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A survey of powerful visualization techniques, 
from the obvious to the obscure.
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A Tour 
Through the 
Visualization 
Zoo 

help engage more diverse audiences in 
exploration and analysis. The challenge 
is to create effective and engaging visu-
alizations that are appropriate to the 
data.

Creating a visualization requires a 
number of nuanced judgments. One 
must determine which questions to 
ask, identify the appropriate data, and 
select effective visual encodings to map 
data values to graphical features such 
as position, size, shape, and color. The 
challenge is that for any given data set 
the number of visual encodings—and 
thus the space of possible visualization 
designs—is extremely large. To guide 
this process, computer scientists, psy-

of valuable information on how we 
conduct our businesses, governments, 
and personal lives. To put the informa-
tion to good use, we must find ways to 
explore, relate, and communicate the 
data meaningfully.

The goal of visualization is to aid our 
understanding of data by leveraging the 
human visual system’s highly tuned 
ability to see patterns, spot trends, and 
identify outliers. Well-designed visual 
representations can replace cognitive 
calculations with simple perceptual in-
ferences and improve comprehension, 
memory, and decision making. By mak-
ing data more accessible and appeal-
ing, visual representations may also 

Thanks to  adva n ces  in sensing, networking, and 
data management, our society is producing digital 
information at an astonishing rate. According to 
one estimate, in 2010 alone we will generate 1,200 
exabytes—60 million times the content of the Library 
of Congress. Within this deluge of data lies a wealth 
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chologists, and statisticians have stud-
ied how well different encodings facili-
tate the comprehension of data types 
such as numbers, categories, and net-
works. For example, graphical percep-
tion experiments find that spatial po-
sition (as in a scatter plot or bar chart) 
leads to the most accurate decoding of 
numerical data and is generally prefer-
able to visual variables such as angle, 
one-dimensional length, two-dimen-
sional area, three-dimensional volume, 
and color saturation. Thus, it should 
be no surprise that the most common 
data graphics, including bar charts, 
line charts, and scatter plots, use posi-
tion encodings. Our understanding of 
graphical perception remains incom-
plete, however, and must appropriately 
be balanced with interaction design 
and aesthetics.

This article provides a brief tour 
through the “visualization zoo,” show-
casing techniques for visualizing and 
interacting with diverse data sets. In 
many situations, simple data graphics 
will not only suffice, they may also be 
preferable. Here we focus on a few of 
the more sophisticated and unusual 
techniques that deal with complex data 
sets. After all, you don’t go to the zoo to 
see chihuahuas and raccoons; you go 
to admire the majestic polar bear, the 
graceful zebra, and the terrifying Suma-
tran tiger. Analogously, we cover some 
of the more exotic (but practically use-
ful) forms of visual data representation, 
starting with one of the most common, 
time-series data; continuing on to sta-
tistical data and maps; and then com-
pleting the tour with hierarchies and 
networks. Along the way, bear in mind 
that all visualizations share a common 
“DNA”—a set of mappings between 
data properties and visual attributes 
such as position, size, shape, and col-
or—and that customized species of vi-
sualization might always be construct-
ed by varying these encodings.

Each visualization shown here is 
accompanied by an online interactive 
example that can be viewed at the URL 
displayed beneath it. The live examples 
were created using Protovis, an open 
source language for Web-based data 
visualization. To learn more about how 
a visualization was made (or to copy 
and paste it for your own use), see the 
online version of this article available 
on the ACM Queue site at http://queue.
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Time-Series Data: F igure 1a. Index chart of selected technology stocks, 2000–2010. 

Source: Yahoo! Finance; http://hci.stanford.edu/jheer/files/zoo/ex/time/index-chart.html
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Time-Series Data: F igure 1b. Stacked graph of unemployed U.S. workers by industry, 2000–2010.

Source: U.S. Bureau of Labor Statistics; http://hci.stanford.edu/jheer/files/zoo/ex/time/stack.html
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Time-Series Data: F igure 1c. Small multiples of unemployed U.S. workers, normalized by industry, 2000–2010.

Source: U.S. Bureau of Labor Statistics; http://hci.stanford.edu/jheer/files/zoo/ex/time/multiples.html

Time-Series Data: F igure 1d. Horizon graphs of U.S. unemployment rate, 2000–2010.

