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A survey of powerful visualization techniques,
from the obvious to the obscure.
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THANKS TO ADVANCES In sensing, networking, and
data management, our society is producing digital
information at an astonishing rate. According to

one estimate, in 2010 alone we will generate 1,200
exabytes—60 million times the content of the Library
of Congress. Within this deluge of data lies a wealth

of valuable information on how we
conduct our businesses, governments,
and personal lives. To put the informa-
tion to good use, we must find ways to
explore, relate, and communicate the
data meaningfully.

The goal of visualization is to aid our
understanding of data by leveraging the
human visual system’s highly tuned
ability to see patterns, spot trends, and
identify outliers. Well-designed visual
representations can replace cognitive
calculations with simple perceptual in-
ferences and improve comprehension,
memory, and decision making. By mak-
ing data more accessible and appeal-
ing, visual representations may also
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help engage more diverse audiences in
exploration and analysis. The challenge
is to create effective and engaging visu-
alizations that are appropriate to the
data.

Creating a visualization requires a
number of nuanced judgments. One
must determine which questions to
ask, identify the appropriate data, and
select effective visual encodings to map
data values to graphical features such
as position, size, shape, and color. The
challenge is that for any given data set
the number of visual encodings—and
thus the space of possible visualization
designs—is extremely large. To guide
this process, computer scientists, psy-
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Time-Series Data: Figure 1a. Index chart of selected technology stocks, 2000-2010.
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Source: Yahoo! Finance; http://hci.stanford.edu/jheer/files/zoo/ex/time/index-chart html

Time-Series Data: Figure 1b. Stacked graph of unemployed U.S. workers by industry, 2000-2010.
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Time-Series Data: Figure 1c. Small multiples of unemployed U.S. workers, normalized by industry, 2000-2010.
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Time-Series Data: Figure 1d. Horizon graphs of U.S. unemployment rate, 2000-2010.
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chologists, and statisticians have stud-
ied how well different encodings facili-
tate the comprehension of data types
such as numbers, categories, and net-
works. For example, graphical percep-
tion experiments find that spatial po-
sition (as in a scatter plot or bar chart)
leads to the most accurate decoding of
numerical data and is generally prefer-
able to visual variables such as angle,
one-dimensional length, two-dimen-
sional area, three-dimensional volume,
and color saturation. Thus, it should
be no surprise that the most common
data graphics, including bar charts,
line charts, and scatter plots, use posi-
tion encodings. Our understanding of
graphical perception remains incom-
plete, however, and must appropriately
be balanced with interaction design
and aesthetics.

This article provides a brief tour
through the “visualization zoo,” show-
casing techniques for visualizing and
interacting with diverse data sets. In
many situations, simple data graphics
will not only suffice, they may also be
preferable. Here we focus on a few of
the more sophisticated and unusual
techniques that deal with complex data
sets. After all, you don’t go to the zoo to
see chihuahuas and raccoons; you go
to admire the majestic polar bear, the
graceful zebra, and the terrifying Suma-
tran tiger. Analogously, we cover some
of the more exotic (but practically use-
ful) forms of visual data representation,
starting with one of the most common,
time-series data; continuing on to sta-
tistical data and maps; and then com-
pleting the tour with hierarchies and
networks. Along the way, bear in mind
that all visualizations share a common
“DNA"—a set of mappings between
data properties and visual attributes
such as position, size, shape, and col-
or—and that customized species of vi-
sualization might always be construct-
ed by varying these encodings.

Each visualization shown here is
accompanied by an online interactive
example that can be viewed at the URL
displayed beneath it. The live examples
were created using Protovis, an open
source language for Web-based data
visualization. To learn more about how
a visualization was made (or to copy
and paste it for your own use), see the
online version of this article available
on the ACM Queue site at http://queue.



acm.org/detail.cfm?id=1780401/.  All
example source code is released into
the public domain and has no restric-
tions on reuse or modification. Note,
however, that these examples will work
only on a modern, standards-compli-
ant browser supporting scalable vector
graphics (SVG). Supported browsers in-
clude recent versions of Firefox, Safari,
Chrome, and Opera. Unfortunately, In-
ternet Explorer 8 and earlier versions
do not support SVG and so cannot be
used to view the interactive examples.

