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i. INTRODUCTION

Morphological operations, when performed on objects represented as sets of dis-
crete points, are of O(n?) complexity, where n is the size of each sel [6]. But
when objects of interest are convex, or can be decomposed into convex objects,
a more appropriate representation of the object is in terms of its boundary [1.2].

In this paper we extend our earlier work [7] and give two boundary represen-
tations for a class of two-dimensional binary shapes and define all the morpho-
logical operations—dilation, erosion, opening, closing, n-fold dilation, and n-
fold erosion—in terms of these boundary representations. Further, we prove that
each of these algorithms is O(1) and hence independent of the size of the object.
In addition, we prove that the results of these algorithms are equivalent to those
obtained using the regular set-theoretic definitions. We also suggest how the al-
gorithms can be extended for more complicated objects.

Morphological algorithms using boundary representations have been at-
tempted by Ghosh [3.4] for polytopes in continuous domain. Xu [9] gave algo-
rithms for decomposition of a class of binary convex shapes using boundary rep-
resentation. There he used the notion of dilation of boundaries but did not prove
it equivalent to the set-theoretic definitions. Our work sets the basic foundation
by providing all the basic morphological operations in terms of the boundary
representations.

This paper is organized as follows. In Section II we set the stage by giving the
basic definitions and notation to be used. We introduce the B-code representation
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in Section [11. In Section IV we formally characterize restricted domains in terms
of B-codes and half-planes and show how to interconvert the representations.
Morphology on restricted domains using B-codes and discrete half-planes is ad-
dressed in Section V. Here we start from the set. perform set morphology. and
show that the same result is obtained using morphology using the hall-plane rep-
resentations. In Section VI we discuss the algorithms, evaluate their computa-
tional complexity, and compare them with the complexity of existing set-
theoretic algorithms. Here we also walk through some examples of dilation and
crosion of restricted domains. The open problems and work in progress are dis-
cussed in Section VII, and in Section VIII we give our overall conclusion.

Il. PRELIMINARIES

In this section we define all the necessary terms and give the notation used in this
chapter.

Images are represented as mathematical functions over some finite domain.
One of its common forms is f: (x, ¥) — z where x, , z € R, and R is the set of
real numbers. The ordered pair (x, y) represents the spatial coordinates of a point
with respect Lo some reference frame and z is the luminance value at that point.
One way to represent such a function in a computer is by discretizing the space
variables and the values the function takes.

The space domain can be discretized by tessellating it. A tessellation can be
obtained by dividing the space into a set of nonintersecting domains such that the
union of all the domains is the R? space. Each of these domains is then repre-
sented by a point inside it. The most common technique for tessellating the R
space is to make all the domains squares of the same size and represent them by
their centers. To make the treatment simple, we will use squares of size 1 X 1,
centered on the points (i, j) € Z2, where Z is the set of integers. An illustration
is given Figure 1. Note that the origin (0,0) represents the unit square centered
on it; that is. the real axis passes through its center. Thus, the tessellation do-
mains can be uniquely represented by the ordered pair (i, j) € Z*. The ordered
pairs will be interchangeably called lattice poinis, points, or pixels.

The function values are defined on the lattice points and can also be discre-
tized. We will not go into the details of discretization of the function values,
although the process is similar 1o that of space discretization. In this chapter we
are interested in the case where the function takes hinary values of 0 or I at the
lattice points. Such images are called discrete binary images or binary images.
Since the set ol all the lattice points having the value 1 completely characterizes
an image. the term binary image will be used to imply the set of all lattice points
where the (unction value is 1. The terms structuring element and shape will also
refer to sets of lattice points with function value 1.
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Figure 1. A binary image. Note that the lattice points are represented by the center
of sach pixel.

Definition 2.1. The x[ ] and y[ | operators take a lattice point as an argument
and return its x and y ordinates, respectively. Formally, let p = (i, j) € Z?. Then
x:Z?»Zandy: Z? - Zsuchthatx[p] = iand y[p] = j.

Definition 2.2. A point (x, y) is called a foreground point if its value is nonzero
and a background point otherwise.

Definition 2.3.  Two foreground points (i, j) and (k, 1) are said to be 4-neighhors
if and only if (k, [) is an element of {(i + 1, ), (¢ — L), (.0 (6 )+ 1),
(i.j — DL

Definition 2.4. Two foreground points (i, j) and (k, I) are said to be 8-neighbors
if and only if (k, ) isanelementof {(i + 1./). (i — L), (i.j + DG j ~ 1.
G—-Lj=-DG+ Lj+ DG+ 1L,j—D0G~-1j+ Db

Definition 2.5. Two foreground points x, and x, are said to be 4-connected if and

only if there is a sequence of foreground points {x, = x,, x,. . ., X, . x, = x}
such that x, and x, , , are 4-neighbors forall kin {1, . . ., n}.
Definition 2.6. Two foreground points x, and x, are said to be 8-connected if and
only if there is a sequence of foreground points {x, = x,,x,. . . .x, ,x, = v}
such that x, and x, , , are 8-neighbors forall kin {1, . . ., n}.

Definition 2.7. A set of foreground points F is a 4-connected component if for
all x,, x, € F, x, and x, are 4-connected.
Definition 2.8. A set of foreground points F is an 8-connected component il for
allx, x, € F, x, and x, are 8-connected.
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Definition 2.9. A foreground point of an 8-connected component is a boundary
or edge point if one or more of its 4-neighbors is a background point.

Definition 2.10. A discrete half-plane is a set of lattice points H C Z? de-
fined as

H = {(.pn)|a,i+ b,j=<c,suchthati,j, a,b, and ¢, € Z}

Definition 2,11, A 4- or 8-connected component F is convex discretely if and
only if all the lattice points lying inside or on the convex hull of F belong to F.
This definition directly implies that a discretely convex connected component has
no holes.

Next, we restate the definitions of the basic morphological operations based
on the tutorial by Haralick, et al. [6].

Dilation is the morphological transformation that combines two sets using
vector addition of set elements. If A and B are sets in Z2, the dilation of A by B is
the sct of all possible vector sums of pairs of elements, one coming from A and
one coming from B.

Definition 2.12. The dilation of A by B is denoted by A ® B and is defined by

ADB={c€EZ|c=ua+ bforsomea&Aandb E B}

Erosion is the morphological dual of dilation. If A and B are sets in Z X Z,
then the erosion of A by B is the set of all elements x for which x + b € A for
every h € B.