Source: U.S. Bureau of Labor Statistics;  http://hci.stanford.edu/jheer/files/zoo/ex/time/horizon.html
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acm.org/detail.cfm?id=1780401/. All 
example source code is released into 
the public domain and has no restric-
tions on reuse or modification. Note, 
however, that these examples will work 
only on a modern, standards-compli-
ant browser supporting scalable vector 
graphics (SVG). Supported browsers in-
clude recent versions of Firefox, Safari, 
Chrome, and Opera. Unfortunately, In-
ternet Explorer 8 and earlier versions 
do not support SVG and so cannot be 
used to view the interactive examples.

Time-Series Data
 Sets of values changing over time—or, 
time-series data—is one of the most 
common forms of recorded data. Time-
varying phenomena are central to many 
domains such as finance (stock prices, 
exchange rates), science (temperatures, 
pollution levels, electric potentials), 
and public policy (crime rates). One of-
ten needs to compare a large number 
of time series simultaneously and can 
choose from a number of visualizations 
to do so.

Index Charts. With some forms of 
time-series data, raw values are less im-
portant than relative changes. Consider 
investors who are more interested in 
a stock’s growth rate than its specific 
price. Multiple stocks may have dra-
matically different baseline prices but 
may be meaningfully compared when 
normalized. An index chart is an inter-
active line chart that shows percentage 
changes for a collection of time-series 
data based on a selected index point. 
For example, the image in Figure 1a 
shows the percentage change of select-
ed stock prices if purchased in January 
2005: one can see the rocky rise enjoyed 
by those who invested in Amazon, Ap-
ple, or Google at that time. 

Stacked Graphs. Other forms of 
time-series data may be better seen in 
aggregate. By stacking area charts on 
top of each other, we arrive at a visual 
summation of time-series values—a 
stacked graph. This type of graph (some-
times called a stream graph) depicts 
aggregate patterns and often supports 
drill-down into a subset of individual 
series. The chart in Figure 1b shows the 
number of unemployed workers in the 
U.S. over the past decade, subdivided by 
industry. While such charts have prov-
en popular in recent years, they do have 
some notable limitations. A stacked 

graph does not support negative num-
bers and is meaningless for data that 
should not be summed (temperatures, 
for example). Moreover, stacking may 
make it difficult to accurately interpret 
trends that lie atop other curves. Inter-
active search and filtering is often used 
to compensate for this problem.

Small Multiples. In lieu of stacking, 
multiple time series can be plotted 
within the same axes, as in the index 
chart. Placing multiple series in the 
same space may produce overlapping 
curves that reduce legibility, however. 
An alternative approach is to use small 
multiples: showing each series in its 
own chart. In Figure 1c we again see 
the number of unemployed workers, 
but normalized within each industry 
category. We can now more accurately 
see both overall trends and seasonal 
patterns in each sector. While we are 
considering time-series data, note that 
small multiples can be constructed for 
just about any type of visualization: bar 
charts, pie charts, maps, among others. 
This often produces a more effective vi-
sualization than trying to coerce all the 
data into a single plot.

Horizon Graphs. What happens 
when you want to compare even more 
time series at once? The horizon graph 
is a technique for increasing the data 
density of a time-series view while pre-
serving resolution. Consider the five 
graphs shown in Figure 1d. The first 
one is a standard area chart, with posi-
tive values colored blue and negative 
values colored red. The second graph 
“mirrors” negative values into the same 
region as positive values, doubling the 
data density of the area chart. The third 
chart—a horizon graph—doubles the 
data density yet again by dividing the 
graph into bands and layering them 
to create a nested form. The result is 
a chart that preserves data resolution 
but uses only a quarter of the space. Al-
though the horizon graph takes some 
time to learn, it has been found to be 
more effective than the standard plot 
when the chart sizes get quite small.

Statistical Distributions 
Other visualizations have been de-
signed to reveal how a set of numbers 
is distributed and thus help an analyst 
better understand the statistical prop-
erties of the data. Analysts often want 
to fit their data to statistical models, ei-

ther to test hypotheses or predict future 
values, but an improper choice of mod-
el can lead to faulty predictions. Thus, 
one important use of visualizations is 
exploratory data analysis: gaining in-
sight into how data is distributed to 
inform data transformation and mod-
eling decisions. Common techniques 
include the histogram, which shows the 
prevalence of values grouped into bins, 
and the box-and-whisker plot, which can 
convey statistical features such as the 
mean, median, quartile boundaries, or 
extreme outliers. In addition, a number 
of other techniques exist for assessing 
a distribution and examining interac-
tions between multiple dimensions.