Time-Series Data

Sets of values changing over time—or,
time-series data—is one of the most
common forms of recorded data. Time-
varying phenomena are central to many
domains such as finance (stock prices,
exchange rates), science (temperatures,
pollution levels, electric potentials),
and public policy (crime rates). One of-
ten needs to compare a large number
of time series simultaneously and can
choose from a number of visualizations
to do so.

Index Charts. With some forms of
time-series data, raw values are less im-
portant than relative changes. Consider
investors who are more interested in
a stock’s growth rate than its specific
price. Multiple stocks may have dra-
matically different baseline prices but
may be meaningfully compared when
normalized. An index chart is an inter-
active line chart that shows percentage
changes for a collection of time-series
data based on a selected index point.
For example, the image in Figure 1la
shows the percentage change of select-
ed stock prices if purchased in January
2005: one can see the rocky rise enjoyed
by those who invested in Amazon, Ap-
ple, or Google at that time.

Stacked Graphs. Other forms of
time-series data may be better seen in
aggregate. By stacking area charts on
top of each other, we arrive at a visual
summation of time-series values—a
stacked graph. This type of graph (some-
times called a stream graph) depicts
aggregate patterns and often supports
drill-down into a subset of individual
series. The chart in Figure 1b shows the
number of unemployed workers in the
U.S. over the past decade, subdivided by
industry. While such charts have prov-
en popular in recent years, they do have
some notable limitations. A stacked

graph does not support negative num-
bers and is meaningless for data that
should not be summed (temperatures,
for example). Moreover, stacking may
make it difficult to accurately interpret
trends that lie atop other curves. Inter-
active search and filtering is often used
to compensate for this problem.

Small Multiples. In lieu of stacking,
multiple time series can be plotted
within the same axes, as in the index
chart. Placing multiple series in the
same space may produce overlapping
curves that reduce legibility, however.
An alternative approach is to use small
multiples: showing each series in its
own chart. In Figure 1c we again see
the number of unemployed workers,
but normalized within each industry
category. We can now more accurately
see both overall trends and seasonal
patterns in each sector. While we are
considering time-series data, note that
small multiples can be constructed for
just about any type of visualization: bar
charts, pie charts, maps, among others.
This often produces a more effective vi-
sualization than trying to coerce all the
data into a single plot.

Horizon Graphs. What happens
when you want to compare even more
time series at once? The horizon graph
is a technique for increasing the data
density of a time-series view while pre-
serving resolution. Consider the five
graphs shown in Figure 1d. The first
one is a standard area chart, with posi-
tive values colored blue and negative
values colored red. The second graph
“mirrors” negative values into the same
region as positive values, doubling the
data density of the area chart. The third
chart—a horizon graph—doubles the
data density yet again by dividing the
graph into bands and layering them
to create a nested form. The result is
a chart that preserves data resolution
but uses only a quarter of the space. Al-
though the horizon graph takes some
time to learn, it has been found to be
more effective than the standard plot
when the chart sizes get quite small.

Statistical Distributions

Other visualizations have been de-
signed to reveal how a set of numbers
is distributed and thus help an analyst
better understand the statistical prop-
erties of the data. Analysts often want
to fit their data to statistical models, ei-
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ther to test hypotheses or predict future
values, but an improper choice of mod-
el can lead to faulty predictions. Thus,
one important use of visualizations is
exploratory data analysis: gaining in-
sight into how data is distributed to
inform data transformation and mod-
eling decisions. Common techniques
include the histogram, which shows the
prevalence of values grouped into bins,
and the box-and-whisker plot, which can
convey statistical features such as the
mean, median, quartile boundaries, or
extreme outliers. In addition, a number
of other techniques exist for assessing
a distribution and examining interac-
tions between multiple dimensions.

