Definition

Let X and Y be a discrete random variables that take values from the set $A \times B$. The **Conditional Expectation of Y given X** is defined by

$$E[Y \mid X = a] = \sum_{b \in B} bP_{XY}(a, b)$$

$E[Y \mid X]$ is a function of the various values that X can take.
The Event \((c^j, c^k, d)\)

\[
P_{TA}(c^j, c^k, d) = P_{TA}(c^j, c^k|d)P(d)
\]
\[
= P_T(c^j|d)P_A(c^k|d)P(d)
\]
\[
= \frac{P_T(d|c^j)P_T(c^j)}{P(d)} P_A(c^k|d)P(d)
\]
\[
= P_T(d|c^j)P_A(c^k|d)P_T(c^j)
\]

\[
P_{AT}(c^k, d|c^j) = \frac{P_{TA}(c^j, c^k, d)}{P_T(c^j)}
\]
\[
= P_T(d|c^j)P_A(c^k|d) = P_T(d|c^j)f_d(c_k)
\]
The conditional expectation of the economic gain given class c^j for decision rule f is defined by

$$E[e \mid c^j; f] = \sum_{d \in D} \sum_{k=1}^{K} e(c^j, c^k) P_{TA}(c^j, c^k, d)$$

$$= \sum_{d \in D} \sum_{k=1}^{K} e(c^j, c^k) P(d \mid c^j) f_d(c^k)$$

$$= \sum_{k=1}^{K} e(c^j, c^k) \sum_{d \in D} P(d \mid c^j) f_d(c^k)$$

where $f_d(c)$ is the conditional probability that the decision rule assigns class c given measurement d.
Class Conditional Probability and Prior Probability

- $P(d|c)$
 - Conditional probability of measurement d given class c
 - Class conditional probability

- $P(c)$
 - Prior probability of class c
 - Prior probability
The Expected economic gain can be related to the class conditional expected economic gain and prior probabilities.

\[
E[e; f] = \sum_{d \in D} \sum_{k=1}^{K} \sum_{j=1}^{K} e(c^j, c^k) P(c^j, d) f_d(c^k)
\]

\[
= \sum_{j=1}^{K} \sum_{k=1}^{K} \sum_{d \in D} e(c^j, c^k) P(d | c^j) P(c^j) f_d(c^k)
\]

\[
= \sum_{j=1}^{K} \left[\sum_{k=1}^{K} \sum_{d \in D} e(c^j, c^k) P(d | c^j) f_d(c^k) \right] P(c^j)
\]

\[
= \sum_{j=1}^{K} E[e | c^j; f] P(c^j)
\]
Economic Gain

When the economic gain is represented in terms of the prior class probabilities, we write

\[E[e; f, P(c^1), \ldots, P(c^K)] \]

When \(f \) is a Bayes decision rule,

\[E[e; f, P(c^1), \ldots, P(c^K)] \geq E[e; g, P(c^1), \ldots, P(c^K)] \]

for any other decision rule \(g \).

Definition

When \(f \) is a Bayes decision rule, \(E[e; f, P(c^1), \ldots, P(c^K)] \) is called the **Bayes gain**.
Convex Combinations

Definition
Let \(x, y \in \mathbb{R}^N \) and \(0 \leq \lambda \leq 1 \). Then \(\lambda x + (1 - \lambda)y \) is called a convex combination of \(x \) and \(y \).

Proposition
If \(0 \leq x, y, \lambda \leq 1 \), then \(0 \leq \lambda x + (1 - \lambda)y \leq 1 \)

Proof.
\(0 \leq x, y, \lambda \) implies \(\lambda x + (1 - \lambda)y \leq \lambda + (1 - \lambda) = 1 \).
\(\lambda \leq 1 \) implies \(0 \leq 1 - \lambda \).
\(x, y, \lambda, 1 - \lambda \geq 0 \) implies \(\lambda x + (1 - \lambda)y \geq 0 \).
Therefore, \(0 \leq \lambda x + (1 - \lambda)y \leq 1 \).
Consider the structure of a decision rule $f_d(c)$. Suppose $D = \{d^1, \ldots, d^Q\}$ and $C = \{c^1, \ldots, c^K\}$. Then this decision rule f can be thought of as a vector in \mathbb{R}^{KQ}

\[
f' = (f_{d^1(c^1)}, \ldots, f_{d^1(c^K)}, \ldots, f_{d^Q(c^1)}, \ldots, f_{d^Q(c^K)})
\]

There are some constraints:

- For $q \in \{1, \ldots, Q\}$ and $k \in \{1, \ldots, K\}$, $0 \leq f_{dq}(c^k) \leq 1$
- For $q \in \{1, \ldots, Q\}$, $\sum_{k=1}^{K} f_{dq}(c^k) = 1$