Definition 2.13. The erosion of A by B is denoted by A @ B and is defined as
AORB = EL

x + h € A lor every b € B}

Definition 2_14.  The opening of a set B by a structuring element K is denoted
by B (O K and is defined as

BOK=(BOK BK
Definition 2.15.  The closing of a set B by a set K is denoted by 8 @ K and
B@®K = (B MK OK

Definition 2.16.  The n-fold dilation of a set B by a set A is denoted by B @
(M, A) and is delined as

n times
—ee———
B® PA=BOPADAD - DA
Definition 2.17.  The n-fold erosion of a set B by a set A is

n times
BO (DA =({(-(UBO A A ) OA

"
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il. BOUNDARY CODES

Line drawings have been commonly used to represent the boundaries of (wo-
dimensional objects. In the case of discrete, binary images these line drawings
of the object boundary can be represented in either of the following ways: (1) as
a sequence of points, (2) by a chain code representation, or (3) as a sequence of
line segments. A description of these methods can be found in [1,5].

The chain code representation as proposed by Freeman [2] does not incorpo-
rate the lengths of the edges in its notation. It nevertheless has a provision for a
special token in the implementation that allows for the length of the edge to be
stored. In this section, we discuss a notation for chain codes that requires explicit
representation of the boundary edge lengths and directions. This boundary en-
coding scheme, referred o as B-code, uses a list data structure.

B-code is a representation scheme for connected components in terms of their
boundary lattice points. Only a starting boundary point is represented explicitly,
while the rest of the boundary points are represented in terms of successive dis-
placements in one of possible eight directions. If the successive displacements
happen to be in the same direction, they are encoded as the direction followed by
the number of moves in that direction. The formal notation to represent a con-
nected component A is given by

A={i,j)|:n)d, :n,) - :n) 9.1

Here (i,, j,) is the starting boundary lattice point, and the ordered pairs following
the vertical bar describe each successive displacement. The number of ordered
pairs is equal to the number of changes in the direction of displacement. In the
ordered pair (d, : n,), d, € {d,, d,, . .., d,} represents the direction of the
displacement and the nonnegative integer n, following the colon represents
the number of successive moves in that direction. The directionsd,, . . . . d; are
the same as the chain code directions 0, . . ., 7, which correspond to angles of
" {0°,45°,90°,135°,180°,225°,270°,3 15°}, with respect to the positive x-axis: d,, =
(1.0),d, = (1,1),d, = (0.1),d, = (- 1.D.d, = (- 1,0),d, = (= 1,= D). d,
=(0,-1),andd, = (1, 1).

Figure 2 illustrates the relation between B-codes and chain codes. Figure 2a
is a binary image. Figure 2b shows the boundary pixels explicitly represented by
the corresponding chain code:

(5, 1) : 00000111122224444222224444445666666666677

Figure 2c shows the pixels explicitly represented by the corresponding B-code:
((5.1) | (d, : 5)d, : 4)d, : 4)d, : 4)d, : 5)d, : 6)(d, : 5)d, : 6)(d; : 5)
(d,: 10)d, : 2)). It can be seen that the B-code representation can be thought of
as a runlength encoding of the chain code. Also, any binary image, simply or
multiply connected, that can be encoded using the chain codes can be encoded
using the B-codes too.
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Figure 2. Example of B-coding of images. (a) Basic directions: (b) a binary
image:  (¢)  pixels  explicitly  represented by its chain code (5,1):
000001 11122224444222224444445666666666677; (d) pixels explicitly represented by
its B-code {(5.1) | (d, : S)(d, : 4)d, : 4)(d, : 4)(d, : 5)(d, : 6)(d, : 5)d, : 10)(d, : 2)).

IV. RESTRICTED DOMAINS

The class of objects we will decompose and work on will be discretely convex,
four-connected sets all of whose boundaries are oriented at angles which are
multiples of 45” and whose lengths are multiples of the pixel side lengths for 0°
and 90" orientations and multiples of \/2 times the pixel side length for 45° and
1357 orientations. We will refer to the set of all objects belonging to this class as
restricted domains.
Definition 4.1, A restricted domain is a discretely convex, four-connected
shape whose convex hull has sides at angles that are multiples of 45° with respect
to the positive v axis.

Some examples of restricted domains are given in Figure 3. In the following
sections we will define the restricted domains in terms of their B-codes and pre-
sent an equivalent representation in terms of half-planes.

A. B-Code Representation

I. Convention

-Given a binary image of a restricted domain, A, we will represent it in the B-

code form for further processing. The binary image of a restricted domain can be

d3| dy| dy
(a) dy dg
ds| dg|dy
11| T : R
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Figure 3. A few examples of restricted domains. Note that the diagonal lines in the
box are not strictly restricted domains since they are not 4-connecled.

represented in many ways using a B-code representation: i.c., the B-code repre-
sentation is not linique. This is due to the fact that the only restriction on the
starting point of a B-code representation is that it should be a vertex. Thus, there
are as many B-code representations of a restricted domain as the number of ver-
tices it has. To avoid ambiguity we will use the following convention:

The starting point will always be the lowest and leftmost vertex of the re-
stricted domain. The rest of the vertices are encoded by traversing around the
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restricted domain along its boundary points in the counterclockwise direction,.
encoding the length of the edges that constitute A. The interior points of the
set will be those on the left of the direction of motion.

The B-code obtained using this convention represents an equivalence class of B-
codes—the class of all B-codes representing the considered restricted domain.
Each B-code in the equivalence class is a rotated version of the other but repre-
senting the same set of lattice points nevertheless.

2. Properties of B-Coded Restricted Domains
In this section we present some useful properties of B-coded restricted domains
that will be used in later proofs.

Property 4.1, Any restricted domain can be represented by a general B-code
of the form A = (G. /) |(d,: n) (d, 2 n) (d,:n) (d, :n) (d,: n) (d, : ny)
(d, : n)(d, : n,)) by giving appropriate values to the n,'s. Thus in this represen-
tation there are always eight vertices, eight displacements, and the displacement
angles are monotonically increasing from d, to d,. If there is no displacement
corresponding to one ol the directions. the corresponding pair can be dropped
from the B-code and the particular #, is given a value zero. Note thal in this case
lwo vertices become coincident.

Given a closed contour, the net displacement on traversing its complete
houndary is zero. Since the B-code of a restricted domain A = (i, j) | (d, : n,)
(d, : n,) - (d, : ny)) represents a closed contour, it inherits the following two
properties of a closed contour.

Property 4.2 The sum of displacements contributing to the positive v direc-
tion is equal to the sum of displacements contributing to the negative v direction:

n, ton,bon. i b W el (9.2)

(1 1 1

Property 4.3, The sum of displacements contributing (o the positive y direc-
tion is equal o the sum of displacements contribuling to the negative y direction:

noton, o

=n,+ n ton, (9.3)

Property 4.4, Any B-code of the form A = ((i,j)| (d,:n, (d,:n)
(d, - ny(d, s n)(d, cn) (dg 2 ng) (d, 2 n) (d, 0ony) whose n's satisly the prop-
erties in I2gs. (9.2) and (9.3) is either a restricted domain or a line at 45° or 135°.
The lines are special cases and are of the form A = ((i.j) | (d, : n) (d, : n,))
and A = {(i,j | d, : n,)(d, : n))). Details on this are given in the Appendix.