Stem-and-Leaf Plots. For assessing a
collection of numbers, one alternative
to the histogram is the stem-and-leaf
plot. 1t typically bins numbers accord-
ing to the first significant digit, and then
stacks the values within each bin by the
second significant digit. This minimal-
istic representation uses the data itself
to paint a frequency distribution, re-
placing the “information-empty” bars
of a traditional histogram bar chart and
allowing one to assess both the overall
distribution and the contents of each
bin. In Figure 2a, the stem-and-leaf plot
shows the distribution of completion
rates of workers completing crowd-
sourced tasks on Amazon’s Mechani-
cal Turk. Note the multiple clusters:
one group clusters around high levels
of completion (99%-100%); at the oth-
er extreme is a cluster of Turkers who
complete only a few tasks (710%) in a
group.

Q-Q Plots. Though the histogram
and the stem-and-leaf plot are common
tools for assessing a frequency distribu-
tion, the Q-Q (quantile-quantile) plot is a
more powerful tool. The Q-Q plot com-
pares two probability distributions by
graphing their quantiles against each
other. If the two are similar, the plotted
values will lie roughly along the central
diagonal. If the two are linearly related,
values will again lie along a line, though
with varying slope and intercept.

Figure 2b shows the same Mechani-
cal Turk participation data compared
with three statistical distributions.
Note how the data forms three distinct
components when compared with uni-
form and normal (Gaussian) distribu-
tions: this suggests that a statistical
model with three components might
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Statistical Distributions:
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Figure 2a. Stem-and-leaf plot of Mechanical Turk participation rates.
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Source: Stanford Visualization Group; http://hci stanford.edu/jheer/files/zoo/ex/stats/stem-and-leaf.html
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Statistical Distributions:

Figure 2b. Q-Q plots of Mechanical Turk participation rates.
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Statistical Distributions: Figure 2c. Scatter plot matrix of automobile data.
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Statistical Distributions: Figure 2d. Parallel coordinates of automobile data.
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be more appropriate, and indeed we
see in the final plot that a fitted mixture
of three normal distributions provides
a better fit. Though powerful, the Q-Q
plot has one obvious limitation in that
its effective use requires that viewers
possess some statistical knowledge.

SPLOM (Scatter Plot Matrix). Other
visualization techniques attempt to
represent the relationships among
multiple variables. Multivariate data
occurs frequently and is notoriously
hard to represent, in part because of
the difficulty of mentally picturing data
in more than three dimensions. One
technique to overcome this problem is
to use small multiples of scatter plots
showing a set of pairwise relations
among variables, thus creating the SP-
LOM (scatter plot matrix). A SPLOM en-
ables visual inspection of correlations
between any pair of variables.

In Figure 2c a scatter plot matrix is
used to visualize the attributes of a da-
tabase of automobiles, showing the re-
lationships among horsepower, weight,
acceleration, and displacement. Addi-
tionally, interaction techniques such
as brushing-and-linking—in which a
selection of points on one graph high-
lights the same points on all the other
graphs—can be used to explore pat-
terns within the data.

Parallel Coordinates. As shown in
Figure 2d, parallel coordinates (||-co-
ord) take a different approach to visu-
alizing multivariate data. Instead of
graphing every pair of variables in two
dimensions, we repeatedly plot the data
on parallel axes and then connect the
corresponding points with lines. Each
poly-line represents a single row in the
database, and line crossings between
dimensions often indicate inverse cor-
relation. Reordering dimensions can
aid pattern-finding, as can interactive
querying to filter along one or more di-
mensions. Another advantage of paral-
lel coordinates is that they are relatively
compact, so many variables can be
shown simultaneously.

Maps

Although a map may seem a natural
way to visualize geographical data, it
has a long and rich history of design.
Many maps are based upon a carto-
graphic projection: a mathematical
function that maps the 3D geometry
of the Earth to a 2D image. Other maps



knowingly distort or abstract geo-
graphic features to tell a richer story or
highlight specific data.

Flow Maps. By placing stroked lines
on top of a geographic map, a flow map
can depict the movement of a quantity
in space and (implicitly) in time. Flow
lines typically encode a large amount of
multivariate information: path points,
direction, line thickness, and color can
all be used to present dimensions of
information to the viewer. Figure 3a is
a modern interpretation of Charles Mi-
nard’s depiction of Napoleon’s ill-fated
march on Moscow. Many of the greatest
flow maps also involve subtle uses of
distortion, as geography is bended to
accommodate or highlight flows.