Therefore, a decision rule must lie in the unit hypercube of \mathbb{R}^{QK} and it must lie in the manifold defined by the Q linear constraints

\[
\sum_{k=1}^{K} f_{dq}(c^k) = 1, \quad q = 1, \ldots, Q
\]
<table>
<thead>
<tr>
<th>f^n_d</th>
<th>$f^n_{d_1}(c_1)$</th>
<th>$f^n_{d_1}(c_2)$</th>
<th>$f^n_{d_2}(c_1)$</th>
<th>$f^n_{d_2}(c_2)$</th>
<th>$f^n_{d_3}(c_1)$</th>
<th>$f^n_{d_3}(c_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>f^1_d</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>f^2_d</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>f^3_d</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>f^4_d</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>f^5_d</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>f^6_d</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>f^7_d</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>f^8_d</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

$f_d^n(c^1) + f_d^n(c^2) = 1, \quad n = 1, 2, 3$

$0 \leq f_d^n(c^k) \leq 1, \quad n = 1, 2, 3; \quad k = 1, 2$
Example

\[f_{dn}(c^2) = 1 - f_{dn}(c^1), \quad n = 1, 2, 3 \]
\[0 \leq f_{dn}(c^1) \leq 1, \quad n = 1, 2, 3 \]

<table>
<thead>
<tr>
<th>(f^n_d(c^1))</th>
<th>(d^1)</th>
<th>(d^2)</th>
<th>(d^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f^1_d)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(f^2_d)</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(f^3_d)</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(f^4_d)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(f^5_d)</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(f^6_d)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(f^7_d)</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(f^8_d)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[F = \{ f_d(c^1) \mid f_d(c^1) = \sum_{n=1}^{8} \lambda_n f^n_d(c^1), \text{ for some } 0 \leq \lambda_n \leq 1, \sum_{n=1}^{8} \lambda_n = 1 \} \]
Proposition

Convex combinations of decision rules are decision rules

Proof.

Let \(f \) and \(g \) be two decision rules. Let \(0 \leq \lambda \leq 1 \). Consider \(\lambda f_d(c) + (1 - \lambda) g_d(c) \). We have already proven that \(0 \leq \lambda f_d(c) + (1 - \lambda) g_d(c) \leq 1 \). Consider the convex combination:

\[
\sum_{c \in C} [\lambda f_d(c) + (1 - \lambda) g_d(c)] = \lambda \sum_{c \in C} f_d(c) + (1 - \lambda) \sum_{c \in C} g_d(c)
\]

\[
= \lambda + (1 - \lambda)
\]

\[
= 1
\]
Convex Sets

Definition

A set $C \subseteq \mathbb{R}^N$ is a **convex set** if and only if $x, y \in C$ imply $\lambda x + (1 - \lambda)y \in C$ for every $0 \leq \lambda \leq 1$.

Proposition

The set F of all convex combinations of decision rules is a convex set.

Example

$$F = \{f_d(c^1) \mid f_d(c^1) = \sum_{n=1}^{8} \lambda_n f_d^n(c^1), \text{ for some } 0 \leq \lambda_n \leq 1, \sum_{n=1}^{8} \lambda_n = 1\}$$
Intersection of Convex Sets are Convex

Proposition

Let C and D be convex sets. Then $C \cap D$ is a convex set.

Proof.

Let $x, y \in C \cap D$ and $0 \leq \lambda \leq 1$. Consider $\lambda x + (1 - \lambda)y$.

Since $x, y \in C \cap D$, $x, y \in C$ and $x, y \in D$.

Since C is convex and $0 \leq \lambda \leq 1$, $\lambda x + (1 - \lambda)y \in C$.

Since D is convex and $0 \leq \lambda \leq 1$, $\lambda x + (1 - \lambda)y \in D$.

$\lambda x + (1 - \lambda)y \in C$ and $\lambda x + (1 - \lambda)y \in D$ imply $\lambda x + (1 - \lambda)y \in C \cap D$.
Definition

Let f and g be decision rules and $0 \leq \lambda \leq 1$. Then

$$h_d(c) = \lambda f_d(c) + (1 - \lambda) g_d(c)$$

is called a mixed decision rule of f and g.

- With probability λ apply decision rule f and probability $1 - \lambda$ apply decision rule g.
- If we apply decision rule f, the we assign class c with probability $f(c|d)$
- If we apply decision rule g, then we assign class c with probability $g(c|d)$
Definition

Let $A \subseteq \mathbb{R}^N$. A point $e \in A$ is called an Extreme Point of A if and only if $b, c \in A$ with $e = \frac{b+c}{2}$ implies $e = b = c$.
Proposition

Let F be the set of all convex combinations of decision rules. Let f be a deterministic decision rule. Then f is an extreme point of F.