Stem-and-Leaf Plots. For assessing a 
collection of numbers, one alternative 
to the histogram is the stem-and-leaf 
plot. It typically bins numbers accord-
ing to the first significant digit, and then 
stacks the values within each bin by the 
second significant digit. This minimal-
istic representation uses the data itself 
to paint a frequency distribution, re-
placing the “information-empty” bars 
of a traditional histogram bar chart and 
allowing one to assess both the overall 
distribution and the contents of each 
bin. In Figure 2a, the stem-and-leaf plot 
shows the distribution of completion 
rates of workers completing crowd-
sourced tasks on Amazon’s Mechani-
cal Turk. Note the multiple clusters: 
one group clusters around high levels 
of completion (99%–100%); at the oth-
er extreme is a cluster of Turkers who 
complete only a few tasks (~10%) in a 
group. 

Q-Q Plots. Though the histogram 
and the stem-and-leaf plot are common 
tools for assessing a frequency distribu-
tion, the Q-Q (quantile-quantile) plot is a 
more powerful tool. The Q-Q plot com-
pares two probability distributions by 
graphing their quantiles against each 
other. If the two are similar, the plotted 
values will lie roughly along the central 
diagonal. If the two are linearly related, 
values will again lie along a line, though 
with varying slope and intercept.

Figure 2b shows the same Mechani-
cal Turk participation data compared 
with three statistical distributions. 
Note how the data forms three distinct 
components when compared with uni-
form and normal (Gaussian) distribu-
tions: this suggests that a statistical 
model with three components might 
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be more appropriate, and indeed we 
see in the final plot that a fitted mixture 
of three normal distributions provides 
a better fit. Though powerful, the Q-Q 
plot has one obvious limitation in that 
its effective use requires that viewers 
possess some statistical knowledge. 

SPLOM (Scatter Plot Matrix). Other 
visualization techniques attempt to 
represent the relationships among 
multiple variables. Multivariate data 
occurs frequently and is notoriously 
hard to represent, in part because of 
the difficulty of mentally picturing data 
in more than three dimensions. One 
technique to overcome this problem is 
to use small multiples of scatter plots 
showing a set of pairwise relations 
among variables, thus creating the SP-
LOM (scatter plot matrix). A SPLOM en-
ables visual inspection of correlations 
between any pair of variables. 

In Figure 2c a scatter plot matrix is 
used to visualize the attributes of a da-
tabase of automobiles, showing the re-
lationships among horsepower, weight, 
acceleration, and displacement. Addi-
tionally, interaction techniques such 
as brushing-and-linking—in which a 
selection of points on one graph high-
lights the same points on all the other 
graphs—can be used to explore pat-
terns within the data. 

Parallel Coordinates. As shown in 
Figure 2d, parallel coordinates (||-co-
ord) take a different approach to visu-
alizing multivariate data. Instead of 
graphing every pair of variables in two 
dimensions, we repeatedly plot the data 
on parallel axes and then connect the 
corresponding points with lines. Each 
poly-line represents a single row in the 
database, and line crossings between 
dimensions often indicate inverse cor-
relation. Reordering dimensions can 
aid pattern-finding, as can interactive 
querying to filter along one or more di-
mensions. Another advantage of paral-
lel coordinates is that they are relatively 
compact, so many variables can be 
shown simultaneously. 

Maps
Although a map may seem a natural 
way to visualize geographical data, it 
has a long and rich history of design. 
Many maps are based upon a carto-
graphic projection: a mathematical 
function that maps the 3D geometry 
of the Earth to a 2D image. Other maps 
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Statistical Distributions:  Figure 2a. Stem-and-leaf plot of Mechanical Turk participation rates.

Source: Stanford Visualization Group; http://hci.stanford.edu/jheer/files/zoo/ex/stats/stem-and-leaf.html
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Statistical Distributions:  Figure 2b. Q-Q plots of Mechanical Turk participation rates. 

Source: Stanford Visualization Group; http://hci.stanford.edu/jheer/files/zoo/ex/stats/qqplot.html
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Statistical Distributions:  Figure 2d. Parallel coordinates of automobile data.

Source: GGobi; http://hci.stanford.edu/jheer/files/zoo/ex/stats/parallel.html
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Statistical Distributions:  Figure 2c. Scatter plot matrix of automobile data. 

Source: GGobi; http://hci.stanford.edu/jheer/files/zoo/ex/stats/splom.html
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knowingly distort or abstract geo-
graphic features to tell a richer story or 
highlight specific data.