Choropleth Maps. Data is often col-
lected and aggregated by geographi-
cal areas such as states. A standard
approach to communicating this data
is to use a color encoding of the geo-
graphic area, resulting in a choropleth
map. Figure 3b uses a color encoding
to communicate the prevalence of obe-
sity in each state in the U.S. Though
this is a widely used visualization tech-
nique, it requires some care. One com-
mon error is to encode raw data values
(such as population) rather than using
normalized values to produce a densi-
ty map. Another issue is that one’s per-
ception of the shaded value can also be
affected by the underlying area of the
geographic region.

Graduated Symbol Maps. An alterna-
tive to the choropleth map, the gradu-
ated symbol map places symbols over an
underlying map. This approach avoids
confounding geographic area with data
values and allows for more dimensions
to be visualized (for example, symbol
size, shape, and color). In addition to
simple shapes such as circles, gradu-
ated symbol maps may use more com-
plicated glyphs such as pie charts. In
Figure 3c, total circle size represents a
state’s population, and each slice indi-
cates the proportion of people with a
specific BMI rating.

Cartograms. A cartogram distorts the
shape of geographic regions so that the
area directly encodes a data variable.
A common example is to redraw every
country in the world sizing it propor-
tionally to population or gross domes-
tic product. Many types of cartograms
have been created; in Figure 3d we use
the Dorling cartogram, which represents
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Maps: Figure 3a. Flow map of Napoleon’s March on Moscow, based on the work of Charles Minard.
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Maps: Figure 3b. Choropleth map of obesity in the U.S., 2008.
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Maps: Figure 3d. Dorling cartogram of obesity in the U.S., 2008.
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Hierarchies: Figure 4a. Radial node-link diagram of the Flare package hierarchy.
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each geographic region with a sized
circle, placed so as to resemble the true
geographic configuration. In this ex-
ample, circular area encodes the total
number of obese people per state, and
color encodes the percentage of the to-
tal population that is obese.

Hierarchies

While some data is simply a flat collec-
tion of numbers, most can be organized
into natural hierarchies. Consider: spa-
tial entities, such as counties, states,
and countries; command structures
for businesses and governments; soft-
ware packages and phylogenetic trees.
Even for data with no apparent hierar-
chy, statistical methods (for example,
k-means clustering) may be applied to
organize data empirically. Special visu-
alization techniques exist to leverage
hierarchical structure, allowing rapid
multiscale inferences: micro-observa-
tions of individual elements and mac-
ro-observations of large groups.

Node-link diagrams. The word tree
is used interchangeably with hierarchy,
as the fractal branches of an oak might
mirror the nesting of data. If we take a
two-dimensional blueprint of a tree, we
have a popular choice for visualizing
hierarchies: a node-link diagram. Many
different tree-layout algorithms have
been designed; the Reingold-Tilford al-
gorithm, used in Figure 4a on a package
hierarchy of software classes, produces
atidy result with minimal wasted space.

An alternative visualization scheme
is the dendrogram (or cluster) algorithm,
which placesleaf nodes of the tree at the
same level. Thus, in the diagram in Fig-
ure 4b, the classes (orange leaf nodes)
are on the diameter of the circle, with
the packages (blue internal nodes) in-
side. Using polar rather than Cartesian
coordinates has a pleasing aesthetic,
while using space more efficiently.

We would be remiss to overlook
the indented tree, used ubiquitously
by operating systems to represent file
directories, among other applications
(see Figure 4c). Although the indented
tree requires excessive vertical space
and does not facilitate multiscale infer-
ences, it does allow efficient interactive
exploration of the tree to find a specific
node. In addition, it allows rapid scan-
ning of node labels, and multivariate
data such as file size can be displayed
adjacent to the hierarchy.