Given a B-cade of a restricted domain A = (i, )| (d, : n) (d, : n) -
(d, : n,). all the eight vertices of the polygon are uniquely defined and can be
found in the following two ways.
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Property 4.5.  Let the vertex v, be the starting lattice point (i, j). The rest of
the vertices are given recursively. Given the kth vertex v,. the v and v coordinates
of the (k + 1)th vertex v, ,, are given by the recursive equations

= x[v,] + nxid,] (9.4)

X[ve o,
Yive, b = ylv] + nyld,] (9.5)

for 0 = & = 6. Here x|v,] = i and y|v,] = j—-the x and v coordinates ol the
starting point of the B-code.

The coordinates of the vertices ol A can also be computed relative to the starl-
ing point of the restricted domain.

Property 4.6.  The coordinates of the kth vertex v, can be computed in terms
of the starting location (7, ), and the lengths n,, O < I <= k. Let V_ V_ V, and N
be the matrices

x|v,] ylvl n,
_ {xby) _ylvl _ [Y: _{n
Vo=l | LGS e TR [VJ‘ N=1 (48]
x[v,] ylv,l n,
Then,
i
J
i VJ’ i > N
vV = [V] =r| 9 7)
J
N
where
PO (
P= o) -
(1 0 0 0 0 00 0
0
0 0 0 00 0
0 0 0 0 0 0 0
P, = (9.9)

-1 0 0 0 0

-1 -1 -1 0 0

0
00 0 0 000
1
1
1
1
1
Il =1 -1 -1 0 0
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O ¢t 00000 0 020
O 6 o0 o000 0 00
O °ro 1o o000 0 00
O 1o 1 100 0 00
P, = (9.10)
. o1 o0 1110 0 00
o1 o1 110 0 00
o1 ot 11 o0o-1 00

oo+ 1t o0o-1-120

B. Normalized Half-Plane Representation

Restricted domains can be represented in terms of the intersections of discrete
half-planes. Let A = ((i./) | (d, : n)d, : n,)---(d, : n,)) be a restricted domain.
Then the lattice points belonging to A can be defined in terms of intersections of
eight discrete half-planes 7€, 0 < i = 7. Each of these hall-planes %, is a func-
tion of the basic directions of the displacement « and the vertices v, of the re-
stricted domain. Each discrete hall-plane 7€, is such that its boundary passes
through the vertex v, and its edge is along the direction d,. The half-plane
represents all the points on the left and on the boundary while traversing in the
direction o, along the boundary. Therefore, a restricted domain A =
(i), - nyd, : n)--(d, : n,)) can be represented as

A = U, 00K, NN, (9.11)
where 3 is a discrete hall-plane given by
o = {,n = () € 77 such that (9.12)
Coxly v =yl o 0]
x[v] + xld] ¥lv] + yld])

Figure 4 illustrates the half-plane concept. We can expand the above expres-
sion for the particular cases of €, 0 = i = 7. Substituting the expression for the
vertex v, of the restricted domain given in Egs. (9.7) into the inequality (9.12),
the inequalities [or the half-planes 3, to ¥, thus obtained are:

s My + (- Dy = ¢,
R (b 1 ¢ Dy = e,
g (hy + (O < ¢,
L (ha +  (hy < ¢ 9.13)

Bl (v + (I = ¢
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g (-Dx + (Dy = ¢
H: (=Dx+ (Oy=c

¥, (-Dx +(-l)y=g¢

where x, y, ¢, € Z and the ¢, are given by the equations

i
C=L}j (9.14)

C= (9.15)

N\ Hy
D N
G =

%

] v - 2

S |ﬁ e H
7
>

Figure 4. Restricted domains as intersections of half-plancs. ¥, . . . 3. The un-

shaded half represents the half-plane. Here the intersection set is the unshaded central
region.
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L = (9.16)

= =1 -1 -=2-1 01 210

To make the information more compact, we will use matrices to represent the
system of linear inequalities in (9.13) as

Mp' = C (9.17)
where
0 -1
I =
I 0
M= I ! (9.18)
0 |
| l
-1 0
S

and po= (v, v) is a lattice point. Note that the inequalities (9.17) are considered
TOW-WISC.

The physical interpretation of the system of inequalities (9.17) is as follows.
Consider eight half-planes passing through the origin, each one corresponding to
adirection d,. 0 = i = 7. The half-planes are translated from the origin up. down,
left. and right such that they pass through the corresponding vertices v. The
intersections of these hall planes gives us the lattice points belonging to the re-
stricted domain.

Notice that since the o 's are fixed, the slope of the discrete half-planes are also
fixed and hence the half plane ¥, is uniquely represented by the corresponding
¢'s. But a set of ¢s representing a restricted domain need not be unique. For
example. in Figure 5. we see that the half-planes corresponding o two different
.sets of s represent the same intersection set. This is because the half-plane %,
is redundant and can be translated to infinitely many locations without having
any effect on the intersection set. All the possible scts of c,'s Tepresenting a given
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Figure 5. Unnormalized and normalized half-planes. The unshaded half represents
the half-plane. The half-plane ¥, in (a) is redundant and can be moved until it passes
through the vertex of set A; this situation is shown in (b).

restricted domain form an equivalence class. This raises the question about a
convention that we can follow such that an equivalence class of restricted do-
mains can be represented through a unique ¢, set. We notice that the ¢,’s that are
obtained from the B-code representation using Eq. (9.14) always represent dis-
crete half-planes passing through the vertices of the restricted domains. Those
that are redundant—that is, those that correspond to a displacement of length
zero along the d, direction—also pass through a vertex even though they have
potentially infinite possibilities. Thus, we will follow the convention that if a set
of ¢’s represents a restricted domain, it should be normalized such that all the
half-planes pass through the vertices of the intersection set. Such a set of eight
¢'s, represented using a vector C will be called the normalized half-plane repre-
sentation of the restricted domain. The half-plancs that are not redundant and
form the sides of the polygon will be called primary.
Before we proceed further, we need to address the following issues:

I.  Under what conditions the set of ¢,'s represents a nonemply set
2. Under what conditions the restricted domain represented by the set of ¢ s is
a normalized representation and, if it is not, how to normalize it

The ¢'s represent a set of discrete half-planes. Hence, the set of points belong-
ing to the intersection of these half-plancs is not empty if and only if the set of
points belonging to the intersection of any two of these half-planes is not empty.
Figure 6a illustrates an example where the half-plane %, is unnormalized. Since
it should be moved such that it touches the intersection set, it is obvious that it
should be moved to r, the intersection point of #, and ¥,. The other possibilities
could have been p, the intersection point of J€, and ¥, or g, the intersection
point of 3, and #,. Notice that p and ¢ do not belong 10 the intersection set and
they are below r. Figures 6b and ¢ show examples where ¥, has to be moved to
p and g, respectively. Notice that in this case p is above g and r. And in Figure
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Figure 6. The normalization of ,—four cases. In (a), (b), and () the hall-plane %,
is redunant and has to be normalized, that is, moved up so that it passes through r, p, and
q. respectively. In (d) %, is primary and cannot be moved.