Flow Maps. By placing stroked lines 
on top of a geographic map, a flow map 
can depict the movement of a quantity 
in space and (implicitly) in time. Flow 
lines typically encode a large amount of 
multivariate information: path points, 
direction, line thickness, and color can 
all be used to present dimensions of 
information to the viewer. Figure 3a is 
a modern interpretation of Charles Mi-
nard’s depiction of Napoleon’s ill-fated 
march on Moscow. Many of the greatest 
flow maps also involve subtle uses of 
distortion, as geography is bended to 
accommodate or highlight flows. 

Choropleth Maps. Data is often col-
lected and aggregated by geographi-
cal areas such as states. A standard 
approach to communicating this data 
is to use a color encoding of the geo-
graphic area, resulting in a choropleth 
map. Figure 3b uses a color encoding 
to communicate the prevalence of obe-
sity in each state in the U.S. Though 
this is a widely used visualization tech-
nique, it requires some care. One com-
mon error is to encode raw data values 
(such as population) rather than using 
normalized values to produce a densi-
ty map. Another issue is that one’s per-
ception of the shaded value can also be 
affected by the underlying area of the 
geographic region.

Graduated Symbol Maps. An alterna-
tive to the choropleth map, the gradu-
ated symbol map places symbols over an 
underlying map. This approach avoids 
confounding geographic area with data 
values and allows for more dimensions 
to be visualized (for example, symbol 
size, shape, and color). In addition to 
simple shapes such as circles, gradu-
ated symbol maps may use more com-
plicated glyphs such as pie charts. In 
Figure 3c, total circle size represents a 
state’s population, and each slice indi-
cates the proportion of people with a 
specific BMI rating. 

Cartograms. A cartogram distorts the 
shape of geographic regions so that the 
area directly encodes a data variable. 
A common example is to redraw every 
country in the world sizing it propor-
tionally to population or gross domes-
tic product. Many types of cartograms 
have been created; in Figure 3d we use 
the Dorling cartogram, which represents 
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Maps:  Figure 3a. Flow map of Napoleon’s March on Moscow, based on the work of Charles Minard.

http://hci.stanford.edu/jheer/files/zoo/ex/maps/napoleon.html
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Maps:  Figure 3b. Choropleth map of obesity in the U.S., 2008.

Source: National Center for Chronic Disease Prevention and Health Promotion; http://hci.stanford.edu/jheer/files/zoo/ex/maps/choropleth.html
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Maps:  Figure 3c. Graduated symbol map of obesity in the U.S., 2008.

Source: National Center for Chronic Disease Prevention and Health Promotion; http://hci.stanford.edu/jheer/files/zoo/ex/maps/symbol.html
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each geographic region with a sized 
circle, placed so as to resemble the true 
geographic configuration. In this ex-
ample, circular area encodes the total 
number of obese people per state, and 
color encodes the percentage of the to-
tal population that is obese. 

Hierarchies
While some data is simply a flat collec-
tion of numbers, most can be organized 
into natural hierarchies. Consider: spa-
tial entities, such as counties, states, 
and countries; command structures 
for businesses and governments; soft-
ware packages and phylogenetic trees. 
Even for data with no apparent hierar-
chy, statistical methods (for example, 
k-means clustering) may be applied to 
organize data empirically. Special visu-
alization techniques exist to leverage 
hierarchical structure, allowing rapid 
multiscale inferences: micro-observa-
tions of individual elements and mac-
ro-observations of large groups.

Node-link diagrams. The word tree 
is used interchangeably with hierarchy, 
as the fractal branches of an oak might 
mirror the nesting of data. If we take a 
two-dimensional blueprint of a tree, we 
have a popular choice for visualizing 
hierarchies: a node-link diagram. Many 
different tree-layout algorithms have 
been designed; the Reingold-Tilford al-
gorithm, used in Figure 4a on a package 
hierarchy of software classes, produces 
a tidy result with minimal wasted space.

An alternative visualization scheme 
is the dendrogram (or cluster) algorithm, 
which places leaf nodes of the tree at the 
same level. Thus, in the diagram in Fig-
ure 4b, the classes (orange leaf nodes) 
are on the diameter of the circle, with 
the packages (blue internal nodes) in-
side. Using polar rather than Cartesian 
coordinates has a pleasing aesthetic, 
while using space more efficiently.