Adjacency Diagrams. The adjacency
diagram is a space-filling variant of the
node-link diagram; rather than draw-
ing a link between parent and child in
the hierarchy, nodes are drawn as solid
areas (either arcs or bars), and their
placement relative to adjacent nodes
reveals their position in the hierarchy.
The icicle layout in Figure 4d is similar
to the first node-link diagram in that
the root node appears at the top, with
child nodes underneath. Because the
nodes are now space-filling, however,
we can use a length encoding for the
size of software classes and packages.
This reveals an additional dimension
that would be difficult to show in a
node-link diagram.

The sunburst layout, shown in Fig-
ure 4e, is equivalent to the icicle lay-
out, but in polar coordinates. Both are
implemented using a partition layout,
which can also generate a node-link
diagram. Similarly, the previous cluster
layout can be used to generate a space-
filling adjacency diagram in either Car-
tesian or polar coordinates.

Enclosure Diagrams. The enclosure
diagram is also space filling, using
containment rather than adjacency to
represent the hierarchy. Introduced by
Ben Shneiderman in 1991, a treemap
recursively subdivides area into rect-
angles. As with adjacency diagrams,
the size of any node in the tree is
quickly revealed. The example shown
in Figure 4f uses padding (in blue) to
emphasize enclosure; an alternative
saturation encoding is sometimes
used. Squarified treemaps use approxi-
mately square rectangles, which offer
better readability and size estimation
than a naive “slice-and-dice” subdivi-
sion. Fancier algorithms such as Vo-
ronoi and jigsaw treemaps also exist
but are less common.

By packing circles instead of sub-
dividing rectangles, we can produce
a different sort of enclosure diagram
that has an almost organic appear-
ance. Although it does not use space
as efficiently as a treemap, the “wast-
ed space” of the circle-packing layout,
shown in Figure 4g, effectively reveals
the hierarchy. At the same time, node
sizes can be rapidly compared using
area judgments.

Networks
In addition to organization, one aspect
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Figure 4d. Icicle tree layout of the Flare package hierarchy.
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Figure 4e. Sunburst (radial space-filling) layout of the Flare package hierarchy.
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Networks: Figure 5a. Force-directed layout of Les Misérables character co-occurrences.
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Networks: Figure 5b. Arc diagram of Les Misérables character co-occurrences.
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Networks: Figure 5c. Matrix view of Les Misérables character co-occurrences.
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of data that we may wish to explore
through visualization is relationship.
For example, given a social network,
who is friends with whom? Who are
the central players? What cliques ex-
ist? Who, if anyone, serves as a bridge
between disparate groups? Abstractly,
a hierarchy is a specialized form of net-
work: each node has exactly one link
to its parent, while the root node has
no links. Thus node-link diagrams are
also used to visualize networks, but the
loss of hierarchy means a different al-
gorithm is required to position nodes.

Mathematicians use the formal
term graph to describe a network. A
central challenge in graph visualiza-
tion is computing an effective layout.
Layout techniques typically seek to po-
sition closely related nodes (in terms
of graph distance, such as the number
of links between nodes, or other met-
rics) close in the drawing; critically,
unrelated nodes must also be placed
far enough apart to differentiate rela-
tionships. Some techniques may seek
to optimize other visual features—for
example, by minimizing the number
of edge crossings.

Force-directed Layouts. A common
and intuitive approach to network lay-
out is to model the graph as a physical
system: nodes are charged particles that
repel each other, and links are damp-
ened springs that pull related nodes
together. A physical simulation of these
forces then determines the node posi-
tions; approximation techniques that
avoid computing all pairwise forces
enable the layout of large numbers of
nodes. In addition, interactivity allows
the user to direct the layout and jiggle
nodes to disambiguate links. Such a
Jorce-directed layout is a good starting
point for understanding the structure
of a general undirected graph. In Figure
5awe use a force-directed layout to view
the network of character co-occurrence
in the chapters of Victor Hugo’s classic
novel, Les Miserables. Node colors de-
pict cluster memberships computed by
a community-detection algorithm.