6d, 3, is a primary hall-plane and cannot be moved. In this case 3, is above p,
q. and r. Thus the algorithm for normalization of %, then becomes: find the
intersection points p. q. and r, and update ¢, such that ¥, passes through the one
belonging (o the set. In the case that ¥, is primary, nothing should be done to £
Conveniently. the ¢, found in this way also forms a bound for the half-plane 3¢,
that is, the half plane ¥, cannot be below this level. In case it is. the intersection
of the half-planes results in an empty set. Using the same argument for all other
half-planes. it can be shown that a set of cight ¢,'s represents a nonempty set if
and only if

C=¢(,,, = mx[GC GC. GC, -|G,C|| (9.19)
and a set of ¢’s is normalized if

C = max|]G,G,C. GG C, - (G,G,CJ] (9.20)
where the 8 X 8 matrices G, . . . | G, used in the algorithm are given below.

o0 0 0-1r 0 0 o0
O 0 0 0 0-1 0 0
o 0 0 0 0 0-1 0
o0 0 0 0 0 0 -1

G, = 9.2]
! -1 0 0 0 0 0 0 0 22l
O-1 0 0 0 0 0 0
O 0-1 0 0 0 0 0

0 0 0 -1 o 0 0 o
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0
Gy= | 1
0
[
0

0

1/2
0
1/2
0

N OO -0 0 c o

0
l

0 0-1 0
1 0 0 -2

0-1 0 o -

0 0-1 0

0 0 0 -1

0 0 0 0 -1
-1 0 0 0

0-2 0 0
-1 0 0 -1

0-2 0 0-~I

0 0-1 0

0 0 0 -2

0 0 0 0-l
-1 0 0 0

0-1 0 0

0 0-1 0
12 0 112 0 0
01 0 1 0
0 0 120 112
00-0 1 0
00 0 0 112
00 0 0 0
120 0 0 0
0O 1 0 0 0|

303

(9.22)

(9.23)

(9.24)

The lower ceilings come about because the 45° and 135° lines need not intersect
at a lattice point. Notice that G2 = I. Here the matrix multiplications find the
intersection points. The max operation selects the one nearest to the set. Thus,

both the issues mentioned above have been addressed.
Notice that when ¢, = — ¢, Or ¢,

—¢,, we have diagonal lines at 45° or

135°, respectively. Thesc are not slnclly restricted domains since they are not 4-
connected (but they are 8-connected). Thus since restricted domains are 4-
connected, the following constraints should hold:

¥ Bep o e 5
' e and

(.l

~
> o,

(9.25)



304 KANUNGO AND HARALICK

The algorithm Normalize given in Table 1 takes as input the C array of a
restricted domain and returns the normalized C array if one exists, else il returns
a NULL value. Since the algorithm has five multiplications of 8 x 8 matrices
with 8 x 1 vectors, one lower ceiling of an 8 x I vector, one 8 X 1 vector
comparison one row-wise max operation of four 8 x 1 vectors, and no loops,
the algorithm is constant in time.

C. Conversion from Normalized Half-Plane to B-Code

Given the ¢'s of a normalized restricted domain, we should be able to (1) find
the vertices of a restricted domain in terms of the ¢,'s, (2) find the n’s in terms of
the ¢,’s, and (3) find the B-code representation of the restricted domain.

The vertices of the restricted domain can be computed by finding the intersec-
tions ol the consecutive half-planes. They can be expressed in terms of the vector
C as follows:

V=D m (9.26)
where
Do
D= [(} “:J (9.27)

O o010 0 0 0 0
0010 0 0 0 0

D, - (9.28)
0001 -1 0 0 0
0000 1 -1 0 0

D, = ' (9.29)
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Table 1. The Algorithm for Normalizing Half-Planes

function Normalize(C) : ArrayObject

Input:
ArrayObject C;

begin
Cne :=max|G,C, G,C.G,C, — |G.CJ):
(GO
then
return NULL;
else
C:=max[C, G,G,C, G GC, - |GG,
return C;
end Normalize;

Then n’s can be computed by finding the distance between the two consecutive
vertices v, , , and v.. Thus,

N = QC (9.30)

where

(-2 1 0 0o 0 0 o |
L=1 1 0 o 0 0
0O 1 -2 1 0 0 0 o0
00 1 -1 1 0 0 0
Q= 0 0 0 1 -2 1 0 0 ol
0 0 0 0 -1 1 0
0 0 0 0 1 -2 |
I 0 0 0 0 1 -1

The B-code representation of the restricted domain is determined by v, and N.

V. BOUNDARY CODE MORPHOLOGY FOR
RESTRICTED DOMAINS

In this section we will give constant time algorithms for dilation, erosion, open-
ing, closing, n-fold dilation, and n-fold erosion of restricted domains using their
half-plane and B-code representations. We will show that the results obtained
using these algorithms are equivalent to thuse obtained using regular morphol-
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ogy. If the input restricted domains are in their B-code representations or if the
output restricted domains are needed in their B-code representation, the results
of the previous section can be used for the interconversion between representa-
tions.

A. Dilation of Restricted Domains

Let A and B be two restricted domains given by the B-codes

A =G0 d, o mdd, s nh--(d, : nd) (9.32)
B = {(i,.j,) | (d, : n®)(d, : n®)---(d, : n%) (9.33)
and their normalized half-plane representations be
A={a€EZ|Ma =(C4 (9.34)
B ={heEZ|Mb = C} (9.35)
where C* and C” are given by
iA
AT (9.36)
NA
l’ﬂ
C?P =L (9.37)
NI!

N*and N” are 8 X 1 column vectors with the respective edge lengths as their
elements, and M and L. matrices are defined in Eqs. (9.18), and (9.16), respec-
tively.
Lemma5.]. The set C given by

C={ce?| M =} (9.38)

where C© = C* + C”, is a restricted domain, and the vector C¢ is a normalized
half-plane representation of C.

Proof.  From the discussion in Section IV.B and Eq. (9.19), the sufficient
condition for C* to be a restricted domain is that C = C¢, .. Since A and B are
restricted domains and C* and C# are normalized half-plane representations.