Proof.

Let $g, h \in F$ satisfy $f = \frac{g + h}{2}$. Hence for every $d \in D$ and $c \in C$,

$$f_d(c) = \frac{g_d(c) + h_d(c)}{2}$$

Since f is a deterministic decision rule, for some $c^* \in C$, $f_d(c^*) = 1$ and for all $c \in C - \{c^*\}$, $f_d(c) = 0$. Consider $c \in C$ for which $f_d(c) = 0$.

$$f_d(c) = 0 = \frac{g_d(c) + h_d(c)}{2}$$

Since $g_d(c), h_d(c) \geq 0$ and since $g_d(c) + h_d(c) = 0$, it follows that $g_d(c) = h_d(c) = 0$.

Proof.

Now consider c^*.

$$f_d(c^*) = 1 = \frac{g_d(c^*) + h_d(c^*)}{2}$$

Hence, $g_d(c^*) + h_d(c^*) = 2$. But $g_d(c^*), h_d(c^*) \leq 1$. Therefore, $g_d(c^*) = 1$ and $h_d(c^*) = 1$.

Now, by definition of extreme point, a deterministic decision rule $f \in F$ is an extreme point of F, the set of all convex combinations of decision rules.
Definition

A **Closed Convex Polyhedron** is a non-empty set P formed as the solutions to a matrix equation $Ax \leq b$.

$$P = \{ x \mid Ax \leq b \}$$

Each row of the matrix equation specifies a hyperplane half space and P is the intersection of these hyperplane half spaces.

Definition

A bounded polyhedron is a **polytope**.
Closed Convex Polytope Example Tetrahedron

\[P = \{ x \mid Ax \leq b \} \]

\[A = \begin{pmatrix}
1 & 1 & 1 \\
1 & -1 & -1 \\
-1 & 1 & -1 \\
-1 & -1 & 1 \\
\end{pmatrix} \]

\[b = \begin{pmatrix}
2 \\
0 \\
0 \\
0 \\
\end{pmatrix} \]
The Set of Decision Rules is a Closed Convex Polytope

Proposition

Let F be the set of all decision rules formed from the finite set C of classes and the finite set D of measurements. The set F is a closed convex polytope lying in a linear manifold of dimension $|C| |D| - |D|$.

Proof.

Let $f \in F$. We already know that $f \in \mathbb{R}^{\mid C\mid \mid D\mid}$. The $|D|$ linear constraints are formed from the requirement that \[\sum_{c \in C} f_d(c) = 1. \] The remaining constraints are of the form
- $f_d(c) \geq 0$ which is equivalent to $-f_d(c) \leq 0$
- $f_d(c) \leq 1$
Definition

Let $X = \{x_1, \ldots, x_M\} \subset \mathbb{R}^N$. The Convex Hull of X is defined by

$$
\text{CH}(X) = \{y \in \mathbb{R}^N \mid y = \sum_{m=1}^{M} \lambda_m x_m, \text{ where } \lambda_m \geq 0, \sum_{m=1}^{M} \lambda_m = 1\}
$$

Theorem

Any closed convex polytope is the convex hull of its extreme points.
Any Probabilistic Decision Rule can be represented as a convex combination of the deterministic decision rules.

Theorem

Let f be a probabilistic decision rule and let f^1, \ldots, f^M be the set of all possible deterministic decision rules. Then there exists a convex combination $\lambda_1, \ldots, \lambda_M$ such that

$$f_d(c) = \sum_{m=1}^{M} \lambda_m f^m_d(c)$$
Proposition

Let $C \subseteq \mathbb{R}^N$ be a convex set. Let e be an extreme point of C. Let D be a convex subset of C. If $e \in D$, then e is an extreme point of D.

Proof.

Let e be an extreme point of C. Suppose $e \in D$. Let $a, b \in D$ satisfy $e = \frac{a+b}{2}$. Since $D \subseteq C$, $a, b \in C$. Now, $a, b \in D \subseteq C$, with $e = \frac{a+b}{2}$. Since e is an extreme point of C, $e = a = b$. But now we have $e \in D$ and $a, b \in D$ satisfying $e = \frac{a+b}{2}$. And we have just proved that $e = a = b$. Therefore, e is an extreme point of D.