Arc Diagrams. An arc diagram,
shown in Figure 5b, uses a one-dimen-
sional layout of nodes, with circular
arcs to represent links. Though an arc
diagram may not convey the overall
structure of the graph as effectively as
a two-dimensional layout, with a good
ordering of nodes it is easy to identify



cliques and bridges. Further, as with the
indented-tree layout, multivariate data
can easily be displayed alongside nodes.
The problem of sorting the nodes in a
manner that reveals underlying cluster
structure is formally called seriation and
has diverse applications in visualiza-
tion, statistics, and even archaeology.

Matrix Views. Mathematicians and
computer scientists often think of a
graph in terms of its adjacency matrix:
each value in row i and column j in the
matrix corresponds to the link from
node 7 to node j. Given this representa-
tion, an obvious visualization then is:
just show the matrix! Using color or sat-
uration instead of text allows values as-
sociated with the links to be perceived
more rapidly.

The seriation problem applies just
as much to the matrix view, shown in
Figure 5c¢, as to the arc diagram, so
the order of rows and columns is im-
portant: here we use the groupings
generated by a community-detection
algorithm to order the display. While
path-following is more difficult in a
matrix view than in a node-link dia-
gram, matrices have a number of com-
pensating advantages. As networks
get large and highly connected, node-
link diagrams often devolve into giant
hairballs of line crossings. In matrix
views, however, line crossings are im-
possible, and with an effective sort-
ing one quickly can spot clusters and
bridges. Allowing interactive group-
ing and reordering of the matrix facili-
tates even deeper exploration of net-
work structure.

Conclusion
We have arrived at the end of our tour
and hope the reader has found the ex-
amples both intriguing and practical.
Though we have visited a number of
visual encoding and interaction tech-
niques, many more species of visualiza-
tion exist in the wild, and others await
discovery. Emerging domains such as
bioinformatics and text visualization
are driving researchers and designers to
continually formulate new and creative
representations or find more powerful
ways to apply the classics. In either case,
the DNA underlying all visualizations
remains the same: the principled map-
ping of data variables to visual features
such as position, size, shape, and color.
As you leave the zoo and head back

All visualizations
share a common
“DNA"—a set of
mappings between
data properties and
visual attributes
such as position,
size, shape,

and color—and
customized species
of visualization
might always be
constructed by
varying these
encodings.

practice

into the wild, try deconstructing the
various visualizations crossing your
path. Perhaps you can design a more ef-
fective display?

Additional Resources

Few, S.

Now I See It: Simple Visualization
Techniques for Quantitative Analysis.
Analytics Press, 2009.

Tufte, E.

The Visual Display of Quantitative
Information. Graphics Press, 1983.
Tufte, E.

Envisioning Information. Graphics Press,
1990.

Ware, C.
Visual Thinking for Design. Morgan
Kaufmann, 2008.

Wilkinson, L.
The Grammar of Graphics. Springer, 1999.

Visualization Development Tools

Prefuse: Java API for information
visualization.

Prefuse Flare: ActionScript 3 library for data
visualization in the Adobe Flash Player.

Processing: Popular language and IDE for
graphics and interaction.

Protovis: JavaScript tool for Web-based
visualization.

The Visualization Toolkit: Library for 3D
and scientific visualization.

Related articles
on queue.acm.org

A Conversation with Jeff Heer, Martin
Wattenberg, and Fernanda Viégas
http://queue.acm.org/detail.cfm?id=1744741

Unifying Biological Image Formats

with HDF5

Matthew T. Dougherty, Michael J. Folk,

Erez Zadok, Herbert J. Bernstein,

Frances C. Bernstein, Kevin W. Eliceiri,
Werner Benger, Christoph Best
http://queue.acm.org/detail.cfm?id=1628215

Jeffrey Heer is an assistant professor of computer
science at Stanford University, where he works on human-
computer interaction, visualization, and social computing.
He led the design of the Prefuse, Flare, and Protovis
visualization toolkits.

Michael Bostock is currently a Ph.D. student in the
Department of Computer Science at Stanford University.
Before attending Stanford, he was a staff engineer at
Google, where he developed search quality evaluation
methodologies.

Vadim Ogievetsky is a master's student at Stanford
University specializing in human-computer interaction.
He is a core contributor to Protovis, an open-source Web-
based visualization toolkit.
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