We would be remiss to overlook 
the indented tree, used ubiquitously 
by operating systems to represent file 
directories, among other applications 
(see Figure 4c). Although the indented 
tree requires excessive vertical space 
and does not facilitate multiscale infer-
ences, it does allow efficient interactive 
exploration of the tree to find a specific 
node. In addition, it allows rapid scan-
ning of node labels, and multivariate 
data such as file size can be displayed 
adjacent to the hierarchy.
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Hierarchies:  Figure 4a. Radial node-link diagram of the Flare package hierarchy.
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Hierarchies:  Figure 4b. Cartesian node-link diagram of the Flare package hierarchy.
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Adjacency Diagrams. The adjacency 
diagram is a space-filling variant of the 
node-link diagram; rather than draw-
ing a link between parent and child in 
the hierarchy, nodes are drawn as solid 
areas (either arcs or bars), and their 
placement relative to adjacent nodes 
reveals their position in the hierarchy. 
The icicle layout in Figure 4d is similar 
to the first node-link diagram in that 
the root node appears at the top, with 
child nodes underneath. Because the 
nodes are now space-filling, however, 
we can use a length encoding for the 
size of software classes and packages. 
This reveals an additional dimension 
that would be difficult to show in a 
node-link diagram.

The sunburst layout, shown in Fig-
ure 4e, is equivalent to the icicle lay-
out, but in polar coordinates. Both are 
implemented using a partition layout, 
which can also generate a node-link 
diagram. Similarly, the previous cluster 
layout can be used to generate a space-
filling adjacency diagram in either Car-
tesian or polar coordinates.

Enclosure Diagrams. The enclosure 
diagram is also space filling, using 
containment rather than adjacency to 
represent the hierarchy. Introduced by 
Ben Shneiderman in 1991, a treemap 
recursively subdivides area into rect-
angles. As with adjacency diagrams, 
the size of any node in the tree is 
quickly revealed. The example shown 
in Figure 4f uses padding (in blue) to 
emphasize enclosure; an alternative 
saturation encoding is sometimes 
used. Squarified treemaps use approxi-
mately square rectangles, which offer 
better readability and size estimation 
than a naive “slice-and-dice” subdivi-
sion. Fancier algorithms such as Vo-
ronoi and jigsaw treemaps also exist 
but are less common.

By packing circles instead of sub-
dividing rectangles, we can produce 
a different sort of enclosure diagram 
that has an almost organic appear-
ance. Although it does not use space 
as efficiently as a treemap, the “wast-
ed space” of the circle-packing layout, 
shown in Figure 4g, effectively reveals 
the hierarchy. At the same time, node 
sizes can be rapidly compared using 
area judgments.

Networks
In addition to organization, one aspect 
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practice

of data that we may wish to explore 
through visualization is relationship. 
For example, given a social network, 
who is friends with whom? Who are 
the central players? What cliques ex-
ist? Who, if anyone, serves as a bridge 
between disparate groups? Abstractly, 
a hierarchy is a specialized form of net-
work: each node has exactly one link 
to its parent, while the root node has 
no links. Thus node-link diagrams are 
also used to visualize networks, but the 
loss of hierarchy means a different al-
gorithm is required to position nodes.

Mathematicians use the formal 
term graph to describe a network. A 
central challenge in graph visualiza-
tion is computing an effective layout. 
Layout techniques typically seek to po-
sition closely related nodes (in terms 
of graph distance, such as the number 
of links between nodes, or other met-
rics) close in the drawing; critically, 
unrelated nodes must also be placed 
far enough apart to differentiate rela-
tionships. Some techniques may seek 
to optimize other visual features—for 
example, by minimizing the number 
of edge crossings.

Force-directed Layouts. A common 
and intuitive approach to network lay-
out is to model the graph as a physical 
system: nodes are charged particles that 
repel each other, and links are damp-
ened springs that pull related nodes 
together. A physical simulation of these 
forces then determines the node posi-
tions; approximation techniques that 
avoid computing all pairwise forces 
enable the layout of large numbers of 
nodes. In addition, interactivity allows 
the user to direct the layout and jiggle 
nodes to disambiguate links. Such a 
force-directed layout is a good starting 
point for understanding the structure 
of a general undirected graph. In Figure 
5a we use a force-directed layout to view 
the network of character co-occurrence 
in the chapters of Victor Hugo’s classic 
novel, Les Misérables. Node colors de-
pict cluster memberships computed by 
a community-detection algorithm.