Cr = ¢, = max[G C* G,C*, G CY, - [G,CY]) (9.39)

cr o= e o= max|GCRLGLCR, G CR, - 1G,CP (9.40)
Thus, adding the above equations we get

C=C"+C (9.41)

= max[G,C*, G,C*, G,C*, —|G,C*)]
+ max|G,C*, G ,C7, G,C7, —|G,CF)
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But we know that max[a.b] + max[c,d] = max[ (@ + ¢), (b + d)]. Hence.
C” = max[G (C* + C?), G,(C* + C3), (9.42)
G(C* + €%, =G +C9]]
Therefore, C¢ represents a restricted domain. Similarly, we now show that C¢ is

a normalized half-plane representation. Since C* and C? are normalized repre-
sentations, we have

C* = max[G,G,C, G G,C* —|G,G,C*] and (9.43)

C? = max|G,G,C*?, G,G,C?, - |G,G,C?)) (9.44)
As before, from the above equations we get

C* + C? = max[G,G,(C* + C?¥), G,G,(C* + C»), (9.45)

—|G,G(C* + C¥9)]

Thus, C€ is normalized. Furthermore, since A and B are 4-connected restricted
domains, we have from Eq. (9.25): ¢} > —cf, ¢t > —¢}, 2 > —cf,and £ >
—cf. Manipulating, we get ¢} + cf > ¢! + cZand ¢} + ¢ > ¢ + 2. Thus
C is four-connected and C¢ is a normalized half-plane representation of a
restricted domain. Note that even if either A or B is a diagonal line, e.g.,
cf = —cjorc} = —cf for the case of 45° diagonal lines, the resultant shape is
still a restricted domain (because the 4-connectivity constraints are still satis-
fied).

Lemma 5.2. The eight vertices V< of C are the vector sums of the respective
vertices V4 and V2 of A and B.

Proof. The vertices of C are given by

C
Ve =D [g(] (9.46)
where D is the matrix given in Eq. (9.27). Since C© = C* + C?, we have
C - (G
C =
> D[Cﬂ + C”J (9.47)
G c*
ofg) o]
Hence,
VO = V4 4 V# (9.48)
L A S 0=i=17 (9.49)

Thus the lemma is proved.
The dilation of two restricted domains can be performed by adding their re-
spective C vectors.
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Proposition 5.1. A @ B is given by the restricled domain ¢’ whose normalized
half plane representation is given by C© = C4 + C5.

Proof.  We will proceed by proving that (i) A @ B C C and then (i) C C A
DB

MA@ BCC. Lete €A @ B. Then, by definition of dilation, there exist a
€ Aand b € Bsuch that ¢ = a + b. Since a € A and b € B, [rom Eqs. (9.34)
and (9.35) we have

Mo’ = C*
Mb' = C*

Adding the above equations we get

Mua + Mb' =C* + O
Ma + b)) <C* + C*8

Hence ¢ € C. Thercfore, A ® B C C.
(CCA®DB. Let e € C. We have to prove that there exista €E A and b €
B such thata + b = ¢. Since ¢ € C, it satisfies the relation

M <= € + .€° (9.50)

From Lemma 5.1 we know that C is a restricted domain and thus by definition it
is discretely convex. Hence, ¢ belongs to the convex hull of C, and it can be
expressed as the convex combination of the vertices of C. Thus,

¢ = 2 ot (9.51)

pe ¥
wherea, ER. 0=, < 1, and £ o, = 1. From Lemma 5.2 we get

= 0 vt + ) (9.52)

o B (9.53)

where ¢, = 2, ., ayvtand ¢, = Z,_ _, av?. The first term, ¢,. on the right-
hand side of the above equation belongs to the convex hull of the restricted do-
main A, the second term, ¢,. to the convex hull of the restricted domain B. Notice
that Eq. (9.52) does not guarantee that ¢, and c, are lattice points; i.e., they need
not belong to Z*. It just represents the fact the vector sum of two points ¢, and ¢,
in R? is the lattice point ¢ in Z?. We will now show that we can always find a
lattice point belonging to A, in the neighborhood of ¢,. and another to B, in the
neighborhood of ¢, such that their vector sum is the lattice point c. This is illus-
trated in Figure 7.
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(p,qfl). .(p+l,q+l) (r.sﬂ).‘ .(r-»l,su)
ACu | — ] e GO
o
e® | ®@aa ng) @ | ®a1s)

Figure 7. Relation between P, gq.r, 5, 8, and y. We have (o find one neighbor-
ing lattice point of ¢, and another of ¢, such that their vector sum sc=(p+r+1,
q+ s+ 1)

Letc =(,m),c, = (p + S, g + Yhandc, = (r+1 -5, 54 | — Y)
such that !, m,p, q. r, s € Zand0 <3, y < |, Going back to Eq. (9.53) and
replacing ¢, ¢, and ¢® by their values, we get

r=([,m)=(p+8,q+y)+{r+I—B,.s'+l—y) (9.54)
=(p+tr+l,g+s+1)

It can be seen from the above equations that the point ¢, lies between the four
lattice points (p, g), (p + 1. ¢). (p. g + 1), and (p + 1, g + 1). Similarly,
the point ¢, lies between the four lattice points (r,s), (r + 1, 5), (r. 5 + 1), and
(r + 1,5 + 1). We will prove that the vector sum of two of these eight points,
one belonging to A and another belonging to B, is the lattice point ({, m) = (p
+tr+l,g+s5+ 1)

We can find out which of the four surrounding lattice points necessarily be-
long to the restricted domain A given ¢, (and hence § and ¥). Depending on the
values of & and v, the area between the lattice points surrounding ¢, and ¢, can
be divided into several regions. The inclusion of a particular neighbor in the set
A depends on where the point c, falls. The attack has to be on a case-hy-case
basis.

Case (i)—c, lies in the region defined by v > §. We can see that in this case
the neighboring lattice point (p, g + 1) necessarily belongs to A. This is because
if (p, ¢ + 1) did not belong to A, no convex combination of any subset of the
other three neighboring lattice points could produce a ¢, in the region defined by
¥ > 8. From symmetry we can see that fory>8, (r + 1, s) necessarily belongs
to the set B. Thus the desired lattice points are (p, ¢ + 1) and (r + 1, 5) since
their vector sum is the lattice point (p + 1, g+ 1)=(m=c.

Similarly, for the cases (ii) y < 8, (i)y>1 - 8, and (iv)y < | — §, we can
find lattice points belonging to A and B such that their vector sum is the lattice
point (I, m) = ¢.
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The only region inside the square not yet considered is when § = y = 0.5,
which is the center of the square. When & = v = 0.5, we fall into neither of the
above categories and hence we have to treat this case separately. We notice that
the lattice point (p+ 0.5, ¢+0.5) can result from the convex combination if (i)
all four neighboring lattice points belong to the set, (ii) only three of the neigh-
boring lattice points belong to the set, and (iii) any two diagonally opposite lat-
tice points belong to the set. We can eliminate the third case since it implies that
A is a diagonal line and hence is not four connected and thereby contradicting
our assumptions. Thus for the case when § = y = 0.5, either three or four of
the lattice points neighboring ¢, necessarily belong to A. The same is true for the
set B. Note that the lattice points belonging to A do not in any way constrain the
ones belonging to B. It is easy to verify that given any three lattice points sur-
rounding C, and three lattice points surrounding c,, we can always find two lat-
lice points, one neighboring ¢, and one neighboring ¢, such that their sum is
c=(,m = (p+r+ 1. g+s+ 1) Infact there are many such pairs.

