R,, and true translation vector T, are generated
by a random number generator. The 3-D data are generated within
the (-2,-2,-2) to (2,2,2) cube. The rotation angles ¢,8,1) are generated
within the the range of [-15, 15] degree and translation vectors are
chosen within the range (-0.5,-0.5,-0.5) to (0.5,0.5,0.5) cube. Then
the 3-D spatial coordinates after motion (', y’, ') can be calculated
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in the natural way. Projecting the 3-D spatial coordinates into the
image frame we get perspective coordinates. Noisy image data is
obtained by adding Gaussian or uniform noise with zero mean to the
image coordinates. Outliers are generated by randomly moving some
corresponding points position in image frame after motion. The num-
ber of outliers are chosen as a percent of corresponding point pairs.
Following the linear algorithm or the robust algorithm as described
above we can get the calculated rotation matrix and translation vec-
tor. From the calculated rotation matrix the calculated ¢, 8, v are
obtained. We compare the difference between the calculated ¢, 8, 3
and the true ¢, 8, 1 in terms of mean absulute error. For each ex-
perimental condition a thousand trials are done. Mismatching noise
is simulated by randomly swapping one componenet from a pair of
corresponding points. The percent of mismatch is the ratio of mis-
matching points to number of corresponding points.

The number of corresponding point pairs varies from the 8-point
pairs to 110-point pairs in 4 steps. The results are shown in Fig’s. 33—
36. When noise-free, the linear algorithm has excellent performance
with zero error for all cases. Figures 33-36 show the translation
error and rotation degree error, which can define an average of mean
alsulute error of three Euler angles, versus the signal to noise ratio
for different numbers of corresponding point pairs for both Gaussian
noise and uniform noise. It shows that the error increases as the
noise level increases. Furthermore, depending on kind of noise and
number of corresponding point pairs, the error increases very rapidly
when the signal to noise ratio gets below a knee value. Table 1 shows
the minimum signal to noise ratio to guarantee a less than 1 degree
error as a function of numbers of corresponding point pairs and kind
of noise distribution.

The robust experiments show that the robust estimators can pro-
tect from outliers almost up to a fraction of 50 percent. The linear al-
gorithm breaks down when only a small percent of outliers is present.
Similar results occur in the mismatch experiments. Fig.37 a.b.c.d.
shows the effect of outliers to both the linear and robust algorithm.
The error of the linear algorithm almost increases linearly, but the
robust algorithm shows much better performance and stability. The
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error of 1 is approximately twice less than the error for # and ¢
The azimuth and tilt angle are more vulnerable to noise than swing
angle. In Fig.38 a.b.c.d. we fix the percent of outliers and increase
the number of corresponding points. Because the outlier percentage
is constant, the mean error is approximately constant as the num-
ber of corresponding points increase. The mismatch error results are
shown in Fig.39 a.b.c.d. They show results similar to the outlier
results. Fig.40 shows the standard deviation of the points plotted
in Fig.37, Fig.38, Fig.39. The behaviors of the standard deviation
of the three rotation angles are similar, hence we put them together
and take average.

5.4 Summary of Robust algorithm
o Step 0. Use the identity matrix for initial weight matrix.
o Step 1. Use singular value decomposition to solve Eq. 87

e Step 2. Update the weight matrix by Eq. 86.
Repeat Step 1. and 2. until the criteria satisfied.

Step 3. Determine the translation vector from Eq. 79 and
Eq. 81

Step 4. Obtain true R, from Eq. 82

6 Conclusion

The noise behavior for the general linear motion algorithm and its
robust version was determined from over hundred thousand exper-
imental trials. The experimental results indicated that the robust
algorithm can extract the 3-D motion parameters with one degree
rotation mean absolute error from image sequences which contain
30 percent of outliers, this is much better than the linear algorithm
which has more than ten degree rotation mean absolute error. The
robust algorithm can detect the ouliers, mismatching errors, and
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blunders. Therefore, it can be an effective tool in estimating 3-D mo-
tion parameters from multiframe time sequence imagery. It should
prove equally effective when applied to image flow data.

| Rotation Angles | Translation Vector
No. of Point Pairs 8 20 50 110 8 20 50 110
Gaussian 75 57 52 50 105 78 73 68
Uniform 74 56 52 49 106 78 72 68

Table 1. SNR (db) for mean absulute error in 1 degree.

We have presented solutions to four pose estimation problems and
have characterized the performance of these algorithms in simulation
experiments with the noise model being additive Gaussian noise, uni-
form noise, outliers noise, or mismatch noise. We have observed in
these experiments a knee phenomenon. When the signal to noise
ratio gets to be below a knee, the RMS error skyrockets. When the
number of corresponding point pairs gets to be below a knee value,
the RMS error also skyrockets. The iterative weighted least squares
technique is proved robust to the blunder data.
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ROT ERROR
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Figure 33: Mean angle error between the estimated rotation angles
and the true rotation angles versus the Gaussian noise level for four
corresponding point data set sizes of 8 to 110 pairs. Each point on
the graph represents 1,000 trials.
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Figure 34: Mean angle error between the calculated translation vec-
tor and the true translation vector versus the Gaussian noise level
for four corresponding point data set sizes of 8 to 110 pairs. Each
point on the graph represents 1,000 trials.
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Figure 35: Mean angle error between the estimated rotation angles
and the true rotation angles versus the uniform noise level for four
corresponding data set sizes 8 to 110 pairs. Each point on the graph
represents 1,000 trials.
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Figure 36: Mean angle error between the estimated translation vector
and the true translation vector versus the uniform noise level for four
corresponding point data set sizes of 8 to 110 pairs. Each point on
the graph represents 1,000 trials.
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Figure 37: a.b.c.d. Compares the ¢, 1, f angle error and translation
angle error between the linear algorithm and robust algorithm for
different percent of outliers. The noise is uniform with 100dB SNR.
The number of points is 50. Each point on the graph represents 1,000
trials.
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Figure 38: a.b.c.d. Compares the ¢, 1, 8 angle error and translation
angle error between the linear algorithm and robust algorithm for
different number of points. The noise is uniform with 100dB SNR .
The percent of outliers is 10 %. Each point on the graph represents
1,000 trials.
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is added six points of mismatch. Each point on the graph represents
1,000 trials.
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