N-tuple Classifier Stacking

Robert M. Haralick

Computer Science, Graduate Center
City University of New York
Stacking means having a subspace classifier composed of layers of subspace classifiers.
Each layer has fewer inputs.
The last layer has a small enough outputs that the classification can be made by a Bayesian Classifier.
This is analogous to neural net hidden layers.
Stacking Example: Layer 1

Number of Dimensions: 96
Number of Index Sets/Class: 12
Size of Each Index Set: 8
Number of Classes: 3
Number of Scores Calculated: $12 \times 3 = 36$
Stacking Example: Layer 2

Number of Dimensions: 36
Number of Index Sets/Class: 9
Size of Each Index Set: 4
Number of Classes: 3
Number of Scores Calculated: $3 \times 9 = 27$
Stacking Example: Layer 3

Number of Dimensions 27
Number of Index Sets/Class 6
Size of Index Sets 4, 4, 4, 5, 5, 5
Number of Classes 3
Number of Scores Calculated 18
Stacking Example: Layer 4

Number of Dimensions: 18
Number of Index Sets-Class: 3
Size of Index Sets: 6
Number of Classes: 3
Number of Scores Calculated: 9
Stacking Example: Layer 5

Number of Dimensions: 9
Number of Index Sets/Class: 2
Size of Index Sets: 4, 5
Number of Classes: 3
Number of Scores Calculated: 6
Stacking Example: Layer 6

Number of Dimensions 6
Number of Possibilities per Dimension 6
Size of Measurement Space $6^6 = 46,656$
Use Bayesian Classifier
In the Requisite Variety Analysis we did
 - We utilized mutually exclusive index sets
 - Small Overlapping of index sets should not change the analysis by much
 - Stacking may change the analysis

For the Unstacked N-tuple Classifier We Wanted
 - For each class
 - The size of the training
 - to be more than 10 times
 - The size of all arrays storing class conditional probabilities
For the case that all arrays store class conditional probabilities
- Meaning of subsets of feature or scores
- Where there is no optimization of values in the arrays

Does the requisite variety criterion
- Just apply
- Class by class
- To the arrays only in the first layer?
- Or does it apply to all arrays in the stack?
What kind of experiment can be done
To determine the requisite variety criterion for each class
On whether it is
 • The size of the arrays for each class for the first layer
 • Or the size of all arrays for each class in all stack layers