Thus we have proved that C CA @ B. Hence C = A @ B.

We will now prove an important lemma that says that a dilation of A by B is
just the addition of the respective side lengths and the starting points.
Lemma 5.3, IfC = A ® B, then (i, j.) = (i,, j) + (iy, j,) and N©
NA.

Proof.  Since C = C* + C?, we have N© = QC¢ = Q(C* + CP)
N®. The rest of the lemma follows {rom the fact that VO = VA + Y4,

NA 4+

NA 4+

B. Erosion of Restricted Domains

Let A and B be two restricted domains with normalized half-plane representa-
tions,

A={eEZ | Ma =C4 (9.55)
B ={bEZ|Mb < Cr (9.56)
where C* and C? are given by
l'l
G = TP (9.57)
N
f‘”
cP =1 (9.58)
Nﬂ'

N* and N" are 8 x | column vectors with the respective edge lengths as their
elements, M and L are the matrices defined in Eqgs. (9.18) and (9.16), respec-
tively.
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The erosion of A by B can be performed by subtracting the C matrix of 8 {rom
that of A. The resulting C matrix need not be a normalized half-plane represen-
tation—it has to be normalized using the algorithm given in the previous section.
Furthermore, the erosion of a restricted domain with another need not produce a
restricted domain. Consider, for example, the erosion of a rectangle by a rhom-
bus where the sides of the rectangle and the rhombus are oriented at 45° and 135°
and the side lengths of the rhombus equal the smaller of the two sides of the
rectangle. It can easily be seen that the result of the erosion is a line oriented
along the longer side of the rectangle, i.e., a line at 45° or 135°. Since lines at
45° and 135° are not 4-connected (but are 8-connected), they are not restricted
domains. These special cases have to be considered separately.

Proposition 5.2. A © B is given by C, whose half-plane representation is
given by
C={c€eZ|Mc =C}
where C¢ = C* — C&. C can be either a restricted domain or a diagonal line.
Proof. We will proceed by proving that (i) A © B C C and then (ii) C C A

© B.
(A ©@BCC: Letc €A O B. By definition of erosion, ¢ + b € A for all

b € B. Therefore,

M(c + b)' =C* forallbe B (9.59)
We will prove it by contradiction. Suppose that ¢ & C. Thus,
Mc' £ C° (9.60)

That is, there exists at least one inequality in the system of inequalities (9.60)
that does not hold. Without loss of generality, let i, 0 = i = 7, be the number of
the inequality that is not satisfied:

eMc' > eCC (9.61)

where e, isa | X 8 row vector with 1 in the ith column and zeros elsewhere.
Since the vector C? is a normalized half-plane representation of the restricted
domain B, the ith vertex of B, v2, lies on . Thus,

eM(vf)' = eC* (9.62)

The system of inequalities (9.59) holds for every b € B, and in particular it holds
for the vertex vI:

M(c + V) = Mc" + M(v®)' = C* (9.63)
Substituting Eq. (9.62) in the ith row of the system of inequalities (9.63), we get
eMc’ + eCP = eC* (9.64)
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Since C¢ = C* — C?, we have
eMc' =eC” (9.653)
contradicting Eq. (9.61). Thus, c € C,andA ©B C C.

(ii) C CA @ B: Letc € C. We need to prove that forallbE B, c + b E A,
Since ¢ € C, ¢ satisfies the set of inequalities:

M@= (8 — €F
Adding C* to both sides, we have
Mc¢' + CP = C
But, Mb' == C” for all b € B. Thus,
Mc' + Mp' =M + CP = (2
Taking M as a common factor,
M(c + b)) = C? forall b€ B

Therefore, ¢ + b € Aforallh € B, and C C A © B. C is a diagonal line when
either ¢ = —clore§ = —¢f.

C. Opening

Morphological opening of a binary set A by another binary set B is denoted by
A O) B and is delined as

AOOB = AO B (BB (9.66)

Since dilations and erosions of restricted domains have been defined, the
above definition of opening is also valid for restricted domains. The definition
is also valid lor the following more general cases when either A or B or both are
not restricted domains: (i) A © B is a restricted domain and B is a line at 45°;
(i) A © B is a restricted domain and B is a line at 135% (iii) A © B and B are
lines at 135 (iv) A © B and B are lines at 45°. Note that lines at 45° and 135°
are not restricted domains since they are not 4-connected. The algorithm cannot
be used if A © B and B are lines at 45° and 1357, respectively. This constraint is
due to the fact that the dilation of a 45° line with a 135° line results in a rhombus-
like shape with one-pixel holes; i.e., the shape is not filled. Thus the set theory
dilation results in a shape that not filled but the half-plane and B-code dilation
algorithms produce a shape that is filled.

D. Closing

Morphological closing of a binary set A by another binary set B is denoted by
A @ B and is defined as
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A®B=ADPB OB (9.67)

Since dilations and erosions of restricted domains have been defined, the
above definition of opening is also valid for restricted domains. The definition is
also valid for the [ollowing more general cases when either A or B or both are not
restricted domains: (i) A is a line at 45° and B is a restricted domain; (ii)Bisa
line at 45° and A is a restricted domain; (iii) A and B are lines at 45° (iv) A and B
are lines at 135°. Note that lines at 45° and 135° are not restricted domains since
they are not 4-connected. The algorithm cannot be used if A and B are lines at
45% and 135°, respectively. This constraint is due to the fact that the set theory
dilation of a 45 line with a 135° line results in a rhombus-like shape with one-
pixel holes; i.e., the shape is not filled. Thus the set theory dilation results in a
shape that not filled but the half-plane and B-code dilation algorithms produce a
shape that is filled.

VI. ALGORITHMS AND THEIR COMPLEXITY

In this section we give the algorithms for computing the dilation and erosion of
restricted domains represented by half-planes. The algorithms for opening and
closing can be easily obtained by applying the dilation and erosion algorithms in
the appropriate order. The algorithms for n-fold dilation and n-fold erosion need
one multiplication step, which we explain at the end of this section.

The following data structures are used in the algorithms:

ArrayObject is a data structure containing an array and its dimensions. In the
algorithms the vectors associated with B-codes, half-planes, cte. are stored
using this data structure type.

RDObject is a data structure used to represent restricted domains, It contains the
three matrices N, V., and C associated with the restricted domain.

The procedure DilateRDObject takes as input two RDObject and outputs
RDObject which is the dilation of the two input RDObject. The algorithm is
given in Table 2. :

The procedure ErodeRDObject takes as input two RDObject and outputs
RDObject which is the erosion of the two input RDObject. The algorithm is
given in Table 3. This procedure calls the normalization function which is given
in Table 1. The function Normalize takes as input an ArrayObject containing the
C array of a restricted domain and returns the normalized C array if one exists;
else it returns a NULL value.