□
Proposition

\[E[e \mid c^j; \lambda f + (1 - \lambda)g] = \lambda E[e \mid c^j; f] + (1 - \lambda)E[e \mid c^j; g] \]

Proof.

\[
E[e \mid c^j; \lambda f + (1 - \lambda)g] = \sum_{k=1}^{K} \sum_{d \in D} e(c^j, c^k)P(d \mid c^j)\{\lambda f(c^k \mid d) + (1 - \lambda)g(c^k \mid d)\}
\]

\[
= \lambda \sum_{k=1}^{K} \sum_{d \in D} e(c^j, c^k)P(d \mid c^j)f(c^k \mid d) + (1 - \lambda) \sum_{k=1}^{K} \sum_{d \in D} e(c^j, c^k)P(d \mid c^j)g(c^k \mid d)
\]

\[
= \lambda E[e \mid c^j; f] + (1 - \lambda)E[e \mid c^j; g]
\]
Example

\[
E[e \mid c^i; f] = \sum_{d \in D} \sum_{k=1}^{K} e(c^i, c^k)P(d \mid c^i)f_d(c^k)
\]

\[
E[e \mid c^1; f] = e(c^1, c^1)P(d^1 \mid c^1)f_{d^1}(c^1) + e(c^1, c^2)P(d^1 \mid c^1)f_{d^1}(c^2) + e(c^1, c^1)P(d^2 \mid c^1)f_{d^2}(c^1) + e(c^1, c^2)P(d^2 \mid c^1)f_{d^2}(c^2) + e(c^1, c^1)P(d^3 \mid c^1)f_{d^3}(c^1) + e(c^1, c^2)P(d^3 \mid c^1)f_{d^3}(c^2)
\]

\[
= 2 \ast .2 \ast 1 + (-1) \ast .2 \ast 0 + 2 \ast .3 \ast 0 + (-1) \ast .3 \ast 1 + 2 \ast .5 \ast 0 + (-1) \ast .5 \ast 1
\]

\[
= .4 - .3 - .5 = -.4
\]
Example

<table>
<thead>
<tr>
<th>e</th>
<th>Assigned</th>
<th>$P(d \mid c)$</th>
<th>Measurement</th>
<th>$f_d(c)$</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c^1</td>
<td>2</td>
<td>c^1</td>
<td>.2</td>
<td>c^1</td>
<td>1</td>
</tr>
<tr>
<td>c^2</td>
<td>-1</td>
<td>c^2</td>
<td>.5</td>
<td>c^2</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
E[e \mid c^j; f] = \sum_{d \in D} \sum_{k=1}^{K} e(c^j, c^k)P(d \mid c^j)f_d(c^k)
\]

\[
E[e \mid c^2; f] = e(c^2, c^1)P(d^1 \mid c^2)f_{d^1}(c^1) + e(c^2, c^2)P(d^1 \mid c^2)f_{d^1}(c^2) + e(c^2, c^1)P(d^2 \mid c^2)f_{d^2}(c^1) + e(c^2, c^2)P(d^2 \mid c^2)f_{d^2}(c^2) + e(c^2, c^1)P(d^3 \mid c^2)f_{d^3}(c^1) + e(c^2, c^2)P(d^3 \mid c^2)f_{d^3}(c^2)
\]

\[
= (-1) \times .5 \times 1 + 2 \times .5 \times 0 + (-1) \times .4 \times 0 + 2 \times .4 \times 1 + (-1) \times .1 \times 0 + 2 \times .1 \times 1
\]

\[
= -.5 + .8 + .2 = .5
\]
Example

\[
E[e \mid c^i; f] = \sum_{d \in D} \sum_{k=1}^{K} e(c^i, c^k) P(d \mid c^i) f_d(c^k)
\]

<table>
<thead>
<tr>
<th>(e)</th>
<th>Assigned</th>
<th>(P(d \mid c))</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>(c^1)</td>
<td>(c^2)</td>
<td>True Class</td>
</tr>
<tr>
<td>(c^1)</td>
<td>2</td>
<td>-1</td>
<td>(c^1)</td>
</tr>
<tr>
<td>(c^2)</td>
<td>-1</td>
<td>2</td>
<td>(c^2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Conditional Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f)</td>
<td>(d^1)</td>
</tr>
<tr>
<td>(f^1)</td>
<td>(c^1)</td>
</tr>
<tr>
<td>(f^2)</td>
<td>(c^1)</td>
</tr>
<tr>
<td>(f^3)</td>
<td>(c^1)</td>
</tr>
<tr>
<td>(f^4)</td>
<td>(c^1)</td>
</tr>
<tr>
<td>(f^5)</td>
<td>(c^2)</td>
</tr>
<tr>
<td>(f^6)</td>
<td>(c^2)</td>
</tr>
<tr>
<td>(f^7)</td>
<td>(c^2)</td>
</tr>
<tr>
<td>(f^8)</td>
<td>(c^2)</td>
</tr>
</tbody>
</table>
Conditional Expected Gains: All Decision Rules

\[E[e|c^2; f] \]

\[E[e|c^1; f] \]