Arc Diagrams. An arc diagram, 
shown in Figure 5b, uses a one-dimen-
sional layout of nodes, with circular 
arcs to represent links. Though an arc 
diagram may not convey the overall 
structure of the graph as effectively as 
a two-dimensional layout, with a good 
ordering of nodes it is easy to identify 

networks: figure 5a. force-directed layout of Les Misérables character co-occurrences.

http://hci.stanford.edu/jheer/fi les/zoo/ex/networks/force.html
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networks: figure 5b. arc diagram of Les Misérables character co-occurrences.
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networks: figure 5c. matrix view of Les Misérables character co-occurrences. 

http://hci.stanford.edu/jheer/fi les/zoo/ex/networks/matrix.html
Source: http://www-personal.umich.edu/~mejn/netdata
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cliques and bridges. Further, as with the 
indented-tree layout, multivariate data 
can easily be displayed alongside nodes. 
The problem of sorting the nodes in a 
manner that reveals underlying cluster 
structure is formally called seriation and 
has diverse applications in visualiza-
tion, statistics, and even archaeology.

Matrix Views. Mathematicians and 
computer scientists often think of a 
graph in terms of its adjacency matrix: 
each value in row i and column j in the 
matrix corresponds to the link from 
node i to node j. Given this representa-
tion, an obvious visualization then is: 
just show the matrix! Using color or sat-
uration instead of text allows values as-
sociated with the links to be perceived 
more rapidly. 

The seriation problem applies just 
as much to the matrix view, shown in 
Figure 5c, as to the arc diagram, so 
the order of rows and columns is im-
portant: here we use the groupings 
generated by a community-detection 
algorithm to order the display. While 
path-following is more difficult in a 
matrix view than in a node-link dia-
gram, matrices have a number of com-
pensating advantages. As networks 
get large and highly connected, node-
link diagrams often devolve into giant 
hairballs of line crossings. In matrix 
views, however, line crossings are im-
possible, and with an effective sort-
ing one quickly can spot clusters and 
bridges. Allowing interactive group-
ing and reordering of the matrix facili-
tates even deeper exploration of net-
work structure.

Conclusion
We have arrived at the end of our tour 
and hope the reader has found the ex-
amples both intriguing and practical. 
Though we have visited a number of 
visual encoding and interaction tech-
niques, many more species of visualiza-
tion exist in the wild, and others await 
discovery. Emerging domains such as 
bioinformatics and text visualization 
are driving researchers and designers to 
continually formulate new and creative 
representations or find more powerful 
ways to apply the classics. In either case, 
the DNA underlying all visualizations 
remains the same: the principled map-
ping of data variables to visual features 
such as position, size, shape, and color. 

As you leave the zoo and head back 

into the wild, try deconstructing the 
various visualizations crossing your 
path. Perhaps you can design a more ef-
fective display? 	

Additional Resources

Few, S. 
Now I See It: Simple Visualization 
Techniques for Quantitative Analysis. 
Analytics Press, 2009.

Tufte, E. 
The Visual Display of Quantitative 
Information. Graphics Press, 1983.

Tufte, E.
Envisioning Information. Graphics Press, 
1990. 

Ware, C.
Visual Thinking for Design. Morgan 
Kaufmann, 2008. 

Wilkinson, L.
The Grammar of Graphics. Springer, 1999. 

Visualization Development Tools

Prefuse: Java API for information 
visualization. 

Prefuse Flare: ActionScript 3 library for data 
visualization in the Adobe Flash Player. 

Processing: Popular language and IDE for 
graphics and interaction. 

Protovis: JavaScript tool for Web-based 
visualization. 

The Visualization Toolkit: Library for 3D 
and scientific visualization. 

  Related articles 
  on queue.acm.org

A Conversation with Jeff Heer, Martin 
Wattenberg, and Fernanda Viégas
http://queue.acm.org/detail.cfm?id=1744741

Unifying Biological Image Formats  
with HDF5
Matthew T. Dougherty, Michael J. Folk,  
Erez Zadok, Herbert J. Bernstein,  
Frances C. Bernstein, Kevin W. Eliceiri,  
Werner Benger, Christoph Best
http://queue.acm.org/detail.cfm?id=1628215
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Vadim Ogievetsky is a master’s student at Stanford 
University specializing in human-computer interaction. 
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All visualizations 
share a common 
“DNA”—a set of 
mappings between 
data properties and 
visual attributes 
such as position, 
size, shape, 
and color—and 
customized species 
of visualization 
might always be 
constructed by 
varying these 
encodings.