The n-fold dilation of a restricted domain B by a restricted domain A is B ®
(B, A). the dilation of B by the n-fold dilation of A. In the B-code domain it
amounts to multiplying the side lengths of A by n and adding it to the starting
point of B. If A and B have the side lengths given by the vectors N* and N*, and
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Table 2. The Algorithm for Dilation of Restricted Domains

procedure DilateRDObject (A, B, )

Input;
RDObject 4, 8:
Output:
RDObject ;

begin
N¢:= N4 + N&:
Ued ) 2= ) + Gy

end DilateRDObjects;

Table 3. The Algorithm for Erosion of Restricted Domains

procedure ErodeRDObject (A, B, C)

Input:
RDObject A, B:
Output:
RDObject ;
begin
C=(C - Co;
C? : = Normalize(C*):
N = QC;
Cr
¢ !
Vi:=Dn [C‘ J

end ErodeRDObjects;

starting points (i,, j,) and (i,, j,), then (@, A) has side lengths given by the vector
nN* and starting point n(i,, j,). It follows that B ® (@, A) has side lengths given
by the vector N = N” 4 nNA and the starting point (i,, j,) + n(i,, j,). Dilation
can also be performed by going into the discrete half-plane representation and
adding the C vectors associated with 4 and B. Thus the C vector associated with
B®(®, A)isC = Cr + nCr,

The n-fold erosion of a restricted domain B by a restricted domain A is B O
(@, A), the erosion of B by the n-fold dilation of A. Let C# and C* be the vectors
associated with A and B. Then nC* is the vector associated with (@, A). Thus in
the half-planc domain the n-fold erosion of B by A amounts to C* — nCA.
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The algorithm for the dilation of restricted domains given in Table 2 consists
of 10 additions only. Hence it is a constant-time algorithm. Note that the time
complexity is independent of the size of the structuring element. In conventional
morphology this is not the case—the time complexity is O(n?), where n is the
number of elements in each set.

The algorithm for an n-fold dilation of restricted domains consists of eight
multiplications. Hence it is also a constant-time algorithm.

The erosion algorithm given in Table 3 consists of eight subtractions followed
by the process of normalization. The normalization algorithm in Table 1 was
shown to be constant in time. Thus, the erosion algorithm is a constant-time
algorithm.

The n-fold erosion is represented in terms of n-fold dilation, and since the
n-fold dilation algorithm is constant in time, the n-fold erosion algorithm is con-

stant in time.

The algorithm for opening consists of two stages—an erosion stage followed
by a dilation stage. Since erosion and dilation algorithms are constant in time,
the algorithm for opening is also constant in time. Similarly, the algorithm for
closing consists of two stages—a dilation stage followed by a erosion stage.
Since erosion and dilation both are constant in time, the algorithm for closing is
also constant in time.

A. Walkthrough

In this section we apply the algorithms on some typical restricted domains, Fig-
ure 8 shows an example of a dilation. Here C = A & B where

A = (0,2) ]| (d, : 3)d, : 2)(d, : 1)(d, : 5))
B ={1.0)],:1)d: 1)d,: 1)d,: 1))
Thus,
(ij)) =(0,2) and N =1[03021050)
(igojg) =(1,1) and N =[01010101])
NC=N'+N=[0403115]1)
Uer Jo) = (igs J)) + (i, j) = (1,3)
Therefore,
C =((1,3)| (d, : 4)d, : 3)d, : 1)(d, : I)d, : 5)d, : 1))

Thus we started from the B-code representations of A and B. Then we added
the respective side lengths and starting locations to get the B-code of C.

Figure 9 shows an erosion when the shape is not open under the structuring
element. Here C = A © B where

Il
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@ =

A B C

Figure 8. An example of dilation. C is obtained by dilating A by B. Here A = ((0,2)
| (d, : 3xd, : 2)d, : I)xd, : 5, B = {(1.1) | (d, : 1)d, : 1)d, :1)d, : 1)), and
C =13 | (d, :dxd, : 3%d, : 1)d, : 1)d, : 5)xd, : ).
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Figure 9. An example of erosion. C is obtained by eroding 4 by B. Here A =
(W1.3) ] (d, < d)d, 2 30d, < Dd, : D, 5)d, 2 D), B = (- 1,1)| (d, : 4)d, : 2)d,
D} and C = (1.5 |, : 1xd, : 1)d,: 2)).

A =13 ], :4)d,: 3)d,: )d,: 1)d,: Jd, : 1)
B = ((-1.1)](d,: 4)d,: 2)d, : 2))
Thus,
(i ) = (1.3) and N*=[04031151)
(ig Ju) = (= 1,1) and N# [40020200)
C* = L[i,j,N]' = [-3 -25121090 —4)
cr Llig jy N = [—-12343210)
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CO=C - Cr=[-2-42877-) —qp
C¢ = Normalize(C) = [-5 -42876 | —g)
NC=QC =1{01010020)
Ve = DjCe ¢y =[1122]111 155667 775)

(es Jo) = (V0L V8]) = (1.5)
Thus,
= ((1,5) | @, : 1)d, : 1)d, : 2))

Thus we proceeded differently from the way we did for dilation. First we con-
structed the normalized half-plane representations of A and B and performed the
erosion in this representation. Next we normalized the result. We then converted
the result back into the B-code form,

VIl. WORK IN PROGRESS

Many extensions of the work presented here are being tried out. Here we list a
few of them.

Basic set theory operations with B-codes are an immediate task. Questions
that come up are: is the B-coded shape A a subset of B? A supersel? Or, does A
intersect B or is the intersection empty? Is there an algorithm for finding these
sets?

The algorithms presented in this chapter can be generalized for the case of any
discrete, convex figure. In that case the polygon edges can be at any angle. These
angles can be defined in terms of the basic angles that can be formed by a vector
starting from the origin and ending on any pixel (m,n) such that m and n are
coprime. The problem of holes in the dilation of shapes needs to be addressed.

Further, the algorithms have been extended to the case of continuous convex
polyhedra. But B-code data structure cannot be used for representing the poly-
hedra. In fact, the polyhedra are represented as the intersection of n-dimensional
continuous polyhedra.

The problem of decomposing nonconvex shapes, two- or three-dimensional,
is difficult. One way to attack this problem is to represent the nonconvex shape
as a union of restricted domains and then decompose each of the restricted do-
mains of the union. Another approach is to represent a shape A as a unjon of
disjoint sets A* and K' where X' is the largest restricted domain that is a subset of
AandA = A' — K. This process can be repeated and the shape A can be repre-
sentedas A = K' U K2 U---U K", where each restricted domain K’ can then be
decomposed further,

Morphological dilation on nonconvex shapes will have to be carried out by
first representing the shape as a union of restricted domains, Morphological ero-
sion of nonconvex shapes can be done by representing the shapes as intersections
of restricted domains and complements of restricted domains. How to decom-
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puse a nonconvex shape as a union of restricted domains and intersection of
restricted domains is a problem. An algorithm for doing this has to be developed.
Furthermore, in higher dimensions the representation scheme of nonconvex
shapes has to be in terms of half-planes.

Vill. CONCLUSION

We defined restricted domains—a restricted class of two-dimensional shapes.
Two boundary schemes for representing a restricted domains, the B-code and the
discrete half-planes representation, were introduced. Morphological dilation,
erosion, n-fold dilation, n-fold erosion, openings, and closings of restricted do-
mains with structuring elements that are also restricted domains were expressed
in terms of B-codes and half-planes. Algorithms for performing these operations
were provided and were proved to be constant-time algorithms.

Suggestions have been made as to how the algorithms can be generalized to
any arbitrary two- and three-dimensional convex shapes. Further work needs to
be done in the direction of set operations on restricted domains. Finally, it is
important to solve the difficult problem of decomposing nonconvex shapes into
restricted domains so that the algorithms presented in this chapter can be used on
general images.
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APPENDIX: B-CODE DETAILS

For a B-code to be the representation of a restricted domain, the sequence of
displacements in the directions d, should be ordered monotonically increasing on
the directions between d, and d,. The maximum number of nonzero displace-
ments along the boundary can be eight and the minimum zero, which corre-
sponds 1o a singular point—the starting point. Thus the B-codes of restricted
domains are of the forms A = ((i, /) | (d,: n)(d, : n,) - ~(d, : n,)). Note that two
exceptions, corresponding to diagonal lines at 45° and 135° are of similar form:
A= {i.pd n)Xd,:n))and A = ((i,/) | (d, : n,)(d, : n,)). These are not
restricted domains since they are not 4-connected. To prove this property, we
need the following two lemmas:
Lemma A.1. LetA = ((i,/) ]| (d,: n))d, : n,) - (d, : n,) be a B-code repre-
senting a shape with more than one point. Then there exists i, 0 < i < 3, such
thatn, # 0.

Proof. By contradiction: Letn, = n, = n, = n, = 0. Since n, = 0 for 0 =
i=17, fromEq. (9.3):

ng=n,=n, =0
and from Eq. (9.2):
n, =0

Hence, n, = 0 for 0 = i = 7, and the B-code A reduces to just one point—the
starting point (i, j). This contradicts the hypothesis. Therefore, at least one of n,
with 0 = i = 3 must be nonzero.
Lemma A.2. LetA = ((i,)) | (d,: n)d, : n) - (d, : n,)} be a B-code repre-
senting a shape with more than one point. Then, if n, # 0,0 =i =< 7, there exists
Jymod(i + 1, 8) = j=mod(i + 4, 8), suchthatn + 0.

Proof. The lemma can be proved using Eqgs. (9.2), (9.3) and the fact that
somen, =0for0=i=7.

Case (1): i = 0. We have to prove that if n, # 0, then there exists j, | = j =
4 such that n, # 0. From Eq. (9.2)

n,+n +n,>0
and therefore at least one of n,, n,, or n, is nonzero.

I. n, # 0.Thenj = 3.
2. n,+ 0.Thenj = 4.
3. n,=n,=0,andn; # 0. From Eq. (9.3) we have

n+n,>0

and therefore at least one of n, or n, is nonzero.
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(a)n, # 0. Thenj = 1.
(byn, # 0. Thenj = 2.

Case (2): 7 = 1. We have to prove that if n, # 0, then there exists j.2=j=
5 such that n, # 0. From Eq. (9.2) we have

n,+n,+n,>0
and therefore at least one of n,, n,, or n, is nonzero.

1. n,# 0.Thenj = 3.
2. n, #0.Thenj = 4.
3. ng #0.Thenj = 5.

1l

Similarly we can prove that the lemma holds for the cases when i = 2,3, 4,
5,6,7.

Theorem A.1. A B-code of the form A = ((i, j) | (d, : n)(d, : n,)-~(d, : n,))
is a restricted domain or a line at 45° or 135°.

Proof. We have to show that the B-code represents a discretely convex
shape. This we will do by finding the interior angles at each of the vertices and
showing that the are concave (less than 180°). In the case when it is exactly 180°
it becomes a line but is still discretely convex. Only the lines at 45° and 135° are
8-connected. All the rest of the lines and restricted domains are 4-connected.
Details of this method can be found in the book by Preparata and Shamos [8].

Since A is a B-code, either none, two, or more than two of the lengths are
nonzero. Hence, we will consider the following three cases:

Case (1): All lengths are zero. Sincen, = 0, forall i, 0 < i < 7, A reduces to
the point (i, j). Thus, A is a restricted domain.

Case (2): Two lengths are nonzero. Letiandj, 0 < i < j < 7, such that n # 0
and n, # 0. From Lemma A.2 we see that that j = i + 4, and A represents a
line. Thus A is discretely convex.

Case (3): Three or more lengths are nonzero, We will proceed by first ordering
the vertices of A in an increasing order of counterclockwise angular displacement
around the starting point. Then we take three consecutive vertices at a time and
check if the angle between them is concave. If all such consecutive triples have
angles less than 180°, the binary shape represented by the B-code is discretely
convex. Let v, v Voo ¥y = v, be the eight vertices of A. If n, is zero,
vertices v, and v,, | will coincide. Only the distinct vertices of the shape will
contribute to the edges of the convex hull. Let v, , , v,, Vs WithO =k + |
<1+ 1 <m+ 1=7be three distinct consecutive vertices of A. A detailed
discussion of the technigue can be found in [8].

The vertices v, , . v, ,, v,,,, form a concave angle if

.....

cos @ sinf, 0
cos B_sin@, O =sin@, — 8)=0 (9.68)
0 0 1
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where 6, is the angle formed by the direction d, with the positive x-axis. Since
8, = im/4, Eq. (9.68) reduces to

sin(, — 6) = sin(m — :')‘74-r (9.69)

Consider the following two cases:

L. 0=k + 1 <I+ 1=4. Since the vertices Visr» Viy s ¥, , are distinct and
consecutive we have

n ¥ 0
n # 0
n, 0

Since I = 3, from Lemma A2, there exists i,/ + | < j <[ + 4, such that n,
# 0. Since v, , is consecutive to v,, ,, we have

I+1=m=i=sl+4 (9.70)
Therefore,
l=m-1<4 (9.71)

and sin(8,, — 6,) = 0.
2. I=4 Sincev,, andv,, are consecutive, we have

l+1=m=8§ (9.72)
Since/ = 4, wehavem — [ =8 — 4 = 4,

l=m-1=<4 (9.73)
and sin(8, — 6,) = 0.

Hence, A is a discretely convex shape. Since the edges of A are in the direc-
tions d,, they are oriented at angles that are multiples of 45° with respect to the
positive x-axis. Thus, A is a restricted domain or a line at 45° or 135°.





